Merge remote-tracking branch 'origin/2.4' into merge-2.4

Conflicts:
	modules/calib3d/include/opencv2/calib3d/calib3d.hpp
	modules/contrib/doc/facerec/facerec_api.rst
	modules/contrib/include/opencv2/contrib/contrib.hpp
	modules/contrib/src/facerec.cpp
	modules/core/include/opencv2/core/mat.hpp
	modules/features2d/include/opencv2/features2d/features2d.hpp
	modules/highgui/src/loadsave.cpp
	modules/imgproc/src/pyramids.cpp
	modules/ocl/include/opencv2/ocl/cl_runtime/cl_runtime.hpp
	modules/python/src2/gen.py
	modules/python/test/test.py
	modules/superres/test/test_superres.cpp
	samples/cpp/facerec_demo.cpp
This commit is contained in:
Roman Donchenko
2014-07-08 14:33:56 +04:00
20 changed files with 3011 additions and 117 deletions

View File

@@ -837,6 +837,66 @@ typename Distance::ResultType ensureSquareDistance( typename Distance::ResultTyp
return dummy( dist );
}
/*
* ...and a template to ensure the user that he will process the normal distance,
* and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance)
* that will result in doing actually sqrt(dist*dist) for L1 distance for instance.
*/
template <typename Distance, typename ElementType>
struct simpleDistance
{
typedef typename Distance::ResultType ResultType;
ResultType operator()( ResultType dist ) { return dist; }
};
template <typename ElementType>
struct simpleDistance<L2_Simple<ElementType>, ElementType>
{
typedef typename L2_Simple<ElementType>::ResultType ResultType;
ResultType operator()( ResultType dist ) { return sqrt(dist); }
};
template <typename ElementType>
struct simpleDistance<L2<ElementType>, ElementType>
{
typedef typename L2<ElementType>::ResultType ResultType;
ResultType operator()( ResultType dist ) { return sqrt(dist); }
};
template <typename ElementType>
struct simpleDistance<MinkowskiDistance<ElementType>, ElementType>
{
typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
ResultType operator()( ResultType dist ) { return sqrt(dist); }
};
template <typename ElementType>
struct simpleDistance<HellingerDistance<ElementType>, ElementType>
{
typedef typename HellingerDistance<ElementType>::ResultType ResultType;
ResultType operator()( ResultType dist ) { return sqrt(dist); }
};
template <typename ElementType>
struct simpleDistance<ChiSquareDistance<ElementType>, ElementType>
{
typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
ResultType operator()( ResultType dist ) { return sqrt(dist); }
};
template <typename Distance>
typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist )
{
typedef typename Distance::ElementType ElementType;
simpleDistance<Distance, ElementType> dummy;
return dummy( dist );
}
}
#endif //OPENCV_FLANN_DIST_H_

View File

@@ -109,10 +109,22 @@ public:
*/
void buildIndex()
{
std::vector<size_t> indices(feature_size_ * CHAR_BIT);
tables_.resize(table_number_);
for (unsigned int i = 0; i < table_number_; ++i) {
//re-initialize the random indices table that the LshTable will use to pick its sub-dimensions
if( (indices.size() == feature_size_ * CHAR_BIT) || (indices.size() < key_size_) )
{
indices.resize( feature_size_ * CHAR_BIT );
for (size_t j = 0; j < feature_size_ * CHAR_BIT; ++j)
indices[j] = j;
std::random_shuffle(indices.begin(), indices.end());
}
lsh::LshTable<ElementType>& table = tables_[i];
table = lsh::LshTable<ElementType>(feature_size_, key_size_);
table = lsh::LshTable<ElementType>(feature_size_, key_size_, indices);
// Add the features to the table
table.add(dataset_);

View File

@@ -153,7 +153,7 @@ public:
* @param feature_size is the size of the feature (considered as a ElementType[])
* @param key_size is the number of bits that are turned on in the feature
*/
LshTable(unsigned int /*feature_size*/, unsigned int /*key_size*/)
LshTable(unsigned int /*feature_size*/, unsigned int /*key_size*/, std::vector<size_t> & /*indices*/)
{
std::cerr << "LSH is not implemented for that type" << std::endl;
assert(0);
@@ -339,20 +339,20 @@ private:
// Specialization for unsigned char
template<>
inline LshTable<unsigned char>::LshTable(unsigned int feature_size, unsigned int subsignature_size)
inline LshTable<unsigned char>::LshTable( unsigned int feature_size,
unsigned int subsignature_size,
std::vector<size_t> & indices )
{
initialize(subsignature_size);
// Allocate the mask
mask_ = std::vector<size_t>((size_t)ceil((float)(feature_size * sizeof(char)) / (float)sizeof(size_t)), 0);
// A bit brutal but fast to code
std::vector<size_t> indices(feature_size * CHAR_BIT);
for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = i;
std::random_shuffle(indices.begin(), indices.end());
// Generate a random set of order of subsignature_size_ bits
for (unsigned int i = 0; i < key_size_; ++i) {
size_t index = indices[i];
//Ensure the Nth bit will be selected only once among the different LshTables
//to avoid having two different tables with signatures sharing many dimensions/many bits
size_t index = indices[0];
indices.erase( indices.begin() );
// Set that bit in the mask
size_t divisor = CHAR_BIT * sizeof(size_t);