Eliminate use of 32-bit floating pt type
Replace all "float" by "double" (64-bit) to avoid "lose precision" warnings.
This commit is contained in:
parent
1207cd132b
commit
a29863ee7b
@ -10,22 +10,22 @@ namespace cv{namespace optim{
|
|||||||
|
|
||||||
class AddFloatToCharScaled{
|
class AddFloatToCharScaled{
|
||||||
public:
|
public:
|
||||||
AddFloatToCharScaled(float scale):_scale(scale){}
|
AddFloatToCharScaled(double scale):_scale(scale){}
|
||||||
inline float operator()(float a,uchar b){
|
inline double operator()(double a,uchar b){
|
||||||
return a+_scale*((float)b);
|
return a+_scale*((double)b);
|
||||||
}
|
}
|
||||||
private:
|
private:
|
||||||
float _scale;
|
double _scale;
|
||||||
};
|
};
|
||||||
|
|
||||||
void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda, int niters){
|
void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda, int niters){
|
||||||
|
|
||||||
CV_Assert(observations.size()>0 && niters>0 && lambda>0);
|
CV_Assert(observations.size()>0 && niters>0 && lambda>0);
|
||||||
|
|
||||||
const float L2 = 8.0f, tau = 0.02f, sigma = 1./(L2*tau), theta = 1.f;
|
const double L2 = 8.0, tau = 0.02, sigma = 1./(L2*tau), theta = 1.0;
|
||||||
float clambda = (float)lambda;
|
double clambda = (double)lambda;
|
||||||
float s=0;
|
double s=0;
|
||||||
const int workdepth = CV_32F;
|
const int workdepth = CV_64F;
|
||||||
|
|
||||||
int i, x, y, rows=observations[0].rows, cols=observations[0].cols,count;
|
int i, x, y, rows=observations[0].rows, cols=observations[0].cols,count;
|
||||||
for(i=1;i<(int)observations.size();i++){
|
for(i=1;i<(int)observations.size();i++){
|
||||||
@ -34,41 +34,41 @@ namespace cv{namespace optim{
|
|||||||
|
|
||||||
Mat X, P = Mat::zeros(rows, cols, CV_MAKETYPE(workdepth, 2));
|
Mat X, P = Mat::zeros(rows, cols, CV_MAKETYPE(workdepth, 2));
|
||||||
observations[0].convertTo(X, workdepth, 1./255);
|
observations[0].convertTo(X, workdepth, 1./255);
|
||||||
std::vector< Mat_<float> > Rs(observations.size());
|
std::vector< Mat_<double> > Rs(observations.size());
|
||||||
for(count=0;count<(int)Rs.size();count++){
|
for(count=0;count<(int)Rs.size();count++){
|
||||||
Rs[count]=Mat::zeros(rows,cols,workdepth);
|
Rs[count]=Mat::zeros(rows,cols,workdepth);
|
||||||
}
|
}
|
||||||
|
|
||||||
for( i = 0; i < niters; i++ )
|
for( i = 0; i < niters; i++ )
|
||||||
{
|
{
|
||||||
float currsigma = i == 0 ? 1 + sigma : sigma;
|
double currsigma = i == 0 ? 1 + sigma : sigma;
|
||||||
|
|
||||||
// P_ = P + sigma*nabla(X)
|
// P_ = P + sigma*nabla(X)
|
||||||
// P(x,y) = P_(x,y)/max(||P(x,y)||,1)
|
// P(x,y) = P_(x,y)/max(||P(x,y)||,1)
|
||||||
for( y = 0; y < rows; y++ )
|
for( y = 0; y < rows; y++ )
|
||||||
{
|
{
|
||||||
const float* x_curr = X.ptr<float>(y);
|
const double* x_curr = X.ptr<double>(y);
|
||||||
const float* x_next = X.ptr<float>(std::min(y+1, rows-1));
|
const double* x_next = X.ptr<double>(std::min(y+1, rows-1));
|
||||||
Point2f* p_curr = P.ptr<Point2f>(y);
|
Point2d* p_curr = P.ptr<Point2d>(y);
|
||||||
float dx, dy, m;
|
double dx, dy, m;
|
||||||
for( x = 0; x < cols-1; x++ )
|
for( x = 0; x < cols-1; x++ )
|
||||||
{
|
{
|
||||||
dx = (x_curr[x+1] - x_curr[x])*currsigma + p_curr[x].x;
|
dx = (x_curr[x+1] - x_curr[x])*currsigma + p_curr[x].x;
|
||||||
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
|
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
|
||||||
m = 1.f/std::max(std::sqrt(dx*dx + dy*dy), 1.f);
|
m = 1.0/std::max(std::sqrt(dx*dx + dy*dy), 1.0);
|
||||||
p_curr[x].x = dx*m;
|
p_curr[x].x = dx*m;
|
||||||
p_curr[x].y = dy*m;
|
p_curr[x].y = dy*m;
|
||||||
}
|
}
|
||||||
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
|
dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
|
||||||
m = 1.f/std::max(std::abs(dy), 1.f);
|
m = 1.0/std::max(std::abs(dy), 1.0);
|
||||||
p_curr[x].x = 0.f;
|
p_curr[x].x = 0.0;
|
||||||
p_curr[x].y = dy*m;
|
p_curr[x].y = dy*m;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
//Rs = clip(Rs + sigma*(X-imgs), -clambda, clambda)
|
//Rs = clip(Rs + sigma*(X-imgs), -clambda, clambda)
|
||||||
for(count=0;count<(int)Rs.size();count++){
|
for(count=0;count<(int)Rs.size();count++){
|
||||||
std::transform<MatIterator_<float>,MatConstIterator_<uchar>,MatIterator_<float>,AddFloatToCharScaled>(
|
std::transform<MatIterator_<double>,MatConstIterator_<uchar>,MatIterator_<double>,AddFloatToCharScaled>(
|
||||||
Rs[count].begin(),Rs[count].end(),observations[count].begin<uchar>(),
|
Rs[count].begin(),Rs[count].end(),observations[count].begin<uchar>(),
|
||||||
Rs[count].begin(),AddFloatToCharScaled(-sigma/255.0));
|
Rs[count].begin(),AddFloatToCharScaled(-sigma/255.0));
|
||||||
Rs[count]+=sigma*X;
|
Rs[count]+=sigma*X;
|
||||||
@ -78,9 +78,9 @@ namespace cv{namespace optim{
|
|||||||
|
|
||||||
for( y = 0; y < rows; y++ )
|
for( y = 0; y < rows; y++ )
|
||||||
{
|
{
|
||||||
float* x_curr = X.ptr<float>(y);
|
double* x_curr = X.ptr<double>(y);
|
||||||
const Point2f* p_curr = P.ptr<Point2f>(y);
|
const Point2d* p_curr = P.ptr<Point2d>(y);
|
||||||
const Point2f* p_prev = P.ptr<Point2f>(std::max(y - 1, 0));
|
const Point2d* p_prev = P.ptr<Point2d>(std::max(y - 1, 0));
|
||||||
|
|
||||||
// X1 = X + tau*(-nablaT(P))
|
// X1 = X + tau*(-nablaT(P))
|
||||||
x = 0;
|
x = 0;
|
||||||
@ -88,7 +88,7 @@ namespace cv{namespace optim{
|
|||||||
for(count=0;count<(int)Rs.size();count++){
|
for(count=0;count<(int)Rs.size();count++){
|
||||||
s=s+Rs[count](y,x);
|
s=s+Rs[count](y,x);
|
||||||
}
|
}
|
||||||
float x_new = x_curr[x] + tau*(p_curr[x].y - p_prev[x].y)-tau*s;
|
double x_new = x_curr[x] + tau*(p_curr[x].y - p_prev[x].y)-tau*s;
|
||||||
// X = X2 + theta*(X2 - X)
|
// X = X2 + theta*(X2 - X)
|
||||||
x_curr[x] = x_new + theta*(x_new - x_curr[x]);
|
x_curr[x] = x_new + theta*(x_new - x_curr[x]);
|
||||||
|
|
||||||
|
@ -8,7 +8,7 @@ void make_noisy(const cv::Mat& img, cv::Mat& noisy, double sigma, double pepper_
|
|||||||
cv::addWeighted(img, 1, noise, 1, -128, noisy);
|
cv::addWeighted(img, 1, noise, 1, -128, noisy);
|
||||||
cv::randn(noise, cv::Scalar::all(0), cv::Scalar::all(2));
|
cv::randn(noise, cv::Scalar::all(0), cv::Scalar::all(2));
|
||||||
noise *= 255;
|
noise *= 255;
|
||||||
cv::randu(mask, 0, round(1./pepper_salt_ratio));
|
cv::randu(mask, 0, cvRound(1./pepper_salt_ratio));
|
||||||
cv::Mat half = mask.colRange(0, img.cols/2);
|
cv::Mat half = mask.colRange(0, img.cols/2);
|
||||||
half = cv::Scalar::all(1);
|
half = cv::Scalar::all(1);
|
||||||
noise.setTo(128, mask);
|
noise.setTo(128, mask);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user