SVMSGD class added
This commit is contained in:

committed by
Marina Noskova

parent
b529b37d06
commit
a2f0963d66
@@ -1513,6 +1513,127 @@ CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, Out
|
||||
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
|
||||
OutputArray samples, OutputArray responses);
|
||||
|
||||
/****************************************************************************************\
|
||||
* Stochastic Gradient Descent SVM Classifier *
|
||||
\****************************************************************************************/
|
||||
|
||||
/*!
|
||||
@brief Stochastic Gradient Descent SVM classifier
|
||||
|
||||
SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach, as presented in @cite bottou2010large.
|
||||
The gradient descent show amazing performance for large-scale problems, reducing the computing time. This allows a fast and reliable online update of the classifier for each new feature which
|
||||
is fundamental when dealing with variations of data over time (like weather and illumination changes in videosurveillance, for example).
|
||||
|
||||
First, create the SVMSGD object. To enable the online update, a value for updateFrequency should be defined.
|
||||
|
||||
Then the SVM model can be trained using the train features and the correspondent labels.
|
||||
|
||||
After that, the label of a new feature vector can be predicted using the predict function. If the updateFrequency was defined in the constructor, the predict function will update the weights automatically.
|
||||
|
||||
@code
|
||||
// Initialize object
|
||||
SVMSGD SvmSgd;
|
||||
|
||||
// Train the Stochastic Gradient Descent SVM
|
||||
SvmSgd.train(trainFeatures, labels);
|
||||
|
||||
// Predict label for the new feature vector (1xM)
|
||||
predictedLabel = SvmSgd.predict(newFeatureVector);
|
||||
@endcode
|
||||
|
||||
*/
|
||||
class CV_EXPORTS_W SVMSGD {
|
||||
|
||||
public:
|
||||
/** @brief SGDSVM constructor.
|
||||
|
||||
@param lambda regularization
|
||||
@param learnRate learning rate
|
||||
@param nIterations number of training iterations
|
||||
|
||||
*/
|
||||
SVMSGD(float lambda = 0.000001, float learnRate = 2, uint nIterations = 100000);
|
||||
|
||||
/** @brief SGDSVM constructor.
|
||||
|
||||
@param updateFrequency online update frequency
|
||||
@param learnRateDecay learn rate decay over time: learnRate = learnRate * learnDecay
|
||||
@param lambda regularization
|
||||
@param learnRate learning rate
|
||||
@param nIterations number of training iterations
|
||||
|
||||
*/
|
||||
SVMSGD(uint updateFrequency, float learnRateDecay = 1, float lambda = 0.000001, float learnRate = 2, uint nIterations = 100000);
|
||||
virtual ~SVMSGD();
|
||||
virtual SVMSGD* clone() const;
|
||||
|
||||
/** @brief Train the SGDSVM classifier.
|
||||
|
||||
The function trains the SGDSVM classifier using the train features and the correspondent labels (-1 or 1).
|
||||
|
||||
@param trainFeatures features used for training. Each row is a new sample.
|
||||
@param labels mat (size Nx1 with N = number of features) with the label of each training feature.
|
||||
|
||||
*/
|
||||
virtual void train(cv::Mat trainFeatures, cv::Mat labels);
|
||||
|
||||
/** @brief Predict the label of a new feature vector.
|
||||
|
||||
The function predicts and returns the label of a new feature vector, using the previously trained SVM model.
|
||||
|
||||
@param newFeature new feature vector used for prediction
|
||||
|
||||
*/
|
||||
virtual float predict(cv::Mat newFeature);
|
||||
|
||||
/** @brief Returns the weights of the trained model.
|
||||
|
||||
*/
|
||||
virtual std::vector<float> getWeights(){ return _weights; };
|
||||
|
||||
/** @brief Sets the weights of the trained model.
|
||||
|
||||
@param weights weights used to predict the label of a new feature vector.
|
||||
|
||||
*/
|
||||
virtual void setWeights(std::vector<float> weights){ _weights = weights; };
|
||||
|
||||
private:
|
||||
void updateWeights();
|
||||
void generateRandomIndex();
|
||||
float calcInnerProduct(float *rowDataPointer);
|
||||
void updateWeights(float innerProduct, float *rowDataPointer, int label);
|
||||
|
||||
// Vector with SVM weights
|
||||
std::vector<float> _weights;
|
||||
|
||||
// Random index generation
|
||||
long long int _randomNumber;
|
||||
unsigned int _randomIndex;
|
||||
|
||||
// Number of features and samples
|
||||
unsigned int _nFeatures;
|
||||
unsigned int _nTrainSamples;
|
||||
|
||||
// Parameters for learning
|
||||
float _lambda; //regularization
|
||||
float _learnRate; //learning rate
|
||||
unsigned int _nIterations; //number of training iterations
|
||||
|
||||
// Vars to control the features slider matrix
|
||||
bool _onlineUpdate;
|
||||
bool _initPredict;
|
||||
uint _slidingWindowSize;
|
||||
uint _predictSlidingWindowSize;
|
||||
float* _labelSlider;
|
||||
float _learnRateDecay;
|
||||
|
||||
// Mat with features slider and correspondent counter
|
||||
unsigned int _sliderCounter;
|
||||
cv::Mat _featuresSlider;
|
||||
|
||||
};
|
||||
|
||||
//! @} ml
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user