From 112d63ae96327607b3bd59eb11dd64729c31bef5 Mon Sep 17 00:00:00 2001
From: Pierre-Emmanuel Viel
Date: Thu, 26 Dec 2013 02:56:28 +0100
Subject: [PATCH] Add a new method for initializing KMeans centers that leads
to better clusters and thus better retrieval when final centers have to be
existing keypoints instead of clusters barycenters.
---
modules/flann/include/opencv2/flann/defines.h | 1 +
.../flann/hierarchical_clustering_index.h | 81 +++++++++++++++++++
2 files changed, 82 insertions(+)
diff --git a/modules/flann/include/opencv2/flann/defines.h b/modules/flann/include/opencv2/flann/defines.h
index 13833b3c0..f0264f74e 100644
--- a/modules/flann/include/opencv2/flann/defines.h
+++ b/modules/flann/include/opencv2/flann/defines.h
@@ -107,6 +107,7 @@ enum flann_centers_init_t
FLANN_CENTERS_RANDOM = 0,
FLANN_CENTERS_GONZALES = 1,
FLANN_CENTERS_KMEANSPP = 2,
+ FLANN_CENTERS_GROUPWISE = 3,
// deprecated constants, should use the FLANN_CENTERS_* ones instead
CENTERS_RANDOM = 0,
diff --git a/modules/flann/include/opencv2/flann/hierarchical_clustering_index.h b/modules/flann/include/opencv2/flann/hierarchical_clustering_index.h
index b8b16941f..b44ba628b 100644
--- a/modules/flann/include/opencv2/flann/hierarchical_clustering_index.h
+++ b/modules/flann/include/opencv2/flann/hierarchical_clustering_index.h
@@ -257,6 +257,84 @@ private:
}
+ /**
+ * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
+ * select the first point of the list as a candidate, then parse the points list. If another
+ * point is further than current candidate from the other centers, test if it is a good center
+ * of a local aggregation. If it is, replace current candidate by this point. And so on...
+ *
+ * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
+ * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
+ * class that pick centers among existing points instead of computing the barycenters, there is a real
+ * improvement.
+ *
+ * Params:
+ * k = number of centers
+ * vecs = the dataset of points
+ * indices = indices in the dataset
+ * Returns:
+ */
+ void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
+ {
+ const float kSpeedUpFactor = 1.3f;
+
+ int n = indices_length;
+
+ DistanceType* closestDistSq = new DistanceType[n];
+
+ // Choose one random center and set the closestDistSq values
+ int index = rand_int(n);
+ assert(index >=0 && index < n);
+ centers[0] = dsindices[index];
+
+ for (int i = 0; i < n; i++) {
+ closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
+ }
+
+
+ // Choose each center
+ int centerCount;
+ for (centerCount = 1; centerCount < k; centerCount++) {
+
+ // Repeat several trials
+ double bestNewPot = -1;
+ int bestNewIndex = 0;
+ DistanceType furthest = 0;
+ for (index = 0; index < n; index++) {
+
+ // We will test only the potential of the points further than current candidate
+ if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
+
+ // Compute the new potential
+ double newPot = 0;
+ for (int i = 0; i < n; i++) {
+ newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
+ , closestDistSq[i] );
+ }
+
+ // Store the best result
+ if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
+ bestNewPot = newPot;
+ bestNewIndex = index;
+ furthest = closestDistSq[index];
+ }
+ }
+ }
+
+ // Add the appropriate center
+ centers[centerCount] = dsindices[bestNewIndex];
+ for (int i = 0; i < n; i++) {
+ closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
+ , closestDistSq[i] );
+ }
+ }
+
+ centers_length = centerCount;
+
+ delete[] closestDistSq;
+ }
+
+
public:
@@ -290,6 +368,9 @@ public:
else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
}
+ else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
+ chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
+ }
else {
throw FLANNException("Unknown algorithm for choosing initial centers.");
}