revisions 8681 and 8688 restored. Warning fixed.

Warning: changes beak binary compatibility
This commit is contained in:
Alexander Smorkalov
2012-06-21 14:37:28 +00:00
parent 0a58d8f139
commit a3be73b5cc
9 changed files with 437 additions and 194 deletions

View File

@@ -3,7 +3,7 @@
#
# ----------------------------------------------------------------------------
SET(OPENCV_CPP_SAMPLES_REQUIRED_DEPS opencv_core opencv_flann opencv_imgproc
SET(OPENCV_CPP_SAMPLES_REQUIRED_DEPS opencv_core_vision_api opencv_core opencv_flann opencv_imgproc
opencv_highgui opencv_ml opencv_video opencv_objdetect opencv_photo opencv_nonfree
opencv_features2d opencv_calib3d opencv_legacy opencv_contrib opencv_stitching opencv_videostab)

View File

@@ -0,0 +1,55 @@
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O
#include <opencv2/core_vision_api/tracker.hpp>
#include <stdio.h>
#include <string>
#include <vector>
using namespace std;
using namespace cv;
const string WindowName = "Face Detection example";
const Scalar RectColor = CV_RGB(0,255,0);
int main()
{
namedWindow(WindowName);
cv::moveWindow(WindowName, 100, 100);
Mat Viewport;
Mat ReferenceFrame = imread("board.jpg");
if (ReferenceFrame.empty())
{
printf("Error: Cannot load input image\n");
return 1;
}
cv::Ptr<nv::Tracker> tracker = nv::Algorithm::create<nv::Tracker>("nv::Tracker::OpticalFlow");
tracker->initialize();
// First frame for initialization
tracker->feed(ReferenceFrame);
nv::Tracker::TrackedObjectHandler obj = tracker->addObject(cv::Rect(100,100, 200, 200));
while(true)
{
tracker->feed(ReferenceFrame);
if (obj->getStatus() == nv::Tracker::LOST_STATUS)
break;
cv::Rect currentLocation = obj->getLocation();
ReferenceFrame.copyTo(Viewport);
rectangle(Viewport, currentLocation, RectColor);
imshow(WindowName, Viewport);
if (cvWaitKey(30) >= 0) break;
}
return 0;
}

View File

@@ -0,0 +1,104 @@
#if 0 //defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(ANDROID)
#include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/contrib/detection_based_tracker.hpp>
#include <stdio.h>
#include <string>
#include <vector>
using namespace std;
using namespace cv;
const string WindowName = "Face Detection example";
class CascadeDetectorAdapter: public DetectionBasedTracker::IDetector
{
public:
CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):
IDetector(),
Detector(detector)
{
CV_Assert(!detector.empty());
}
void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects)
{
Detector->detectMultiScale(Image, objects, scaleFactor, minNeighbours, 0, minObjSize, maxObjSize);
}
virtual ~CascadeDetectorAdapter()
{}
private:
CascadeDetectorAdapter();
cv::Ptr<cv::CascadeClassifier> Detector;
};
int main(int argc, char* argv[])
{
namedWindow(WindowName);
VideoCapture VideoStream(0);
if (!VideoStream.isOpened())
{
printf("Error: Cannot open video stream from camera\n");
return 1;
}
std::string cascadeFrontalfilename = "../../data/lbpcascades/lbpcascade_frontalface.xml";
cv::Ptr<cv::CascadeClassifier> cascade = new cv::CascadeClassifier(cascadeFrontalfilename);
cv::Ptr<DetectionBasedTracker::IDetector> MainDetector = new CascadeDetectorAdapter(cascade);
cascade = new cv::CascadeClassifier(cascadeFrontalfilename);
cv::Ptr<DetectionBasedTracker::IDetector> TrackingDetector = new CascadeDetectorAdapter(cascade);
DetectionBasedTracker::Parameters params;
DetectionBasedTracker Detector(MainDetector, TrackingDetector, params);
if (!Detector.run())
{
printf("Error: Detector initialization failed\n");
return 2;
}
Mat ReferenceFrame;
Mat GrayFrame;
vector<Rect> Faces;
while(true)
{
VideoStream >> ReferenceFrame;
cvtColor(ReferenceFrame, GrayFrame, COLOR_RGB2GRAY);
Detector.process(GrayFrame);
Detector.getObjects(Faces);
for (size_t i = 0; i < Faces.size(); i++)
{
rectangle(ReferenceFrame, Faces[i], CV_RGB(0,255,0));
}
imshow(WindowName, ReferenceFrame);
if (cvWaitKey(30) >= 0) break;
}
Detector.stop();
return 0;
}
#else
#include <stdio.h>
int main()
{
printf("This sample works for UNIX or ANDROID only\n");
return 0;
}
#endif

View File

@@ -43,8 +43,6 @@
#define LOGE(...) do{} while(0)
#endif
using namespace cv;
using namespace std;
@@ -63,9 +61,31 @@ static void usage()
LOGE0("\t (e.g.\"opencv/data/lbpcascades/lbpcascade_frontalface.xml\" ");
}
class CascadeDetectorAdapter: public DetectionBasedTracker::IDetector
{
public:
CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):
Detector(detector)
{
CV_Assert(!detector.empty());
}
void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects)
{
Detector->detectMultiScale(Image, objects, 1.1, 3, 0, minObjSize, maxObjSize);
}
virtual ~CascadeDetectorAdapter()
{}
private:
CascadeDetectorAdapter();
cv::Ptr<cv::CascadeClassifier> Detector;
};
static int test_FaceDetector(int argc, char *argv[])
{
if (argc < 4) {
if (argc < 4)
{
usage();
return -1;
}
@@ -80,12 +100,14 @@ static int test_FaceDetector(int argc, char *argv[])
vector<Mat> images;
{
char filename[256];
for(int n=1; ; n++) {
for(int n=1; ; n++)
{
snprintf(filename, sizeof(filename), filepattern, n);
LOGD("filename='%s'", filename);
Mat m0;
m0=imread(filename);
if (m0.empty()) {
if (m0.empty())
{
LOGI0("Cannot read the file --- break");
break;
}
@@ -94,10 +116,15 @@ static int test_FaceDetector(int argc, char *argv[])
LOGD("read %d images", (int)images.size());
}
DetectionBasedTracker::Parameters params;
std::string cascadeFrontalfilename=cascadefile;
cv::Ptr<cv::CascadeClassifier> cascade = new cv::CascadeClassifier(cascadeFrontalfilename);
cv::Ptr<DetectionBasedTracker::IDetector> MainDetector = new CascadeDetectorAdapter(cascade);
DetectionBasedTracker fd(cascadeFrontalfilename, params);
cascade = new cv::CascadeClassifier(cascadeFrontalfilename);
cv::Ptr<DetectionBasedTracker::IDetector> TrackingDetector = new CascadeDetectorAdapter(cascade);
DetectionBasedTracker::Parameters params;
DetectionBasedTracker fd(MainDetector, TrackingDetector, params);
fd.run();
@@ -108,12 +135,13 @@ static int test_FaceDetector(int argc, char *argv[])
double freq=getTickFrequency();
int num_images=images.size();
for(int n=1; n <= num_images; n++) {
for(int n=1; n <= num_images; n++)
{
int64 tcur=getTickCount();
int64 dt=tcur-tprev;
tprev=tcur;
double t_ms=((double)dt)/freq * 1000.0;
LOGD("\n\nSTEP n=%d from prev step %f ms\n\n", n, t_ms);
LOGD("\n\nSTEP n=%d from prev step %f ms\n", n, t_ms);
m=images[n-1];
CV_Assert(! m.empty());
cvtColor(m, gray, CV_BGR2GRAY);
@@ -123,11 +151,8 @@ static int test_FaceDetector(int argc, char *argv[])
vector<Rect> result;
fd.getObjects(result);
for(size_t i=0; i < result.size(); i++) {
for(size_t i=0; i < result.size(); i++)
{
Rect r=result[i];
CV_Assert(r.area() > 0);
Point tl=r.tl();
@@ -136,14 +161,14 @@ static int test_FaceDetector(int argc, char *argv[])
rectangle(m, tl, br, color, 3);
}
}
char outfilename[256];
for(int n=1; n <= num_images; n++)
{
char outfilename[256];
for(int n=1; n <= num_images; n++) {
snprintf(outfilename, sizeof(outfilename), outfilepattern, n);
LOGD("outfilename='%s'", outfilename);
m=images[n-1];
imwrite(outfilename, m);
}
snprintf(outfilename, sizeof(outfilename), outfilepattern, n);
LOGD("outfilename='%s'", outfilename);
m=images[n-1];
imwrite(outfilename, m);
}
fd.stop();
@@ -151,8 +176,6 @@ static int test_FaceDetector(int argc, char *argv[])
return 0;
}
int main(int argc, char *argv[])
{
return test_FaceDetector(argc, argv);