updated gpu optical_flow sample
This commit is contained in:
@@ -4,132 +4,245 @@
|
||||
|
||||
#include "cvconfig.h"
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/core/opengl_interop.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
#include "NPP_staging/NPP_staging.hpp"
|
||||
#endif
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#if !defined(HAVE_CUDA)
|
||||
void getFlowField(const Mat& u, const Mat& v, Mat& flowField);
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
|
||||
void needleMapDraw(void* userdata);
|
||||
|
||||
#endif
|
||||
|
||||
int main(int argc, const char* argv[])
|
||||
{
|
||||
cout << "Please compile the library with CUDA support" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define PARAM_LEFT "--left"
|
||||
#define PARAM_RIGHT "--right"
|
||||
#define PARAM_SCALE "--scale"
|
||||
#define PARAM_ALPHA "--alpha"
|
||||
#define PARAM_GAMMA "--gamma"
|
||||
#define PARAM_INNER "--inner"
|
||||
#define PARAM_OUTER "--outer"
|
||||
#define PARAM_SOLVER "--solver"
|
||||
#define PARAM_TIME_STEP "--time_step"
|
||||
#define PARAM_HELP "--help"
|
||||
|
||||
bool help_showed = false;
|
||||
|
||||
void printHelp()
|
||||
{
|
||||
cout << "Usage help:\n";
|
||||
cout << setiosflags(ios::left);
|
||||
cout << "\t" << setw(15) << PARAM_ALPHA << " - set alpha\n";
|
||||
cout << "\t" << setw(15) << PARAM_GAMMA << " - set gamma\n";
|
||||
cout << "\t" << setw(15) << PARAM_INNER << " - set number of inner iterations\n";
|
||||
cout << "\t" << setw(15) << PARAM_LEFT << " - specify left image\n";
|
||||
cout << "\t" << setw(15) << PARAM_RIGHT << " - specify right image\n";
|
||||
cout << "\t" << setw(15) << PARAM_OUTER << " - set number of outer iterations\n";
|
||||
cout << "\t" << setw(15) << PARAM_SCALE << " - set pyramid scale factor\n";
|
||||
cout << "\t" << setw(15) << PARAM_SOLVER << " - set number of basic solver iterations\n";
|
||||
cout << "\t" << setw(15) << PARAM_TIME_STEP << " - set frame interpolation time step\n";
|
||||
cout << "\t" << setw(15) << PARAM_HELP << " - display this help message\n";
|
||||
help_showed = true;
|
||||
}
|
||||
|
||||
int processCommandLine(int argc, const char* argv[], float& timeStep, string& frame0Name, string& frame1Name, BroxOpticalFlow& flow)
|
||||
{
|
||||
timeStep = 0.25f;
|
||||
|
||||
for (int iarg = 1; iarg < argc; ++iarg)
|
||||
try
|
||||
{
|
||||
if (strcmp(argv[iarg], PARAM_LEFT) == 0)
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ l | left | | specify left image }"
|
||||
"{ r | right | | specify right image }"
|
||||
"{ s | scale | 0.8 | set pyramid scale factor }"
|
||||
"{ a | alpha | 0.197 | set alpha }"
|
||||
"{ g | gamma | 50.0 | set gamma }"
|
||||
"{ i | inner | 10 | set number of inner iterations }"
|
||||
"{ o | outer | 77 | set number of outer iterations }"
|
||||
"{ si | solver | 10 | set number of basic solver iterations }"
|
||||
"{ t | time_step | 0.1 | set frame interpolation time step }";
|
||||
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
|
||||
if (cmd.get<bool>("help"))
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
frame0Name = argv[++iarg];
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
if (strcmp(argv[iarg], PARAM_RIGHT) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
frame1Name = argv[++iarg];
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_SCALE) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.scale_factor = static_cast<float>(atof(argv[++iarg]));
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_ALPHA) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.alpha = static_cast<float>(atof(argv[++iarg]));
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_GAMMA) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.gamma = static_cast<float>(atof(argv[++iarg]));
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_INNER) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.inner_iterations = atoi(argv[++iarg]);
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_OUTER) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.outer_iterations = atoi(argv[++iarg]);
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_SOLVER) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.solver_iterations = atoi(argv[++iarg]);
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_TIME_STEP) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
timeStep = static_cast<float>(atof(argv[++iarg]));
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_HELP) == 0)
|
||||
{
|
||||
printHelp();
|
||||
cout << "Usage: optical_float [options]" << endl;
|
||||
cout << "Avaible options:" << endl;
|
||||
cmd.printParams();
|
||||
return 0;
|
||||
}
|
||||
|
||||
string frame0Name = cmd.get<string>("left");
|
||||
string frame1Name = cmd.get<string>("right");
|
||||
float scale = cmd.get<float>("scale");
|
||||
float alpha = cmd.get<float>("alpha");
|
||||
float gamma = cmd.get<float>("gamma");
|
||||
int inner_iterations = cmd.get<int>("inner");
|
||||
int outer_iterations = cmd.get<int>("outer");
|
||||
int solver_iterations = cmd.get<int>("solver");
|
||||
float timeStep = cmd.get<float>("time_step");
|
||||
|
||||
if (frame0Name.empty() || frame1Name.empty())
|
||||
{
|
||||
cerr << "Missing input file names" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat frame0Color = imread(frame0Name);
|
||||
Mat frame1Color = imread(frame1Name);
|
||||
|
||||
if (frame0Color.empty() || frame1Color.empty())
|
||||
{
|
||||
cout << "Can't load input images" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
cout << "OpenCV / NVIDIA Computer Vision" << endl;
|
||||
cout << "Optical Flow Demo: Frame Interpolation" << endl;
|
||||
cout << "=========================================" << endl;
|
||||
|
||||
namedWindow("Forward flow");
|
||||
namedWindow("Backward flow");
|
||||
|
||||
namedWindow("Needle Map", WINDOW_OPENGL);
|
||||
|
||||
namedWindow("Interpolated frame");
|
||||
|
||||
setGlDevice();
|
||||
|
||||
cout << "Press:" << endl;
|
||||
cout << "\tESC to quit" << endl;
|
||||
cout << "\t'a' to move to the previous frame" << endl;
|
||||
cout << "\t's' to move to the next frame\n" << endl;
|
||||
|
||||
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
|
||||
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);
|
||||
|
||||
Mat frame0Gray, frame1Gray;
|
||||
|
||||
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
|
||||
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);
|
||||
|
||||
GpuMat d_frame0(frame0Gray);
|
||||
GpuMat d_frame1(frame1Gray);
|
||||
|
||||
cout << "Estimating optical flow" << endl;
|
||||
|
||||
BroxOpticalFlow d_flow(alpha, gamma, scale, inner_iterations, outer_iterations, solver_iterations);
|
||||
|
||||
cout << "\tForward..." << endl;
|
||||
|
||||
GpuMat d_fu, d_fv;
|
||||
|
||||
d_flow(d_frame0, d_frame1, d_fu, d_fv);
|
||||
|
||||
Mat flowFieldForward;
|
||||
getFlowField(Mat(d_fu), Mat(d_fv), flowFieldForward);
|
||||
|
||||
cout << "\tBackward..." << endl;
|
||||
|
||||
GpuMat d_bu, d_bv;
|
||||
|
||||
d_flow(d_frame1, d_frame0, d_bu, d_bv);
|
||||
|
||||
Mat flowFieldBackward;
|
||||
getFlowField(Mat(d_bu), Mat(d_bv), flowFieldBackward);
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
cout << "Create Optical Flow Needle Map..." << endl;
|
||||
|
||||
GpuMat d_vertex, d_colors;
|
||||
|
||||
createOpticalFlowNeedleMap(d_bu, d_bv, d_vertex, d_colors);
|
||||
#endif
|
||||
|
||||
cout << "Interpolating..." << endl;
|
||||
|
||||
// first frame color components
|
||||
GpuMat d_b, d_g, d_r;
|
||||
|
||||
// second frame color components
|
||||
GpuMat d_bt, d_gt, d_rt;
|
||||
|
||||
// prepare color components on host and copy them to device memory
|
||||
Mat channels[3];
|
||||
cv::split(frame0Color, channels);
|
||||
|
||||
d_b.upload(channels[0]);
|
||||
d_g.upload(channels[1]);
|
||||
d_r.upload(channels[2]);
|
||||
|
||||
cv::split(frame1Color, channels);
|
||||
|
||||
d_bt.upload(channels[0]);
|
||||
d_gt.upload(channels[1]);
|
||||
d_rt.upload(channels[2]);
|
||||
|
||||
// temporary buffer
|
||||
GpuMat d_buf;
|
||||
|
||||
// intermediate frame color components (GPU memory)
|
||||
GpuMat d_rNew, d_gNew, d_bNew;
|
||||
|
||||
GpuMat d_newFrame;
|
||||
|
||||
vector<Mat> frames;
|
||||
frames.reserve(static_cast<int>(1.0f / timeStep) + 2);
|
||||
|
||||
frames.push_back(frame0Color);
|
||||
|
||||
// compute interpolated frames
|
||||
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
|
||||
{
|
||||
// interpolate blue channel
|
||||
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);
|
||||
|
||||
// interpolate green channel
|
||||
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);
|
||||
|
||||
// interpolate red channel
|
||||
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);
|
||||
|
||||
GpuMat channels[] = {d_bNew, d_gNew, d_rNew};
|
||||
merge(channels, 3, d_newFrame);
|
||||
|
||||
frames.push_back(Mat(d_newFrame));
|
||||
|
||||
cout << setprecision(4) << timePos * 100.0f << "%\r";
|
||||
}
|
||||
|
||||
frames.push_back(frame1Color);
|
||||
|
||||
cout << setw(5) << "100%" << endl;
|
||||
|
||||
cout << "Done" << endl;
|
||||
|
||||
imshow("Forward flow", flowFieldForward);
|
||||
imshow("Backward flow", flowFieldBackward);
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
GlArrays arr;
|
||||
arr.setVertexArray(d_vertex);
|
||||
arr.setColorArray(d_colors, false);
|
||||
|
||||
setOpenGlDrawCallback("Needle Map", needleMapDraw, &arr);
|
||||
#endif
|
||||
|
||||
int currentFrame = 0;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
|
||||
while (true)
|
||||
{
|
||||
int key = toupper(waitKey(10));
|
||||
|
||||
switch (key)
|
||||
{
|
||||
case 27:
|
||||
return 0;
|
||||
break;
|
||||
|
||||
case 'A':
|
||||
if (currentFrame > 0)
|
||||
--currentFrame;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
break;
|
||||
|
||||
case 'S':
|
||||
if (currentFrame < frames.size() - 1)
|
||||
++currentFrame;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
catch (const exception& ex)
|
||||
{
|
||||
cerr << ex.what() << endl;
|
||||
return -1;
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
cerr << "Unknow error" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -181,171 +294,20 @@ void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, const char* argv[])
|
||||
#ifdef HAVE_OPENGL
|
||||
|
||||
void needleMapDraw(void* userdata)
|
||||
{
|
||||
string frame0Name, frame1Name;
|
||||
float timeStep = 0.01f;
|
||||
const GlArrays* arr = static_cast<const GlArrays*>(userdata);
|
||||
|
||||
BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
||||
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
||||
GlCamera camera;
|
||||
camera.setOrthoProjection(0.0, 1.0, 1.0, 0.0, 0.0, 1.0);
|
||||
camera.lookAt(Point3d(0.0, 0.0, 1.0), Point3d(0.0, 0.0, 0.0), Point3d(0.0, 1.0, 0.0));
|
||||
|
||||
int result = processCommandLine(argc, argv, timeStep, frame0Name, frame1Name, d_flow);
|
||||
if (help_showed)
|
||||
return -1;
|
||||
if (argc == 1 || result)
|
||||
{
|
||||
printHelp();
|
||||
return result;
|
||||
}
|
||||
camera.setupProjectionMatrix();
|
||||
camera.setupModelViewMatrix();
|
||||
|
||||
if (frame0Name.empty() || frame1Name.empty())
|
||||
{
|
||||
cout << "Missing input file names\n";
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat frame0Color = imread(frame0Name);
|
||||
Mat frame1Color = imread(frame1Name);
|
||||
|
||||
if (frame0Color.empty() || frame1Color.empty())
|
||||
{
|
||||
cout << "Can't load input images\n";
|
||||
return -1;
|
||||
}
|
||||
|
||||
cout << "OpenCV / NVIDIA Computer Vision\n";
|
||||
cout << "Optical Flow Demo: Frame Interpolation\n";
|
||||
cout << "=========================================\n";
|
||||
cout << "Press:\n ESC to quit\n 'a' to move to the previous frame\n 's' to move to the next frame\n";
|
||||
|
||||
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
|
||||
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);
|
||||
|
||||
Mat frame0Gray, frame1Gray;
|
||||
|
||||
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
|
||||
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);
|
||||
|
||||
GpuMat d_frame0(frame0Gray);
|
||||
GpuMat d_frame1(frame1Gray);
|
||||
|
||||
Mat fu, fv;
|
||||
Mat bu, bv;
|
||||
|
||||
GpuMat d_fu, d_fv;
|
||||
GpuMat d_bu, d_bv;
|
||||
|
||||
cout << "Estimating optical flow\nForward...\n";
|
||||
|
||||
d_flow(d_frame0, d_frame1, d_fu, d_fv);
|
||||
d_flow(d_frame1, d_frame0, d_bu, d_bv);
|
||||
|
||||
d_fu.download(fu);
|
||||
d_fv.download(fv);
|
||||
|
||||
d_bu.download(bu);
|
||||
d_bv.download(bv);
|
||||
|
||||
// first frame color components (GPU memory)
|
||||
GpuMat d_b, d_g, d_r;
|
||||
|
||||
// second frame color components (GPU memory)
|
||||
GpuMat d_bt, d_gt, d_rt;
|
||||
|
||||
// prepare color components on host and copy them to device memory
|
||||
Mat channels[3];
|
||||
|
||||
cv::split(frame0Color, channels);
|
||||
|
||||
d_b.upload(channels[0]);
|
||||
d_g.upload(channels[1]);
|
||||
d_r.upload(channels[2]);
|
||||
|
||||
cv::split(frame1Color, channels);
|
||||
|
||||
d_bt.upload(channels[0]);
|
||||
d_gt.upload(channels[1]);
|
||||
d_rt.upload(channels[2]);
|
||||
|
||||
cout << "Interpolating...\n";
|
||||
cout.precision (4);
|
||||
|
||||
// temporary buffer
|
||||
GpuMat d_buf;
|
||||
|
||||
// intermediate frame color components (GPU memory)
|
||||
GpuMat d_rNew, d_gNew, d_bNew;
|
||||
|
||||
GpuMat d_newFrame;
|
||||
|
||||
vector<Mat> frames;
|
||||
frames.reserve(1.0f / timeStep + 2);
|
||||
|
||||
frames.push_back(frame0Color);
|
||||
|
||||
// compute interpolated frames
|
||||
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
|
||||
{
|
||||
// interpolate blue channel
|
||||
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);
|
||||
// interpolate green channel
|
||||
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);
|
||||
// interpolate red channel
|
||||
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);
|
||||
|
||||
GpuMat channels[] = {d_bNew, d_gNew, d_rNew};
|
||||
merge(channels, 3, d_newFrame);
|
||||
|
||||
Mat newFrame;
|
||||
d_newFrame.download(newFrame);
|
||||
|
||||
frames.push_back(newFrame);
|
||||
|
||||
cout << timePos * 100.0f << "%\r";
|
||||
}
|
||||
cout << setw (5) << "100%\n";
|
||||
|
||||
frames.push_back(frame1Color);
|
||||
|
||||
int currentFrame;
|
||||
currentFrame = 0;
|
||||
|
||||
Mat flowFieldForward;
|
||||
Mat flowFieldBackward;
|
||||
|
||||
getFlowField(fu, fv, flowFieldForward);
|
||||
getFlowField(bu, bv, flowFieldBackward);
|
||||
|
||||
imshow("Forward flow", flowFieldForward);
|
||||
imshow("Backward flow", flowFieldBackward);
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
|
||||
bool qPressed = false;
|
||||
while (!qPressed)
|
||||
{
|
||||
int key = toupper(waitKey(10));
|
||||
switch (key)
|
||||
{
|
||||
case 27:
|
||||
qPressed = true;
|
||||
break;
|
||||
case 'A':
|
||||
if (currentFrame > 0)
|
||||
--currentFrame;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
break;
|
||||
case 'S':
|
||||
if (currentFrame < frames.size() - 1)
|
||||
++currentFrame;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
render(*arr, RenderMode::TRIANGLES);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user