Added the cv::FaceRecognizer documentation (API, Face Recognition Guide, Tutorials).
This commit is contained in:
200
modules/contrib/doc/facerec/src/facerec_save_load.cpp
Normal file
200
modules/contrib/doc/facerec/src/facerec_save_load.cpp
Normal file
@@ -0,0 +1,200 @@
|
||||
/*
|
||||
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
|
||||
* Released to public domain under terms of the BSD Simplified license.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* * Neither the name of the organization nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* See <http://www.opensource.org/licenses/bsd-license>
|
||||
*/
|
||||
|
||||
#include "opencv2/contrib/contrib.hpp"
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
static Mat norm_0_255(InputArray _src) {
|
||||
Mat src = _src.getMat();
|
||||
// Create and return normalized image:
|
||||
Mat dst;
|
||||
switch(src.channels()) {
|
||||
case 1:
|
||||
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
|
||||
break;
|
||||
case 3:
|
||||
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
|
||||
break;
|
||||
default:
|
||||
src.copyTo(dst);
|
||||
break;
|
||||
}
|
||||
return dst;
|
||||
}
|
||||
|
||||
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
|
||||
std::ifstream file(filename.c_str(), ifstream::in);
|
||||
if (!file) {
|
||||
string error_message = "No valid input file was given, please check the given filename.";
|
||||
CV_Error(CV_StsBadArg, error_message);
|
||||
}
|
||||
string line, path, classlabel;
|
||||
while (getline(file, line)) {
|
||||
stringstream liness(line);
|
||||
getline(liness, path, separator);
|
||||
getline(liness, classlabel);
|
||||
if(!path.empty() && !classlabel.empty()) {
|
||||
images.push_back(imread(path, 0));
|
||||
labels.push_back(atoi(classlabel.c_str()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, const char *argv[]) {
|
||||
// Check for valid command line arguments, print usage
|
||||
// if no arguments were given.
|
||||
if (argc < 2) {
|
||||
cout << "usage: " << argv[0] << " <csv.ext> <output_folder> " << endl;
|
||||
exit(1);
|
||||
}
|
||||
string output_folder;
|
||||
if (argc == 3) {
|
||||
output_folder = string(argv[2]);
|
||||
}
|
||||
// Get the path to your CSV.
|
||||
string fn_csv = string(argv[1]);
|
||||
// These vectors hold the images and corresponding labels.
|
||||
vector<Mat> images;
|
||||
vector<int> labels;
|
||||
// Read in the data. This can fail if no valid
|
||||
// input filename is given.
|
||||
try {
|
||||
read_csv(fn_csv, images, labels);
|
||||
} catch (cv::Exception& e) {
|
||||
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
|
||||
// nothing more we can do
|
||||
exit(1);
|
||||
}
|
||||
// Quit if there are not enough images for this demo.
|
||||
if(images.size() <= 1) {
|
||||
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
|
||||
CV_Error(CV_StsError, error_message);
|
||||
}
|
||||
// Get the height from the first image. We'll need this
|
||||
// later in code to reshape the images to their original
|
||||
// size:
|
||||
int height = images[0].rows;
|
||||
// The following lines simply get the last images from
|
||||
// your dataset and remove it from the vector. This is
|
||||
// done, so that the training data (which we learn the
|
||||
// cv::FaceRecognizer on) and the test data we test
|
||||
// the model with, do not overlap.
|
||||
Mat testSample = images[images.size() - 1];
|
||||
int testLabel = labels[labels.size() - 1];
|
||||
images.pop_back();
|
||||
labels.pop_back();
|
||||
// The following lines create an Eigenfaces model for
|
||||
// face recognition and train it with the images and
|
||||
// labels read from the given CSV file.
|
||||
// This here is a full PCA, if you just want to keep
|
||||
// 10 principal components (read Eigenfaces), then call
|
||||
// the factory method like this:
|
||||
//
|
||||
// cv::createEigenFaceRecognizer(10);
|
||||
//
|
||||
// If you want to create a FaceRecognizer with a
|
||||
// confidence threshold (e.g. 123.0), call it with:
|
||||
//
|
||||
// cv::createEigenFaceRecognizer(10, 123.0);
|
||||
//
|
||||
// If you want to use _all_ Eigenfaces and have a threshold,
|
||||
// then call the method like this:
|
||||
//
|
||||
// cv::createEigenFaceRecognizer(0, 123.0);
|
||||
//
|
||||
Ptr<FaceRecognizer> model0 = createEigenFaceRecognizer();
|
||||
model0->train(images, labels);
|
||||
// save the model to eigenfaces_at.yaml
|
||||
model0->save("eigenfaces_at.yml");
|
||||
//
|
||||
//
|
||||
// Now create a new Eigenfaces Recognizer
|
||||
//
|
||||
Ptr<FaceRecognizer> model1 = createEigenFaceRecognizer();
|
||||
model1->load("eigenfaces_at.yml");
|
||||
// The following line predicts the label of a given
|
||||
// test image:
|
||||
int predictedLabel = model1->predict(testSample);
|
||||
//
|
||||
// To get the confidence of a prediction call the model with:
|
||||
//
|
||||
// int predictedLabel = -1;
|
||||
// double confidence = 0.0;
|
||||
// model->predict(testSample, predictedLabel, confidence);
|
||||
//
|
||||
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
|
||||
cout << result_message << endl;
|
||||
// Here is how to get the eigenvalues of this Eigenfaces model:
|
||||
Mat eigenvalues = model1->getMat("eigenvalues");
|
||||
// And we can do the same to display the Eigenvectors (read Eigenfaces):
|
||||
Mat W = model1->getMat("eigenvectors");
|
||||
// Get the sample mean from the training data
|
||||
Mat mean = model1->getMat("mean");
|
||||
// Display or save:
|
||||
if(argc == 2) {
|
||||
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
|
||||
} else {
|
||||
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
|
||||
}
|
||||
// Display or save the Eigenfaces:
|
||||
for (int i = 0; i < min(10, W.cols); i++) {
|
||||
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
|
||||
cout << msg << endl;
|
||||
// get eigenvector #i
|
||||
Mat ev = W.col(i).clone();
|
||||
// Reshape to original size & normalize to [0...255] for imshow.
|
||||
Mat grayscale = norm_0_255(ev.reshape(1, height));
|
||||
// Show the image & apply a Jet colormap for better sensing.
|
||||
Mat cgrayscale;
|
||||
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
|
||||
// Display or save:
|
||||
if(argc == 2) {
|
||||
imshow(format("eigenface_%d", i), cgrayscale);
|
||||
} else {
|
||||
imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
|
||||
}
|
||||
}
|
||||
// Display or save the image reconstruction at some predefined steps:
|
||||
for(int num_components = 10; num_components < 300; num_components+=15) {
|
||||
// slice the eigenvectors from the model
|
||||
Mat evs = Mat(W, Range::all(), Range(0, num_components));
|
||||
Mat projection = subspaceProject(evs, mean, images[0].reshape(1,1));
|
||||
Mat reconstruction = subspaceReconstruct(evs, mean, projection);
|
||||
// Normalize the result:
|
||||
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
|
||||
// Display or save:
|
||||
if(argc == 2) {
|
||||
imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
|
||||
} else {
|
||||
imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
|
||||
}
|
||||
}
|
||||
// Display if we are not writing to an output folder:
|
||||
if(argc == 2) {
|
||||
waitKey(0);
|
||||
}
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user