Small refactoring
This commit is contained in:
parent
10a52220f0
commit
a3825acee4
@ -3269,8 +3269,10 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
|
||||
return k.run(2, globalsize, localsize, false);
|
||||
}
|
||||
|
||||
const int shift_bits = 8;
|
||||
|
||||
static bool ocl_sepRowFilter2D(const UMat & src, UMat & buf, const Mat & kernelX, int anchor,
|
||||
int borderType, int ddepth, bool fast8uc1)
|
||||
int borderType, int ddepth, bool fast8uc1, bool int_arithm)
|
||||
{
|
||||
int type = src.type(), cn = CV_MAT_CN(type), sdepth = CV_MAT_DEPTH(type);
|
||||
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
|
||||
@ -3303,14 +3305,15 @@ static bool ocl_sepRowFilter2D(const UMat & src, UMat & buf, const Mat & kernelX
|
||||
|
||||
char cvt[40];
|
||||
cv::String build_options = cv::format("-D RADIUSX=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D %s -D %s -D %s"
|
||||
" -D srcT=%s -D dstT=%s -D convertToDstT=%s -D srcT1=%s -D dstT1=%s%s",
|
||||
" -D srcT=%s -D dstT=%s -D convertToDstT=%s -D srcT1=%s -D dstT1=%s%s%s",
|
||||
radiusX, (int)localsize[0], (int)localsize[1], cn, btype,
|
||||
extra_extrapolation ? "EXTRA_EXTRAPOLATION" : "NO_EXTRA_EXTRAPOLATION",
|
||||
isolated ? "BORDER_ISOLATED" : "NO_BORDER_ISOLATED",
|
||||
ocl::typeToStr(type), ocl::typeToStr(buf_type),
|
||||
ocl::convertTypeStr(sdepth, bdepth, cn, cvt),
|
||||
ocl::typeToStr(sdepth), ocl::typeToStr(bdepth),
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
|
||||
int_arithm ? " -D INTEGER_ARITHMETIC" : "");
|
||||
build_options += ocl::kernelToStr(kernelX, bdepth);
|
||||
|
||||
Size srcWholeSize; Point srcOffset;
|
||||
@ -3338,7 +3341,7 @@ static bool ocl_sepRowFilter2D(const UMat & src, UMat & buf, const Mat & kernelX
|
||||
return k.run(2, globalsize, localsize, false);
|
||||
}
|
||||
|
||||
static bool ocl_sepColFilter2D(const UMat & buf, UMat & dst, const Mat & kernelY, double delta, int anchor, int bits)
|
||||
static bool ocl_sepColFilter2D(const UMat & buf, UMat & dst, const Mat & kernelY, double delta, int anchor, bool int_arithm)
|
||||
{
|
||||
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
|
||||
if (dst.depth() == CV_64F && !doubleSupport)
|
||||
@ -3361,12 +3364,13 @@ static bool ocl_sepColFilter2D(const UMat & buf, UMat & dst, const Mat & kernelY
|
||||
char cvt[40];
|
||||
cv::String build_options = cv::format("-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d"
|
||||
" -D srcT=%s -D dstT=%s -D convertToDstT=%s"
|
||||
" -D srcT1=%s -D dstT1=%s -D BITS=%d%s",
|
||||
" -D srcT1=%s -D dstT1=%s -D SHIFT_BITS=%d%s%s",
|
||||
anchor, (int)localsize[0], (int)localsize[1], cn,
|
||||
ocl::typeToStr(buf_type), ocl::typeToStr(dtype),
|
||||
ocl::convertTypeStr(bdepth, ddepth, cn, cvt),
|
||||
ocl::typeToStr(bdepth), ocl::typeToStr(ddepth),
|
||||
bits, doubleSupport ? " -D DOUBLE_SUPPORT" : "");
|
||||
2*shift_bits, doubleSupport ? " -D DOUBLE_SUPPORT" : "",
|
||||
int_arithm ? " -D INTEGER_ARITHMETIC" : "");
|
||||
build_options += ocl::kernelToStr(kernelY, bdepth);
|
||||
|
||||
ocl::Kernel k("col_filter", cv::ocl::imgproc::filterSepCol_oclsrc,
|
||||
@ -3459,62 +3463,55 @@ static bool ocl_sepFilter2D( InputArray _src, OutputArray _dst, int ddepth,
|
||||
if (ddepth < 0)
|
||||
ddepth = sdepth;
|
||||
|
||||
//CV_OCL_RUN_(kernelY.cols <= 21 && kernelX.cols <= 21 &&
|
||||
// imgSize.width > optimizedSepFilterLocalSize + (kernelX.cols >> 1) &&
|
||||
// imgSize.height > optimizedSepFilterLocalSize + (kernelY.cols >> 1) &&
|
||||
// (!(borderType & BORDER_ISOLATED) || _src.offset() == 0) && anchor == Point(-1, -1) &&
|
||||
// (d.isIntel() || (d.isAMD() && !d.hostUnifiedMemory())),
|
||||
// ocl_sepFilter2D_SinglePass(_src, _dst, kernelX, kernelY, delta,
|
||||
// borderType & ~BORDER_ISOLATED, ddepth), true)
|
||||
|
||||
if (anchor.x < 0)
|
||||
anchor.x = kernelX.cols >> 1;
|
||||
if (anchor.y < 0)
|
||||
anchor.y = kernelY.cols >> 1;
|
||||
|
||||
UMat src = _src.getUMat();
|
||||
Size srcWholeSize; Point srcOffset;
|
||||
src.locateROI(srcWholeSize, srcOffset);
|
||||
|
||||
//bool fast8uc1 = type == CV_8UC1 && srcOffset.x % 4 == 0 &&
|
||||
// src.cols % 4 == 0 && src.step % 4 == 0;
|
||||
bool fast8uc1 = false;
|
||||
|
||||
int rtype = getKernelType(kernelX,
|
||||
kernelX.rows == 1 ? Point(anchor.x, 0) : Point(0, anchor.x));
|
||||
int ctype = getKernelType(kernelY,
|
||||
kernelY.rows == 1 ? Point(anchor.y, 0) : Point(0, anchor.y));
|
||||
|
||||
int bdepth = CV_32F;
|
||||
int bits = 0;
|
||||
|
||||
bool int_arithm = false;
|
||||
if( sdepth == CV_8U &&
|
||||
((rtype == KERNEL_SMOOTH+KERNEL_SYMMETRICAL &&
|
||||
ctype == KERNEL_SMOOTH+KERNEL_SYMMETRICAL &&
|
||||
ddepth == CV_8U)))
|
||||
{
|
||||
bdepth = CV_32S;
|
||||
bits = 8;
|
||||
_kernelX.getMat().convertTo( kernelX, CV_32S, 1 << bits );
|
||||
_kernelY.getMat().convertTo( kernelY, CV_32S, 1 << bits );
|
||||
kernelX = kernelX.reshape(1,1);
|
||||
kernelY = kernelY.reshape(1,1);
|
||||
bits *= 2;
|
||||
delta *= (1 << bits);
|
||||
_kernelX.getMat().reshape(1,1).convertTo( kernelX, CV_32S, 1 << shift_bits );
|
||||
_kernelY.getMat().reshape(1,1).convertTo( kernelY, CV_32S, 1 << shift_bits );
|
||||
int_arithm = true;
|
||||
}
|
||||
|
||||
CV_OCL_RUN_(kernelY.cols <= 21 && kernelX.cols <= 21 && !int_arithm &&
|
||||
imgSize.width > optimizedSepFilterLocalSize + anchor.x &&
|
||||
imgSize.height > optimizedSepFilterLocalSize + anchor.y &&
|
||||
(!(borderType & BORDER_ISOLATED) || _src.offset() == 0) &&
|
||||
anchor == Point(kernelX.cols >> 1, kernelY.cols >> 1) &&
|
||||
(d.isIntel() || (d.isAMD() && !d.hostUnifiedMemory())),
|
||||
ocl_sepFilter2D_SinglePass(_src, _dst, kernelX, kernelY, delta,
|
||||
borderType & ~BORDER_ISOLATED, ddepth), true)
|
||||
|
||||
UMat src = _src.getUMat();
|
||||
Size srcWholeSize; Point srcOffset;
|
||||
src.locateROI(srcWholeSize, srcOffset);
|
||||
|
||||
bool fast8uc1 = type == CV_8UC1 && srcOffset.x % 4 == 0 &&
|
||||
src.cols % 4 == 0 && src.step % 4 == 0 && !int_arithm;
|
||||
|
||||
Size srcSize = src.size();
|
||||
Size bufSize(srcSize.width, srcSize.height + kernelY.cols - 1);
|
||||
UMat buf(bufSize, CV_MAKETYPE(bdepth, cn));
|
||||
if (!ocl_sepRowFilter2D(src, buf, kernelX, anchor.x, borderType, ddepth, fast8uc1))
|
||||
if (!ocl_sepRowFilter2D(src, buf, kernelX, anchor.x, borderType, ddepth, fast8uc1, int_arithm))
|
||||
return false;
|
||||
|
||||
Mat buffer = buf.getMat(ACCESS_READ);
|
||||
|
||||
_dst.create(srcSize, CV_MAKETYPE(ddepth, cn));
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
return ocl_sepColFilter2D(buf, dst, kernelY, delta, anchor.y, bits);
|
||||
return ocl_sepColFilter2D(buf, dst, kernelY, delta, anchor.y, int_arithm);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -3,6 +3,7 @@
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
@ -96,12 +97,15 @@ __kernel void col_filter(__global const uchar * src, int src_step, int src_offse
|
||||
{
|
||||
temp[0] = LDS_DAT[l_y + RADIUSY - i][l_x];
|
||||
temp[1] = LDS_DAT[l_y + RADIUSY + i][l_x];
|
||||
#ifndef INTEGER_ARITHMETIC
|
||||
sum += mad(temp[0], mat_kernel[RADIUSY - i], temp[1] * mat_kernel[RADIUSY + i]);
|
||||
//sum += temp[0]*mat_kernel[RADIUSY - i] + temp[1] * mat_kernel[RADIUSY + i];
|
||||
#else
|
||||
sum += mad24(temp[0],mat_kernel[RADIUSY - i], temp[1] * mat_kernel[RADIUSY + i]);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if BITS > 0
|
||||
sum = sum >> BITS;
|
||||
#ifdef INTEGER_ARITHMETIC
|
||||
sum = (sum + (1 << (SHIFT_BITS-1))) >> SHIFT_BITS;
|
||||
#endif
|
||||
|
||||
// write the result to dst
|
||||
|
@ -3,6 +3,7 @@
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
@ -355,8 +356,11 @@ __kernel void row_filter(__global const uchar * src, int src_step, int src_offse
|
||||
{
|
||||
temp[0] = LDS_DAT[l_y][l_x + RADIUSX - i];
|
||||
temp[1] = LDS_DAT[l_y][l_x + RADIUSX + i];
|
||||
#ifndef INTEGER_ARITHMETIC
|
||||
sum += mad(convertToDstT(temp[0]), mat_kernel[RADIUSX - i], convertToDstT(temp[1]) * mat_kernel[RADIUSX + i]);
|
||||
//sum += convertToDstT(temp[0])*mat_kernel[RADIUSX - i] + convertToDstT(temp[1]) * mat_kernel[RADIUSX + i];
|
||||
#else
|
||||
sum += mad24(convertToDstT(temp[0]), mat_kernel[RADIUSX - i], convertToDstT(temp[1]) * mat_kernel[RADIUSX + i]);
|
||||
#endif
|
||||
}
|
||||
|
||||
// write the result to dst
|
||||
|
@ -1,189 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2014, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////////////////////Macro for border type////////////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef BORDER_CONSTANT
|
||||
// CCCCCC|abcdefgh|CCCCCCC
|
||||
#define EXTRAPOLATE(x, maxV)
|
||||
#elif defined BORDER_REPLICATE
|
||||
// aaaaaa|abcdefgh|hhhhhhh
|
||||
#define EXTRAPOLATE(x, maxV) \
|
||||
{ \
|
||||
(x) = max(min((x), (maxV) - 1), 0); \
|
||||
}
|
||||
#elif defined BORDER_WRAP
|
||||
// cdefgh|abcdefgh|abcdefg
|
||||
#define EXTRAPOLATE(x, maxV) \
|
||||
{ \
|
||||
(x) = ( (x) + (maxV) ) % (maxV); \
|
||||
}
|
||||
#elif defined BORDER_REFLECT
|
||||
// fedcba|abcdefgh|hgfedcb
|
||||
#define EXTRAPOLATE(x, maxV) \
|
||||
{ \
|
||||
(x) = min(((maxV)-1)*2-(x)+1, max((x),-(x)-1) ); \
|
||||
}
|
||||
#elif defined BORDER_REFLECT_101 || defined BORDER_REFLECT101
|
||||
// gfedcb|abcdefgh|gfedcba
|
||||
#define EXTRAPOLATE(x, maxV) \
|
||||
{ \
|
||||
(x) = min(((maxV)-1)*2-(x), max((x),-(x)) ); \
|
||||
}
|
||||
#else
|
||||
#error No extrapolation method
|
||||
#endif
|
||||
|
||||
#if CN != 3
|
||||
#define loadpix(addr) *(__global const srcT *)(addr)
|
||||
#define storepix(val, addr) *(__global dstT *)(addr) = val
|
||||
#define SRCSIZE (int)sizeof(srcT)
|
||||
#define DSTSIZE (int)sizeof(dstT)
|
||||
#else
|
||||
#define loadpix(addr) vload3(0, (__global const srcT1 *)(addr))
|
||||
#define storepix(val, addr) vstore3(val, 0, (__global dstT1 *)(addr))
|
||||
#define SRCSIZE (int)sizeof(srcT1)*3
|
||||
#define DSTSIZE (int)sizeof(dstT1)*3
|
||||
#endif
|
||||
|
||||
#define SRC(_x,_y) convertToWT(loadpix(Src + mad24(_y, src_step, SRCSIZE * _x)))
|
||||
|
||||
#ifdef BORDER_CONSTANT
|
||||
// CCCCCC|abcdefgh|CCCCCCC
|
||||
#define ELEM(_x,_y,r_edge,t_edge,const_v) (_x)<0 | (_x) >= (r_edge) | (_y)<0 | (_y) >= (t_edge) ? (const_v) : SRC((_x),(_y))
|
||||
#else
|
||||
#define ELEM(_x,_y,r_edge,t_edge,const_v) SRC((_x),(_y))
|
||||
#endif
|
||||
|
||||
#define noconvert
|
||||
|
||||
// horizontal and vertical filter kernels
|
||||
// should be defined on host during compile time to avoid overhead
|
||||
#define DIG(a) a,
|
||||
__constant int mat_kernelX[] = { KERNEL_MATRIX_X };
|
||||
__constant int mat_kernelY[] = { KERNEL_MATRIX_Y };
|
||||
|
||||
__kernel void gaussian_blur_8u(__global uchar* Src, int src_step, int srcOffsetX, int srcOffsetY, int height, int width,
|
||||
__global uchar* Dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
|
||||
{
|
||||
// RADIUSX, RADIUSY are filter dimensions
|
||||
// BLK_X, BLK_Y are local wrogroup sizes
|
||||
// all these should be defined on host during compile time
|
||||
// first lsmem array for source pixels used in first pass,
|
||||
// second lsmemDy for storing first pass results
|
||||
__local WT lsmem[BLK_Y + 2 * RADIUSY][BLK_X + 2 * RADIUSX];
|
||||
__local WT lsmemDy[BLK_Y][BLK_X + 2 * RADIUSX];
|
||||
|
||||
// get local and global ids - used as image and local memory array indexes
|
||||
int lix = get_local_id(0);
|
||||
int liy = get_local_id(1);
|
||||
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
// calculate pixel position in source image taking image offset into account
|
||||
int srcX = x + srcOffsetX - RADIUSX;
|
||||
int srcY = y + srcOffsetY - RADIUSY;
|
||||
int xb = srcX;
|
||||
int yb = srcY;
|
||||
|
||||
// extrapolate coordinates, if needed
|
||||
// and read my own source pixel into local memory
|
||||
// with account for extra border pixels, which will be read by starting workitems
|
||||
int clocY = liy;
|
||||
int cSrcY = srcY;
|
||||
do
|
||||
{
|
||||
int yb = cSrcY;
|
||||
EXTRAPOLATE(yb, (height));
|
||||
|
||||
int clocX = lix;
|
||||
int cSrcX = srcX;
|
||||
do
|
||||
{
|
||||
int xb = cSrcX;
|
||||
EXTRAPOLATE(xb,(width));
|
||||
lsmem[clocY][clocX] = ELEM(xb, yb, (width), (height), 0 );
|
||||
|
||||
clocX += BLK_X;
|
||||
cSrcX += BLK_X;
|
||||
}
|
||||
while(clocX < BLK_X+(RADIUSX*2));
|
||||
|
||||
clocY += BLK_Y;
|
||||
cSrcY += BLK_Y;
|
||||
}
|
||||
while (clocY < BLK_Y+(RADIUSY*2));
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
// do vertical filter pass
|
||||
// and store intermediate results to second local memory array
|
||||
int i, clocX = lix;
|
||||
WT sum = 0;
|
||||
do
|
||||
{
|
||||
sum = 0;
|
||||
for (i=0; i<=2*RADIUSY; i++)
|
||||
sum = mad(lsmem[liy+i][clocX], mat_kernelY[i], sum);
|
||||
lsmemDy[liy][clocX] = sum;
|
||||
clocX += BLK_X;
|
||||
}
|
||||
while(clocX < BLK_X+(RADIUSX*2));
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
// if this pixel happened to be out of image borders because of global size rounding,
|
||||
// then just return
|
||||
if( x >= dst_cols || y >=dst_rows )
|
||||
return;
|
||||
|
||||
// do second horizontal filter pass
|
||||
// and calculate final result
|
||||
sum = 0;
|
||||
for (i=0; i<=2*RADIUSX; i++)
|
||||
sum = mad(lsmemDy[liy][lix+i], mat_kernelX[i], sum);
|
||||
|
||||
sum = sum >> (GAUSSIAN_COEF_BITS * 2);
|
||||
|
||||
//store result into destination image
|
||||
storepix(convertToDstT(sum), Dst + mad24(y, dst_step, mad24(x, DSTSIZE, dst_offset)));
|
||||
}
|
@ -42,7 +42,6 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencl_kernels.hpp"
|
||||
#include <iostream>
|
||||
|
||||
/*
|
||||
* This file includes the code, contributed by Simon Perreault
|
||||
@ -1070,73 +1069,6 @@ static void createGaussianKernels( Mat & kx, Mat & ky, int type, Size ksize,
|
||||
ky = getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F) );
|
||||
}
|
||||
|
||||
#define GAUSSIAN_COEF_BITS 11
|
||||
|
||||
static bool GaussianBlur_8u(InputArray _src, OutputArray _dst, Size ksize,
|
||||
double sigma1, double sigma2,
|
||||
int borderType)
|
||||
{
|
||||
int type = _src.type();
|
||||
Mat kx, ky;
|
||||
createGaussianKernels(kx, ky, CV_64F, ksize, sigma1, sigma2);
|
||||
Mat kx_8u, ky_8u;
|
||||
|
||||
int scale_coef = 1 << GAUSSIAN_COEF_BITS;
|
||||
kx.convertTo(kx_8u, CV_32S, scale_coef);
|
||||
ky.convertTo(ky_8u, CV_32S, scale_coef);
|
||||
|
||||
kx_8u.reshape(1, 1);
|
||||
ky_8u.reshape(1, 1);
|
||||
|
||||
Size size = _src.size(), wholeSize;
|
||||
Point origin;
|
||||
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype),
|
||||
esz = CV_ELEM_SIZE(stype), wdepth = CV_32S,
|
||||
ddepth = sdepth;
|
||||
size_t src_step = _src.step(), src_offset = _src.offset();
|
||||
|
||||
if ((src_offset % src_step) % esz != 0 || !(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE ||
|
||||
borderType == BORDER_REFLECT || borderType == BORDER_WRAP ||
|
||||
borderType == BORDER_REFLECT_101))
|
||||
return false;
|
||||
|
||||
size_t lt2[2] = { 16, 16 };
|
||||
size_t gt2[2] = { lt2[0] * (1 + (size.width - 1) / lt2[0]), lt2[1] * (1 + (size.height - 1) / lt2[1]) };
|
||||
|
||||
char cvt[2][40];
|
||||
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
|
||||
"BORDER_REFLECT_101" };
|
||||
|
||||
String opts = cv::format("-D BLK_X=%d -D BLK_Y=%d -D RADIUSX=%d -D RADIUSY=%d%s%s"
|
||||
" -D srcT=%s -D convertToWT=%s -D WT=%s -D dstT=%s -D convertToDstT=%s"
|
||||
" -D %s -D srcT1=%s -D dstT1=%s -D CN=%d -D GAUSSIAN_COEF_BITS=%d", (int)lt2[0], (int)lt2[1],
|
||||
kx.rows / 2, kx.rows / 2,
|
||||
ocl::kernelToStr(kx_8u, CV_32S, "KERNEL_MATRIX_X").c_str(),
|
||||
ocl::kernelToStr(ky_8u, CV_32S, "KERNEL_MATRIX_Y").c_str(),
|
||||
ocl::typeToStr(stype), ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]),
|
||||
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), ocl::typeToStr(stype),
|
||||
ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]), borderMap[borderType],
|
||||
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth), cn, GAUSSIAN_COEF_BITS);
|
||||
|
||||
ocl::Kernel k("gaussian_blur_8u", ocl::imgproc::gaussian_blur_8u_oclsrc, opts);
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
UMat src = _src.getUMat();
|
||||
_dst.create(size, stype);
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
int src_offset_x = static_cast<int>((src_offset % src_step) / esz);
|
||||
int src_offset_y = static_cast<int>(src_offset / src_step);
|
||||
|
||||
src.locateROI(wholeSize, origin);
|
||||
|
||||
k.args(ocl::KernelArg::PtrReadOnly(src), (int)src_step, src_offset_x, src_offset_y,
|
||||
wholeSize.height, wholeSize.width, ocl::KernelArg::WriteOnly(dst));
|
||||
|
||||
return k.run(2, gt2, lt2, false);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize,
|
||||
@ -1150,8 +1082,6 @@ cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize,
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
|
||||
double sigma1, double sigma2,
|
||||
int borderType )
|
||||
@ -1196,13 +1126,6 @@ void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
|
||||
}
|
||||
#endif
|
||||
|
||||
//if (type == CV_8U)
|
||||
//{
|
||||
// CV_OCL_RUN_(_dst.isUMat() && _src.dims() <= 2 &&
|
||||
// (!(borderType & BORDER_ISOLATED) || _src.offset() == 0),
|
||||
// GaussianBlur_8u(_src, _dst, ksize, sigma1, sigma2, borderType))
|
||||
//}
|
||||
|
||||
Mat kx, ky;
|
||||
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);
|
||||
sepFilter2D(_src, _dst, CV_MAT_DEPTH(type), kx, ky, Point(-1,-1), 0, borderType );
|
||||
|
@ -209,7 +209,7 @@ typedef FilterTestBase GaussianBlurTest;
|
||||
|
||||
OCL_TEST_P(GaussianBlurTest, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times + 100; j++)
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
@ -219,28 +219,7 @@ OCL_TEST_P(GaussianBlurTest, Mat)
|
||||
OCL_OFF(cv::GaussianBlur(src_roi, dst_roi, Size(ksize, ksize), sigma1, sigma2, borderType));
|
||||
OCL_ON(cv::GaussianBlur(usrc_roi, udst_roi, Size(ksize, ksize), sigma1, sigma2, borderType));
|
||||
|
||||
|
||||
if (checkNorm2(dst_roi, udst_roi) > 2 && CV_MAT_DEPTH(type) == CV_8U)
|
||||
{
|
||||
std::cout << "i = " << j << std::endl;
|
||||
Mat uudst = udst_roi.getMat(ACCESS_READ);
|
||||
Mat diff;
|
||||
absdiff(dst_roi, udst, diff);
|
||||
int nonZero = countNonZero(diff);
|
||||
double max;
|
||||
Point maxn;
|
||||
minMaxLoc(diff, (double*)0, &max, (Point*) 0, &maxn);
|
||||
|
||||
uchar a = dst_roi.at<uchar>(maxn);
|
||||
uchar b = uudst.at<uchar>(maxn);
|
||||
|
||||
std::cout << "dst_roi" << dst_roi << std::endl;
|
||||
std::cout << "udst_roi" << uudst << std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
Near(CV_MAT_DEPTH(type) == CV_8U ? 1 : 5e-5, false);
|
||||
Near(CV_MAT_DEPTH(type) >= CV_32F ? 5e-5 : 1, false);
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user