created abstract FeaturePool class
This commit is contained in:
parent
19236b6e43
commit
a3600b94db
@ -102,28 +102,34 @@ private:
|
|||||||
void write(cv::FileStorage& fs, const string&, const ICF& f);
|
void write(cv::FileStorage& fs, const string&, const ICF& f);
|
||||||
std::ostream& operator<<(std::ostream& out, const ICF& m);
|
std::ostream& operator<<(std::ostream& out, const ICF& m);
|
||||||
|
|
||||||
class FeaturePool
|
class ICFFeaturePool : public cv::FeaturePool
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
FeaturePool(cv::Size model, int nfeatures);
|
ICFFeaturePool(cv::Size model, int nfeatures);
|
||||||
|
|
||||||
int size() const { return (int)pool.size(); }
|
virtual int size() const { return (int)pool.size(); }
|
||||||
float apply(int fi, int si, const Mat& integrals) const;
|
virtual float apply(int fi, int si, const Mat& integrals) const;
|
||||||
void write( cv::FileStorage& fs, int index) const;
|
virtual void write( cv::FileStorage& fs, int index) const;
|
||||||
|
|
||||||
|
virtual ~ICFFeaturePool();
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
|
||||||
void fill(int desired);
|
void fill(int desired);
|
||||||
|
|
||||||
cv::Size model;
|
cv::Size model;
|
||||||
int nfeatures;
|
int nfeatures;
|
||||||
|
|
||||||
Icfvector pool;
|
std::vector<ICF> pool;
|
||||||
|
|
||||||
static const unsigned int seed = 0;
|
static const unsigned int seed = 0;
|
||||||
|
|
||||||
enum { N_CHANNELS = 10 };
|
enum { N_CHANNELS = 10 };
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
using cv::FeaturePool;
|
||||||
|
|
||||||
// used for traning single octave scale
|
// used for traning single octave scale
|
||||||
class Octave : cv::Boost
|
class Octave : cv::Boost
|
||||||
{
|
{
|
||||||
@ -142,12 +148,13 @@ public:
|
|||||||
Octave(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
|
Octave(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
|
||||||
virtual ~Octave();
|
virtual ~Octave();
|
||||||
|
|
||||||
virtual bool train(const Dataset& dataset, const FeaturePool& pool, int weaks, int treeDepth);
|
virtual bool train(const Dataset& dataset, const FeaturePool* pool, int weaks, int treeDepth);
|
||||||
|
|
||||||
virtual float predict( const Mat& _sample, Mat& _votes, bool raw_mode, bool return_sum ) const;
|
virtual float predict( const Mat& _sample, Mat& _votes, bool raw_mode, bool return_sum ) const;
|
||||||
virtual void setRejectThresholds(cv::Mat& thresholds);
|
virtual void setRejectThresholds(cv::Mat& thresholds);
|
||||||
virtual void write( CvFileStorage* fs, string name) const;
|
virtual void write( CvFileStorage* fs, string name) const;
|
||||||
|
|
||||||
virtual void write( cv::FileStorage &fs, const FeaturePool& pool, const Mat& thresholds) const;
|
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, const Mat& thresholds) const;
|
||||||
|
|
||||||
int logScale;
|
int logScale;
|
||||||
|
|
||||||
@ -155,7 +162,7 @@ protected:
|
|||||||
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
|
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
|
||||||
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
|
||||||
|
|
||||||
void processPositives(const Dataset& dataset, const FeaturePool& pool);
|
void processPositives(const Dataset& dataset, const FeaturePool* pool);
|
||||||
void generateNegatives(const Dataset& dataset);
|
void generateNegatives(const Dataset& dataset);
|
||||||
|
|
||||||
float predict( const Mat& _sample, const cv::Range range) const;
|
float predict( const Mat& _sample, const cv::Range range) const;
|
||||||
|
@ -197,14 +197,14 @@ public:
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& pool)
|
void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool* pool)
|
||||||
{
|
{
|
||||||
Preprocessor prepocessor(shrinkage);
|
Preprocessor prepocessor(shrinkage);
|
||||||
|
|
||||||
int w = boundingBox.width;
|
int w = boundingBox.width;
|
||||||
int h = boundingBox.height;
|
int h = boundingBox.height;
|
||||||
|
|
||||||
integrals.create(pool.size(), (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
integrals.create(pool->size(), (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
||||||
|
|
||||||
int total = 0;
|
int total = 0;
|
||||||
for (svector::const_iterator it = dataset.pos.begin(); it != dataset.pos.end(); ++it)
|
for (svector::const_iterator it = dataset.pos.begin(); it != dataset.pos.end(); ++it)
|
||||||
@ -338,7 +338,7 @@ void sft::Octave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nf
|
|||||||
fs << "}";
|
fs << "}";
|
||||||
}
|
}
|
||||||
|
|
||||||
void sft::Octave::write( cv::FileStorage &fso, const FeaturePool& pool, const Mat& thresholds) const
|
void sft::Octave::write( cv::FileStorage &fso, const FeaturePool* pool, const Mat& thresholds) const
|
||||||
{
|
{
|
||||||
CV_Assert(!thresholds.empty());
|
CV_Assert(!thresholds.empty());
|
||||||
cv::Mat used( 1, weak->total * (pow(2, params.max_depth) - 1), CV_32SC1);
|
cv::Mat used( 1, weak->total * (pow(2, params.max_depth) - 1), CV_32SC1);
|
||||||
@ -364,7 +364,7 @@ void sft::Octave::write( cv::FileStorage &fso, const FeaturePool& pool, const Ma
|
|||||||
|
|
||||||
fso << "features" << "[";
|
fso << "features" << "[";
|
||||||
for (int i = 0; i < nfeatures; ++i)
|
for (int i = 0; i < nfeatures; ++i)
|
||||||
pool.write(fso, usedPtr[i]);
|
pool->write(fso, usedPtr[i]);
|
||||||
fso << "]"
|
fso << "]"
|
||||||
<< "}";
|
<< "}";
|
||||||
}
|
}
|
||||||
@ -376,7 +376,7 @@ void sft::Octave::initial_weights(double (&p)[2])
|
|||||||
p[1] = n / (2. * (double)(npositives));
|
p[1] = n / (2. * (double)(npositives));
|
||||||
}
|
}
|
||||||
|
|
||||||
bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool, int weaks, int treeDepth)
|
bool sft::Octave::train(const Dataset& dataset, const FeaturePool* pool, int weaks, int treeDepth)
|
||||||
{
|
{
|
||||||
CV_Assert(treeDepth == 2);
|
CV_Assert(treeDepth == 2);
|
||||||
CV_Assert(weaks > 0);
|
CV_Assert(weaks > 0);
|
||||||
@ -389,7 +389,7 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool, int wea
|
|||||||
generateNegatives(dataset);
|
generateNegatives(dataset);
|
||||||
|
|
||||||
// 2. only sumple case (all features used)
|
// 2. only sumple case (all features used)
|
||||||
int nfeatures = pool.size();
|
int nfeatures = pool->size();
|
||||||
cv::Mat varIdx(1, nfeatures, CV_32SC1);
|
cv::Mat varIdx(1, nfeatures, CV_32SC1);
|
||||||
int* ptr = varIdx.ptr<int>(0);
|
int* ptr = varIdx.ptr<int>(0);
|
||||||
|
|
||||||
@ -417,7 +417,7 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool, int wea
|
|||||||
float* dptr = trainData.ptr<float>(fi);
|
float* dptr = trainData.ptr<float>(fi);
|
||||||
for (int si = 0; si < nsamples; ++si)
|
for (int si = 0; si < nsamples; ++si)
|
||||||
{
|
{
|
||||||
dptr[si] = pool.apply(fi, si, integrals);
|
dptr[si] = pool->apply(fi, si, integrals);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -448,18 +448,19 @@ void sft::Octave::write( CvFileStorage* fs, string name) const
|
|||||||
}
|
}
|
||||||
|
|
||||||
// ========= FeaturePool ========= //
|
// ========= FeaturePool ========= //
|
||||||
sft::FeaturePool::FeaturePool(cv::Size m, int n) : model(m), nfeatures(n)
|
|
||||||
|
sft::ICFFeaturePool::ICFFeaturePool(cv::Size m, int n) : FeaturePool(), model(m), nfeatures(n)
|
||||||
{
|
{
|
||||||
CV_Assert(m != cv::Size() && n > 0);
|
CV_Assert(m != cv::Size() && n > 0);
|
||||||
fill(nfeatures);
|
fill(nfeatures);
|
||||||
}
|
}
|
||||||
|
|
||||||
float sft::FeaturePool::apply(int fi, int si, const Mat& integrals) const
|
float sft::ICFFeaturePool::apply(int fi, int si, const Mat& integrals) const
|
||||||
{
|
{
|
||||||
return pool[fi](integrals.row(si), model);
|
return pool[fi](integrals.row(si), model);
|
||||||
}
|
}
|
||||||
|
|
||||||
void sft::FeaturePool::write( cv::FileStorage& fs, int index) const
|
void sft::ICFFeaturePool::write( cv::FileStorage& fs, int index) const
|
||||||
{
|
{
|
||||||
CV_Assert((index > 0) && (index < (int)pool.size()));
|
CV_Assert((index > 0) && (index < (int)pool.size()));
|
||||||
fs << pool[index];
|
fs << pool[index];
|
||||||
@ -470,8 +471,9 @@ void sft::write(cv::FileStorage& fs, const string&, const ICF& f)
|
|||||||
fs << "{" << "channel" << f.channel << "rect" << f.bb << "}";
|
fs << "{" << "channel" << f.channel << "rect" << f.bb << "}";
|
||||||
}
|
}
|
||||||
|
|
||||||
|
sft::ICFFeaturePool::~ICFFeaturePool(){}
|
||||||
|
|
||||||
void sft::FeaturePool::fill(int desired)
|
void sft::ICFFeaturePool::fill(int desired)
|
||||||
{
|
{
|
||||||
int mw = model.width;
|
int mw = model.width;
|
||||||
int mh = model.height;
|
int mh = model.height;
|
||||||
|
@ -117,7 +117,7 @@ int main(int argc, char** argv)
|
|||||||
int nfeatures = cfg.poolSize;
|
int nfeatures = cfg.poolSize;
|
||||||
cv::Size model = cfg.model(it);
|
cv::Size model = cfg.model(it);
|
||||||
std::cout << "Model " << model << std::endl;
|
std::cout << "Model " << model << std::endl;
|
||||||
sft::FeaturePool pool(model, nfeatures);
|
sft::ICFFeaturePool pool(model, nfeatures);
|
||||||
nfeatures = pool.size();
|
nfeatures = pool.size();
|
||||||
|
|
||||||
|
|
||||||
@ -132,7 +132,7 @@ int main(int argc, char** argv)
|
|||||||
std::string path = cfg.trainPath;
|
std::string path = cfg.trainPath;
|
||||||
sft::Dataset dataset(path, boost.logScale);
|
sft::Dataset dataset(path, boost.logScale);
|
||||||
|
|
||||||
if (boost.train(dataset, pool, cfg.weaks, cfg.treeDepth))
|
if (boost.train(dataset, &pool, cfg.weaks, cfg.treeDepth))
|
||||||
{
|
{
|
||||||
CvFileStorage* fout = cvOpenFileStorage(cfg.resPath(it).c_str(), 0, CV_STORAGE_WRITE);
|
CvFileStorage* fout = cvOpenFileStorage(cfg.resPath(it).c_str(), 0, CV_STORAGE_WRITE);
|
||||||
boost.write(fout, cfg.cascadeName);
|
boost.write(fout, cfg.cascadeName);
|
||||||
@ -142,7 +142,7 @@ int main(int argc, char** argv)
|
|||||||
cv::Mat thresholds;
|
cv::Mat thresholds;
|
||||||
boost.setRejectThresholds(thresholds);
|
boost.setRejectThresholds(thresholds);
|
||||||
|
|
||||||
boost.write(fso, pool, thresholds);
|
boost.write(fso, &pool, thresholds);
|
||||||
|
|
||||||
cv::FileStorage tfs(("thresholds." + cfg.resPath(it)).c_str(), cv::FileStorage::WRITE);
|
cv::FileStorage tfs(("thresholds." + cfg.resPath(it)).c_str(), cv::FileStorage::WRITE);
|
||||||
tfs << "thresholds" << thresholds;
|
tfs << "thresholds" << thresholds;
|
||||||
|
@ -2132,6 +2132,17 @@ template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj();
|
|||||||
|
|
||||||
CV_EXPORTS bool initModule_ml(void);
|
CV_EXPORTS bool initModule_ml(void);
|
||||||
|
|
||||||
|
CV_EXPORTS class FeaturePool
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
|
||||||
|
virtual int size() const = 0;
|
||||||
|
virtual float apply(int fi, int si, const Mat& integrals) const = 0;
|
||||||
|
virtual void write( cv::FileStorage& fs, int index) const = 0;
|
||||||
|
|
||||||
|
virtual ~FeaturePool() = 0;
|
||||||
|
};
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // __cplusplus
|
#endif // __cplusplus
|
||||||
|
45
modules/ml/src/octave.cpp
Normal file
45
modules/ml/src/octave.cpp
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
|
||||||
|
cv::FeaturePool::~FeaturePool(){}
|
Loading…
x
Reference in New Issue
Block a user