diff --git a/cmake/OpenCVFindLibsPerf.cmake b/cmake/OpenCVFindLibsPerf.cmake index db71b8aeb..b8945c257 100644 --- a/cmake/OpenCVFindLibsPerf.cmake +++ b/cmake/OpenCVFindLibsPerf.cmake @@ -27,7 +27,7 @@ endif(WITH_CUDA) # --- Eigen --- if(WITH_EIGEN) find_path(EIGEN_INCLUDE_PATH "Eigen/Core" - PATHS /usr/local /opt /usr $ENV{EIGEN_ROOT}/include ENV ProgramFiles ENV ProgramW6432 + PATHS /usr/local /opt /usr $ENV{EIGEN_ROOT}/include ENV ProgramFiles ENV ProgramW6432 PATH_SUFFIXES include/eigen3 include/eigen2 Eigen/include/eigen3 Eigen/include/eigen2 DOC "The path to Eigen3/Eigen2 headers" CMAKE_FIND_ROOT_PATH_BOTH) diff --git a/doc/tutorials/bioinspired/retina_model/retina_model.rst b/doc/tutorials/bioinspired/retina_model/retina_model.rst index 32081dfd2..e8527ee8b 100644 --- a/doc/tutorials/bioinspired/retina_model/retina_model.rst +++ b/doc/tutorials/bioinspired/retina_model/retina_model.rst @@ -130,7 +130,7 @@ To compile it, assuming OpenCV is correctly installed, use the following command Here is a code explanation : -Retina definition is present in the bioinspired package and a simple include allows to use it. You can rather use the specific header : *opencv2/bioinspired.hpp* if you prefer but then include the other required openv modules : *opencv2/core.hpp* and *opencv2/highgui.hpp* +Retina definition is present in the bioinspired package and a simple include allows to use it. You can rather use the specific header : *opencv2/bioinspired.hpp* if you prefer but then include the other required openv modules : *opencv2/core.hpp* and *opencv2/highgui.hpp* .. code-block:: cpp diff --git a/doc/tutorials/introduction/android_binary_package/dev_with_OCV_on_Android.rst b/doc/tutorials/introduction/android_binary_package/dev_with_OCV_on_Android.rst index c86ae378c..243dc35dd 100644 --- a/doc/tutorials/introduction/android_binary_package/dev_with_OCV_on_Android.rst +++ b/doc/tutorials/introduction/android_binary_package/dev_with_OCV_on_Android.rst @@ -125,9 +125,9 @@ designed mostly for development purposes. This approach is deprecated for the pr release package is recommended to communicate with OpenCV Manager via the async initialization described above. -#. Add the OpenCV library project to your workspace the same way as for the async initialization +#. Add the OpenCV library project to your workspace the same way as for the async initialization above. Use menu :guilabel:`File -> Import -> Existing project in your workspace`, - press :guilabel:`Browse` button and select OpenCV SDK path + press :guilabel:`Browse` button and select OpenCV SDK path (:file:`OpenCV-2.4.6-android-sdk/sdk`). .. image:: images/eclipse_opencv_dependency0.png diff --git a/modules/calib3d/src/calib3d_init.cpp b/modules/calib3d/src/calib3d_init.cpp index 06303bd98..6192c7998 100644 --- a/modules/calib3d/src/calib3d_init.cpp +++ b/modules/calib3d/src/calib3d_init.cpp @@ -47,7 +47,7 @@ using namespace cv; ////////////////////////////////////////////////////////////////////////////////////////////////////////// -////////////////////////////////////////////////////////////////////////////////////////////////////////// +////////////////////////////////////////////////////////////////////////////////////////////////////////// diff --git a/modules/calib3d/src/five-point.cpp b/modules/calib3d/src/five-point.cpp index 3796627a0..88fb40272 100644 --- a/modules/calib3d/src/five-point.cpp +++ b/modules/calib3d/src/five-point.cpp @@ -529,16 +529,16 @@ int cv::recoverPose( InputArray E, InputArray _points1, InputArray _points2, Out mask4 = (Q.row(2) > 0) & mask4; mask4 = (Q.row(2) < dist) & mask4; - mask1 = mask1.t(); - mask2 = mask2.t(); - mask3 = mask3.t(); - mask4 = mask4.t(); + mask1 = mask1.t(); + mask2 = mask2.t(); + mask3 = mask3.t(); + mask4 = mask4.t(); // If _mask is given, then use it to filter outliers. if (!_mask.empty()) { Mat mask = _mask.getMat(); - CV_Assert(mask.size() == mask1.size()); + CV_Assert(mask.size() == mask1.size()); bitwise_and(mask, mask1, mask1); bitwise_and(mask, mask2, mask2); bitwise_and(mask, mask3, mask3); @@ -546,7 +546,7 @@ int cv::recoverPose( InputArray E, InputArray _points1, InputArray _points2, Out } if (_mask.empty() && _mask.needed()) { - _mask.create(mask1.size(), CV_8U); + _mask.create(mask1.size(), CV_8U); } CV_Assert(_R.needed() && _t.needed()); diff --git a/modules/calib3d/src/levmarq.cpp b/modules/calib3d/src/levmarq.cpp index 539c804e2..31b96d098 100644 --- a/modules/calib3d/src/levmarq.cpp +++ b/modules/calib3d/src/levmarq.cpp @@ -47,30 +47,30 @@ This is translation to C++ of the Matlab's LMSolve package by Miroslav Balda. Here is the original copyright: ============================================================================ - + Copyright (c) 2007, Miroslav Balda All rights reserved. - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions are + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: - * Redistributions of source code must retain the above copyright + * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ @@ -112,7 +112,7 @@ public: gemm(J, r, 1, noArray(), 0, v, GEMM_1_T); Mat D = A.diag().clone(); - + const double Rlo = 0.25, Rhi = 0.75; double lambda = 1, lc = 0.75; int i, iter = 0; @@ -222,5 +222,5 @@ Ptr createLMSolver(const Ptr& cb, int maxIters) CV_Assert( !LMSolverImpl_info_auto.name().empty() ); return new LMSolverImpl(cb, maxIters); } - + } diff --git a/modules/calib3d/test/test_affine3.cpp b/modules/calib3d/test/test_affine3.cpp index 196d428e4..62326e920 100644 --- a/modules/calib3d/test/test_affine3.cpp +++ b/modules/calib3d/test/test_affine3.cpp @@ -52,30 +52,30 @@ TEST(Calib3d_Affine3f, accuracy) cv::Mat expected; cv::Rodrigues(rvec, expected); - - + + ASSERT_EQ(0, norm(cv::Mat(affine.matrix, false).colRange(0, 3).rowRange(0, 3) != expected)); ASSERT_EQ(0, norm(cv::Mat(affine.linear()) != expected)); - - + + cv::Matx33d R = cv::Matx33d::eye(); - + double angle = 50; R.val[0] = R.val[4] = std::cos(CV_PI*angle/180.0); R.val[3] = std::sin(CV_PI*angle/180.0); R.val[1] = -R.val[3]; - - + + cv::Affine3d affine1(cv::Mat(cv::Vec3d(0.2, 0.5, 0.3)).reshape(1, 1), cv::Vec3d(4, 5, 6)); cv::Affine3d affine2(R, cv::Vec3d(1, 1, 0.4)); - + cv::Affine3d result = affine1.inv() * affine2; - + expected = cv::Mat(affine1.matrix.inv(cv::DECOMP_SVD)) * cv::Mat(affine2.matrix, false); - + cv::Mat diff; cv::absdiff(expected, result.matrix, diff); - + ASSERT_LT(cv::norm(diff, cv::NORM_INF), 1e-15); } diff --git a/modules/features2d/doc/drawing_function_of_keypoints_and_matches.rst b/modules/features2d/doc/drawing_function_of_keypoints_and_matches.rst index cc9850b9b..68c68fc6c 100644 --- a/modules/features2d/doc/drawing_function_of_keypoints_and_matches.rst +++ b/modules/features2d/doc/drawing_function_of_keypoints_and_matches.rst @@ -83,4 +83,4 @@ Draws keypoints. :param flags: Flags setting drawing features. Possible ``flags`` bit values are defined by ``DrawMatchesFlags``. See details above in :ocv:func:`drawMatches` . -.. note:: For Python API, flags are modified as `cv2.DRAW_MATCHES_FLAGS_DEFAULT`, `cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS`, `cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG`, `cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS` +.. note:: For Python API, flags are modified as `cv2.DRAW_MATCHES_FLAGS_DEFAULT`, `cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS`, `cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG`, `cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS` diff --git a/modules/features2d/doc/feature_detection_and_description.rst b/modules/features2d/doc/feature_detection_and_description.rst index 2fcdf0c42..a6fe7c8fa 100644 --- a/modules/features2d/doc/feature_detection_and_description.rst +++ b/modules/features2d/doc/feature_detection_and_description.rst @@ -120,7 +120,7 @@ Finds keypoints in an image and computes their descriptors :param descriptors: The output descriptors. Pass ``cv::noArray()`` if you do not need it. :param useProvidedKeypoints: If it is true, then the method will use the provided vector of keypoints instead of detecting them. - + BRISK ----- diff --git a/modules/highgui/src/cap_ffmpeg_impl.hpp b/modules/highgui/src/cap_ffmpeg_impl.hpp index fbe6bc873..91fc8953d 100644 --- a/modules/highgui/src/cap_ffmpeg_impl.hpp +++ b/modules/highgui/src/cap_ffmpeg_impl.hpp @@ -1212,7 +1212,7 @@ static AVStream *icv_add_video_stream_FFMPEG(AVFormatContext *oc, #if LIBAVUTIL_BUILD > CALC_FFMPEG_VERSION(51,11,0) /* Some settings for libx264 encoding, restore dummy values for gop_size and qmin since they will be set to reasonable defaults by the libx264 - preset system. Also, use a crf encode with the default quality rating, + preset system. Also, use a crf encode with the default quality rating, this seems easier than finding an appropriate default bitrate. */ if (c->codec_id == CODEC_ID_H264) { c->gop_size = -1; diff --git a/modules/imgproc/doc/filtering.rst b/modules/imgproc/doc/filtering.rst index 7a1211d61..37bfe9c10 100755 --- a/modules/imgproc/doc/filtering.rst +++ b/modules/imgproc/doc/filtering.rst @@ -789,7 +789,7 @@ The function supports the in-place mode. Dilation can be applied several ( ``ite * An example using the morphological dilate operation can be found at opencv_source_code/samples/cpp/morphology2.cpp - + erode @@ -1000,17 +1000,17 @@ Returns Gabor filter coefficients. .. ocv:pyfunction:: cv2.getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]]) -> retval :param ksize: Size of the filter returned. - + :param sigma: Standard deviation of the gaussian envelope. - + :param theta: Orientation of the normal to the parallel stripes of a Gabor function. - + :param lambd: Wavelength of the sinusoidal factor. - + :param gamma: Spatial aspect ratio. - + :param psi: Phase offset. - + :param ktype: Type of filter coefficients. It can be ``CV_32F`` or ``CV_64F`` . For more details about gabor filter equations and parameters, see: `Gabor Filter `_. @@ -1132,7 +1132,7 @@ Performs advanced morphological transformations. :param dst: Destination image of the same size and type as ``src`` . :param kernel: Structuring element. It can be created using :ocv:func:`getStructuringElement`. - + :param anchor: Anchor position with the kernel. Negative values mean that the anchor is at the kernel center. :param op: Type of a morphological operation that can be one of the following: diff --git a/modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst b/modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst index e58181a32..d34600669 100644 --- a/modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst +++ b/modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst @@ -553,9 +553,9 @@ Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle. .. ocv:cfunction:: void cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] ) :param box: The input rotated rectangle. It may be the output of .. ocv:function:: minAreaRect. - + :param points: The output array of four vertices of rectangles. - + The function finds the four vertices of a rotated rectangle. This function is useful to draw the rectangle. In C++, instead of using this function, you can directly use box.points() method. Please visit the `tutorial on bounding rectangle `_ for more information. diff --git a/modules/imgproc/src/connectedcomponents.cpp b/modules/imgproc/src/connectedcomponents.cpp index 4fee0aacd..3cf9463b1 100644 --- a/modules/imgproc/src/connectedcomponents.cpp +++ b/modules/imgproc/src/connectedcomponents.cpp @@ -399,7 +399,7 @@ int cv::connectedComponentsWithStats(InputArray _img, OutputArray _labels, Outpu const cv::Mat img = _img.getMat(); _labels.create(img.size(), CV_MAT_DEPTH(ltype)); cv::Mat labels = _labels.getMat(); - connectedcomponents::CCStatsOp sop(statsv, centroids); + connectedcomponents::CCStatsOp sop(statsv, centroids); if(ltype == CV_16U){ return connectedComponents_sub1(img, labels, connectivity, sop); }else if(ltype == CV_32S){ diff --git a/modules/imgproc/src/linefit.cpp b/modules/imgproc/src/linefit.cpp index 61969b502..dc71d888a 100644 --- a/modules/imgproc/src/linefit.cpp +++ b/modules/imgproc/src/linefit.cpp @@ -571,14 +571,14 @@ static void fitLine3D( Point3f * points, int count, int dist, for( j = 0; j < count; j++ ) w[j] = 1.f; } - + /* save the line parameters */ memcpy( _lineprev, _line, 6 * sizeof( float )); - + /* Run again... */ fitLine3D_wods( points, count, w, _line ); } - + if( err < min_err ) { min_err = err; @@ -595,27 +595,27 @@ void cv::fitLine( InputArray _points, OutputArray _line, int distType, double param, double reps, double aeps ) { Mat points = _points.getMat(); - + float linebuf[6]={0.f}; int npoints2 = points.checkVector(2, -1, false); int npoints3 = points.checkVector(3, -1, false); - + CV_Assert( npoints2 >= 0 || npoints3 >= 0 ); - + if( points.depth() != CV_32F || !points.isContinuous() ) { Mat temp; points.convertTo(temp, CV_32F); points = temp; } - + if( npoints2 >= 0 ) fitLine2D( points.ptr(), npoints2, distType, (float)param, (float)reps, (float)aeps, linebuf); else fitLine3D( points.ptr(), npoints3, distType, (float)param, (float)reps, (float)aeps, linebuf); - + Mat(npoints2 >= 0 ? 4 : 6, 1, CV_32F, linebuf).copyTo(_line); } diff --git a/modules/imgproc/src/matchcontours.cpp b/modules/imgproc/src/matchcontours.cpp index eca385900..1ac6c1662 100644 --- a/modules/imgproc/src/matchcontours.cpp +++ b/modules/imgproc/src/matchcontours.cpp @@ -142,7 +142,7 @@ double cv::matchShapes(InputArray contour1, InputArray contour2, int method, dou default: CV_Error( CV_StsBadArg, "Unknown comparison method" ); } - + return result; } diff --git a/modules/imgproc/src/moments.cpp b/modules/imgproc/src/moments.cpp index 40b44df7c..14e672abd 100644 --- a/modules/imgproc/src/moments.cpp +++ b/modules/imgproc/src/moments.cpp @@ -159,7 +159,7 @@ static Moments contourMoments( const Mat& contour ) if( fabs(a00) > FLT_EPSILON ) { double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60; - + if( a00 > 0 ) { db1_2 = 0.5; @@ -464,7 +464,7 @@ cv::Moments cv::moments( InputArray _src, bool binary ) m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym)); } } - + completeMomentState( &m ); return m; } diff --git a/modules/imgproc/src/pyramids.cpp b/modules/imgproc/src/pyramids.cpp index e194def84..9ebf11ea8 100644 --- a/modules/imgproc/src/pyramids.cpp +++ b/modules/imgproc/src/pyramids.cpp @@ -204,7 +204,7 @@ pyrDown_( const Mat& _src, Mat& _dst, int borderType ) CastOp castOp; VecOp vecOp; - CV_Assert( ssize.width > 0 && ssize.height > 0 && + CV_Assert( ssize.width > 0 && ssize.height > 0 && std::abs(dsize.width*2 - ssize.width) <= 2 && std::abs(dsize.height*2 - ssize.height) <= 2 ); int k, x, sy0 = -PD_SZ/2, sy = sy0, width0 = std::min((ssize.width-PD_SZ/2-1)/2 + 1, dsize.width); diff --git a/modules/imgproc/src/segmentation.cpp b/modules/imgproc/src/segmentation.cpp index e4cd43401..0c21b9d7e 100644 --- a/modules/imgproc/src/segmentation.cpp +++ b/modules/imgproc/src/segmentation.cpp @@ -327,7 +327,7 @@ void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst, double sr2 = sr * sr; int isr2 = cvRound(sr2), isr22 = MAX(isr2,16); int tab[768]; - + if( src0.type() != CV_8UC3 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" ); diff --git a/modules/imgproc/test/test_color.cpp b/modules/imgproc/test/test_color.cpp index 0434c6c13..0c94f8f50 100644 --- a/modules/imgproc/test/test_color.cpp +++ b/modules/imgproc/test/test_color.cpp @@ -1690,7 +1690,7 @@ TEST(Imgproc_ColorBayer, regression) Mat given = imread(string(ts->get_data_path()) + "/cvtcolor/bayer_input.png", IMREAD_GRAYSCALE); Mat gold = imread(string(ts->get_data_path()) + "/cvtcolor/bayer_gold.png", IMREAD_UNCHANGED); Mat result; - + CV_Assert(given.data != NULL && gold.data != NULL); cvtColor(given, result, CV_BayerBG2GRAY); diff --git a/modules/objdetect/include/opencv2/objdetect/erfilter.hpp b/modules/objdetect/include/opencv2/objdetect/erfilter.hpp index dcc41c8a9..d1bfeaed0 100644 --- a/modules/objdetect/include/opencv2/objdetect/erfilter.hpp +++ b/modules/objdetect/include/opencv2/objdetect/erfilter.hpp @@ -52,12 +52,12 @@ namespace cv { /*! - Extremal Region Stat structure + Extremal Region Stat structure The ERStat structure represents a class-specific Extremal Region (ER). - An ER is a 4-connected set of pixels with all its grey-level values smaller than the values - in its outer boundary. A class-specific ER is selected (using a classifier) from all the ER's + An ER is a 4-connected set of pixels with all its grey-level values smaller than the values + in its outer boundary. A class-specific ER is selected (using a classifier) from all the ER's in the component tree of the image. */ struct CV_EXPORTS ERStat @@ -69,17 +69,17 @@ public: ~ERStat(){}; //! seed point and the threshold (max grey-level value) - int pixel; - int level; + int pixel; + int level; //! incrementally computable features - int area; + int area; int perimeter; int euler; //!< euler number Rect rect; double raw_moments[2]; //!< order 1 raw moments to derive the centroid double central_moments[3]; //!< order 2 central moments to construct the covariance matrix - std::deque *crossings;//!< horizontal crossings + std::deque *crossings;//!< horizontal crossings float med_crossings; //!< median of the crossings at three different height levels //! 2nd stage features @@ -88,21 +88,21 @@ public: float num_inflexion_points; // TODO Other features can be added (average color, standard deviation, and such) - + // TODO shall we include the pixel list whenever available (i.e. after 2nd stage) ? - std::vector *pixels; - + std::vector *pixels; + //! probability that the ER belongs to the class we are looking for double probability; //! pointers preserving the tree structure of the component tree - ERStat* parent; - ERStat* child; + ERStat* parent; + ERStat* child; ERStat* next; ERStat* prev; - //! wenever the regions is a local maxima of the probability + //! wenever the regions is a local maxima of the probability bool local_maxima; ERStat* max_probability_ancestor; ERStat* min_probability_ancestor; @@ -124,11 +124,11 @@ public: public: virtual ~Callback(){}; //! The classifier must return probability measure for the region. - virtual double eval(const ERStat& stat) = 0; //const = 0; //TODO why cannot use const = 0 here? + virtual double eval(const ERStat& stat) = 0; //const = 0; //TODO why cannot use const = 0 here? }; - /*! - the key method. Takes image on input and returns the selected regions in a vector of ERStat + /*! + the key method. Takes image on input and returns the selected regions in a vector of ERStat only distinctive ERs which correspond to characters are selected by a sequential classifier \param image is the input image \param regions is output for the first stage, input/output for the second one. @@ -151,15 +151,15 @@ public: /*! Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012 - + The component tree of the image is extracted by a threshold increased step by step - from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness, - number of holes, and number of horizontal crossings) are computed for each ER - and used as features for a classifier which estimates the class-conditional - probability P(er|character). The value of P(er|character) is tracked using the inclusion - relation of ER across all thresholds and only the ERs which correspond to local maximum + from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness, + number of holes, and number of horizontal crossings) are computed for each ER + and used as features for a classifier which estimates the class-conditional + probability P(er|character). The value of P(er|character) is tracked using the inclusion + relation of ER across all thresholds and only the ERs which correspond to local maximum of the probability P(er|character) are selected (if the local maximum of the - probability is above a global limit pmin and the difference between local maximum and + probability is above a global limit pmin and the difference between local maximum and local minimum is greater than minProbabilityDiff). \param cb Callback with the classifier. @@ -168,29 +168,29 @@ public: \param minArea The minimum area (% of image size) allowed for retreived ER's \param minArea The maximum area (% of image size) allowed for retreived ER's \param minProbability The minimum probability P(er|character) allowed for retreived ER's - \param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities + \param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities \param minProbability The minimum probability difference between local maxima and local minima ERs */ -CV_EXPORTS Ptr createERFilterNM1(const Ptr& cb = NULL, - int thresholdDelta = 1, float minArea = 0.000025, - float maxArea = 0.13, float minProbability = 0.2, - bool nonMaxSuppression = true, +CV_EXPORTS Ptr createERFilterNM1(const Ptr& cb = NULL, + int thresholdDelta = 1, float minArea = 0.000025, + float maxArea = 0.13, float minProbability = 0.2, + bool nonMaxSuppression = true, float minProbabilityDiff = 0.1); /*! Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012 - In the second stage, the ERs that passed the first stage are classified into character + In the second stage, the ERs that passed the first stage are classified into character and non-character classes using more informative but also more computationally expensive - features. The classifier uses all the features calculated in the first stage and the following + features. The classifier uses all the features calculated in the first stage and the following additional features: hole area ratio, convex hull ratio, and number of outer inflexion points. \param cb Callback with the classifier if omitted tries to load a default classifier from file trained_classifierNM2.xml \param minProbability The minimum probability P(er|character) allowed for retreived ER's */ -CV_EXPORTS Ptr createERFilterNM2(const Ptr& cb = NULL, +CV_EXPORTS Ptr createERFilterNM2(const Ptr& cb = NULL, float minProbability = 0.85); } diff --git a/modules/objdetect/src/cascadedetect.cpp b/modules/objdetect/src/cascadedetect.cpp index 2fe1971c4..04ec41d24 100644 --- a/modules/objdetect/src/cascadedetect.cpp +++ b/modules/objdetect/src/cascadedetect.cpp @@ -181,7 +181,7 @@ void groupRectangles(std::vector& rectList, int groupThreshold, double eps int n1 = rweights[i]; double w1 = rejectWeights[i]; int l1 = rejectLevels[i]; - + // filter out rectangles which don't have enough similar rectangles if( n1 <= groupThreshold ) continue; diff --git a/modules/objdetect/src/erfilter.cpp b/modules/objdetect/src/erfilter.cpp index 694f57425..ac8fc70e8 100644 --- a/modules/objdetect/src/erfilter.cpp +++ b/modules/objdetect/src/erfilter.cpp @@ -48,9 +48,9 @@ using namespace std; namespace cv { -ERStat::ERStat(int init_level, int init_pixel, int init_x, int init_y) : pixel(init_pixel), - level(init_level), area(0), perimeter(0), euler(0), probability(1.0), - parent(0), child(0), next(0), prev(0), local_maxima(0), +ERStat::ERStat(int init_level, int init_pixel, int init_x, int init_y) : pixel(init_pixel), + level(init_level), area(0), perimeter(0), euler(0), probability(1.0), + parent(0), child(0), next(0), prev(0), local_maxima(0), max_probability_ancestor(0), min_probability_ancestor(0) { rect = Rect(init_x,init_y,1,1); @@ -76,17 +76,17 @@ public: //Destructor ~ERFilterNM() {}; - float minProbability; + float minProbability; bool nonMaxSuppression; float minProbabilityDiff; - // the key method. Takes image on input, vector of ERStat is output for the first stage, + // the key method. Takes image on input, vector of ERStat is output for the first stage, // input/output - for the second one. void run( InputArray image, std::vector& regions ); protected: int thresholdDelta; - float maxArea; + float maxArea; float minArea; Ptr classifier; @@ -116,8 +116,8 @@ private: // extract the component tree and store all the ER regions void er_tree_extract( InputArray image ); // accumulate a pixel into an ER - void er_add_pixel( ERStat *parent, int x, int y, int non_boundary_neighbours, - int non_boundary_neighbours_horiz, + void er_add_pixel( ERStat *parent, int x, int y, int non_boundary_neighbours, + int non_boundary_neighbours_horiz, int d_C1, int d_C2, int d_C3 ); // merge an ER with its nested parent void er_merge( ERStat *parent, ERStat *child ); @@ -133,7 +133,7 @@ private: // default 1st stage classifier -class CV_EXPORTS ERClassifierNM1 : public ERFilter::Callback +class CV_EXPORTS ERClassifierNM1 : public ERFilter::Callback { public: //Constructor @@ -142,14 +142,14 @@ public: ~ERClassifierNM1() {}; // The classifier must return probability measure for the region. - double eval(const ERStat& stat); + double eval(const ERStat& stat); private: CvBoost boost; }; // default 2nd stage classifier -class CV_EXPORTS ERClassifierNM2 : public ERFilter::Callback +class CV_EXPORTS ERClassifierNM2 : public ERFilter::Callback { public: //constructor @@ -158,7 +158,7 @@ public: ~ERClassifierNM2() {}; // The classifier must return probability measure for the region. - double eval(const ERStat& stat); + double eval(const ERStat& stat); private: CvBoost boost; @@ -182,7 +182,7 @@ ERFilterNM::ERFilterNM() classifier = NULL; } -// the key method. Takes image on input, vector of ERStat is output for the first stage, +// the key method. Takes image on input, vector of ERStat is output for the first stage, // input/output for the second one. void ERFilterNM::run( InputArray image, std::vector& _regions ) { @@ -192,7 +192,7 @@ void ERFilterNM::run( InputArray image, std::vector& _regions ) regions = &_regions; region_mask = Mat::zeros(image.getMat().rows+2, image.getMat().cols+2, CV_8UC1); - + // if regions vector is empty we must extract the entire component tree if ( regions->size() == 0 ) { @@ -237,13 +237,13 @@ void ERFilterNM::er_tree_extract( InputArray image ) src = (image.getMat() / thresholdDelta) -1; } - const unsigned char * image_data = src.data; - int width = src.cols, height = src.rows; + const unsigned char * image_data = src.data; + int width = src.cols, height = src.rows; // the component stack vector er_stack; - //the quads for euler number calculation + //the quads for euler number calculation unsigned char quads[3][4]; quads[0][0] = 1 << 3; quads[0][1] = 1 << 2; @@ -271,32 +271,32 @@ void ERFilterNM::er_tree_extract( InputArray image ) // we'll look initially for all pixels with grey-level lower than a grey-level higher than any allowed in the image int threshold_level = (255/thresholdDelta)+1; - + // starting from the first pixel (0,0) int current_pixel = 0; int current_edge = 0; int current_level = image_data[0]; accessible_pixel_mask[0] = true; - + bool push_new_component = true; - + for (;;) { int x = current_pixel % width; int y = current_pixel / width; // push a component with current level in the component stack - if (push_new_component) + if (push_new_component) er_stack.push_back(new ERStat(current_level, current_pixel, x, y)); push_new_component = false; - + // explore the (remaining) edges to the neighbors to the current pixel - for (current_edge = current_edge; current_edge < 4; current_edge++) + for (current_edge = current_edge; current_edge < 4; current_edge++) { int neighbour_pixel = current_pixel; - - switch (current_edge) + + switch (current_edge) { case 0: if (x < width - 1) neighbour_pixel = current_pixel + 1; break; case 1: if (y < height - 1) neighbour_pixel = current_pixel + width; break; @@ -305,46 +305,46 @@ void ERFilterNM::er_tree_extract( InputArray image ) } // if neighbour is not accessible, mark it accessible and retreive its grey-level value - if ( !accessible_pixel_mask[neighbour_pixel] && (neighbour_pixel != current_pixel) ) + if ( !accessible_pixel_mask[neighbour_pixel] && (neighbour_pixel != current_pixel) ) { int neighbour_level = image_data[neighbour_pixel]; accessible_pixel_mask[neighbour_pixel] = true; - // if neighbour level is not lower than current level add neighbour to the boundary heap - if (neighbour_level >= current_level) + // if neighbour level is not lower than current level add neighbour to the boundary heap + if (neighbour_level >= current_level) { boundary_pixes[neighbour_level].push_back(neighbour_pixel); boundary_edges[neighbour_level].push_back(0); - + // if neighbour level is lower than our threshold_level set threshold_level to neighbour level if (neighbour_level < threshold_level) threshold_level = neighbour_level; - } - else // if neighbour level is lower than current add current_pixel (and next edge) + } + else // if neighbour level is lower than current add current_pixel (and next edge) // to the boundary heap for later processing { - + boundary_pixes[current_level].push_back(current_pixel); boundary_edges[current_level].push_back(current_edge + 1); - + // if neighbour level is lower than threshold_level set threshold_level to neighbour level if (current_level < threshold_level) threshold_level = current_level; - + // consider the new pixel and its grey-level as current pixel current_pixel = neighbour_pixel; current_edge = 0; current_level = neighbour_level; - + // and push a new component push_new_component = true; - break; + break; } } - + } // else neigbor was already accessible if (push_new_component) continue; @@ -363,12 +363,12 @@ void ERFilterNM::er_tree_extract( InputArray image ) quad_after[2] = 1<<2; quad_after[3] = 1; - for (int edge = 0; edge < 8; edge++) + for (int edge = 0; edge < 8; edge++) { int neighbour4 = -1; int neighbour8 = -1; int cell = 0; - switch (edge) + switch (edge) { case 0: if (x < width - 1) { neighbour4 = neighbour8 = current_pixel + 1;} cell = 5; break; case 1: if ((x < width - 1)&&(y < height - 1)) { neighbour8 = current_pixel + 1 + width;} cell = 8; break; @@ -391,7 +391,7 @@ void ERFilterNM::er_tree_extract( InputArray image ) { if (accumulated_pixel_mask[neighbour8]) pix_value = image_data[neighbour8]; - } + } if (pix_value<=image_data[current_pixel]) { @@ -453,18 +453,18 @@ void ERFilterNM::er_tree_extract( InputArray image ) C_before[p]++; if ( (quad_before[1] == quads[p][q]) && ((p<2)||(q<2)) ) C_before[p]++; - if ( (quad_before[2] == quads[p][q]) && ((p<2)||(q<2)) ) + if ( (quad_before[2] == quads[p][q]) && ((p<2)||(q<2)) ) C_before[p]++; if ( (quad_before[3] == quads[p][q]) && ((p<2)||(q<2)) ) C_before[p]++; - if ( (quad_after[0] == quads[p][q]) && ((p<2)||(q<2)) ) + if ( (quad_after[0] == quads[p][q]) && ((p<2)||(q<2)) ) C_after[p]++; - if ( (quad_after[1] == quads[p][q]) && ((p<2)||(q<2)) ) + if ( (quad_after[1] == quads[p][q]) && ((p<2)||(q<2)) ) C_after[p]++; - if ( (quad_after[2] == quads[p][q]) && ((p<2)||(q<2)) ) + if ( (quad_after[2] == quads[p][q]) && ((p<2)||(q<2)) ) C_after[p]++; - if ( (quad_after[3] == quads[p][q]) && ((p<2)||(q<2)) ) + if ( (quad_after[3] == quads[p][q]) && ((p<2)||(q<2)) ) C_after[p]++; } } @@ -475,9 +475,9 @@ void ERFilterNM::er_tree_extract( InputArray image ) er_add_pixel(er_stack.back(), x, y, non_boundary_neighbours, non_boundary_neighbours_horiz, d_C1, d_C2, d_C3); accumulated_pixel_mask[current_pixel] = true; - + // if we have processed all the possible threshold levels (the hea is empty) we are done! - if (threshold_level == (255/thresholdDelta)+1) + if (threshold_level == (255/thresholdDelta)+1) { // save the extracted regions into the output vector @@ -490,18 +490,18 @@ void ERFilterNM::er_tree_extract( InputArray image ) return; } - - + + // pop the heap of boundary pixels current_pixel = boundary_pixes[threshold_level].back(); boundary_pixes[threshold_level].erase(boundary_pixes[threshold_level].end()-1); current_edge = boundary_edges[threshold_level].back(); boundary_edges[threshold_level].erase(boundary_edges[threshold_level].end()-1); - + while (boundary_pixes[threshold_level].empty() && (threshold_level < (255/thresholdDelta)+1)) threshold_level++; - + int new_level = image_data[current_pixel]; // if the new pixel has higher grey value than the current one @@ -514,11 +514,11 @@ void ERFilterNM::er_tree_extract( InputArray image ) { ERStat* er = er_stack.back(); er_stack.erase(er_stack.end()-1); - - if (new_level < er_stack.back()->level) + + if (new_level < er_stack.back()->level) { er_stack.push_back(new ERStat(new_level, current_pixel, current_pixel%width, current_pixel/width)); - er_merge(er_stack.back(), er); + er_merge(er_stack.back(), er); break; } @@ -531,8 +531,8 @@ void ERFilterNM::er_tree_extract( InputArray image ) } // accumulate a pixel into an ER -void ERFilterNM::er_add_pixel(ERStat *parent, int x, int y, int non_border_neighbours, - int non_border_neighbours_horiz, +void ERFilterNM::er_add_pixel(ERStat *parent, int x, int y, int non_border_neighbours, + int non_border_neighbours_horiz, int d_C1, int d_C2, int d_C3) { parent->area++; @@ -575,7 +575,7 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child) parent->area += child->area; parent->perimeter += child->perimeter; - + for (int i=parent->rect.y; i<=min(parent->rect.br().y-1,child->rect.br().y-1); i++) if (i-child->rect.y >= 0) @@ -584,12 +584,12 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child) for (int i=parent->rect.y-1; i>=child->rect.y; i--) if (i-child->rect.y < (int)child->crossings->size()) parent->crossings->push_front(child->crossings->at(i-child->rect.y)); - else + else parent->crossings->push_front(0); for (int i=parent->rect.br().y; irect.y; i++) parent->crossings->push_back(0); - + for (int i=max(parent->rect.br().y,child->rect.y); i<=child->rect.br().y-1; i++) parent->crossings->push_back(child->crossings->at(i-child->rect.y)); @@ -618,8 +618,8 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child) std::sort(m_crossings.begin(), m_crossings.end()); child->med_crossings = (float)m_crossings.at(1); - // free unnecessary mem - child->crossings->clear(); + // free unnecessary mem + child->crossings->clear(); delete(child->crossings); child->crossings = NULL; @@ -632,15 +632,15 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child) child->probability = classifier->eval(*child); } - if ( ((classifier!=NULL)?(child->probability >= minProbability):true) && - ((child->area >= (minArea*region_mask.rows*region_mask.cols)) && + if ( ((classifier!=NULL)?(child->probability >= minProbability):true) && + ((child->area >= (minArea*region_mask.rows*region_mask.cols)) && (child->area <= (maxArea*region_mask.rows*region_mask.cols))) ) { num_accepted_regions++; child->next = parent->child; - if (parent->child) + if (parent->child) parent->child->prev = child; parent->child = child; child->parent = parent; @@ -658,7 +658,7 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child) while (new_child->next != NULL) new_child = new_child->next; new_child->next = parent->child; - if (parent->child) + if (parent->child) parent->child->prev = new_child; parent->child = child->child; child->child->parent = parent; @@ -672,8 +672,8 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child) child->crossings = NULL; } delete(child); - } - + } + } // recursively walk the tree and clean memory @@ -691,11 +691,11 @@ void ERFilterNM::er_tree_clean( ERStat *stat ) } delete stat; } - + // copy extracted regions into the output vector ERStat* ERFilterNM::er_save( ERStat *er, ERStat *parent, ERStat *prev ) { - + regions->push_back(*er); regions->back().parent = parent; @@ -714,7 +714,7 @@ ERStat* ERFilterNM::er_save( ERStat *er, ERStat *parent, ERStat *prev ) this_er->probability = 0; //TODO this makes sense in order to select at least one region in short tree's but is it really necessary? this_er->max_probability_ancestor = this_er; this_er->min_probability_ancestor = this_er; - } + } else { this_er->max_probability_ancestor = (this_er->probability > parent->max_probability_ancestor->probability)? this_er : parent->max_probability_ancestor; @@ -730,11 +730,11 @@ ERStat* ERFilterNM::er_save( ERStat *er, ERStat *parent, ERStat *prev ) // this_er->min_probability_ancestor->local_maxima = false; this_er->max_probability_ancestor = this_er; - this_er->min_probability_ancestor = this_er; + this_er->min_probability_ancestor = this_er; } } } - + for (ERStat * child = er->child; child; child = child->next) { old_prev = er_save(child, this_er, old_prev); @@ -749,16 +749,16 @@ ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *pa Mat src = image.getMat(); // assert correct image type CV_Assert( src.type() == CV_8UC1 ); - + //Fill the region and calculate 2nd stage features Mat region = region_mask(Rect(Point(stat->rect.x,stat->rect.y),Point(stat->rect.br().x+2,stat->rect.br().y+2))); region = Scalar(0); int newMaskVal = 255; int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY; Rect rect; - - floodFill( src(Rect(Point(stat->rect.x,stat->rect.y),Point(stat->rect.br().x,stat->rect.br().y))), - region, Point(stat->pixel%src.cols - stat->rect.x, stat->pixel/src.cols - stat->rect.y), + + floodFill( src(Rect(Point(stat->rect.x,stat->rect.y),Point(stat->rect.br().x,stat->rect.br().y))), + region, Point(stat->pixel%src.cols - stat->rect.x, stat->pixel/src.cols - stat->rect.y), Scalar(255), &rect, Scalar(stat->level), Scalar(0), flags ); rect.width += 2; rect.height += 2; @@ -768,9 +768,9 @@ ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *pa vector contour_poly; vector hierarchy; findContours( region, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE, Point(0, 0) ); - //TODO check epsilon parameter of approxPolyDP (set empirically) : we want more precission + //TODO check epsilon parameter of approxPolyDP (set empirically) : we want more precission // if the region is very small because otherwise we'll loose all the convexities - approxPolyDP( Mat(contours[0]), contour_poly, max(rect.width,rect.height)/25, true ); + approxPolyDP( Mat(contours[0]), contour_poly, max(rect.width,rect.height)/25, true ); bool was_convex = false; @@ -829,11 +829,11 @@ ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *pa if ( (classifier != NULL) && (stat->parent != NULL) ) { stat->probability = classifier->eval(*stat); - } + } - if ( ( ((classifier != NULL)?(stat->probability >= minProbability):true) && - ((stat->area >= minArea*region_mask.rows*region_mask.cols) && - (stat->area <= maxArea*region_mask.rows*region_mask.cols)) ) || + if ( ( ((classifier != NULL)?(stat->probability >= minProbability):true) && + ((stat->area >= minArea*region_mask.rows*region_mask.cols) && + (stat->area <= maxArea*region_mask.rows*region_mask.cols)) ) || (stat->parent == NULL) ) { @@ -979,19 +979,19 @@ int ERFilterNM::getNumRejected() ERClassifierNM1::ERClassifierNM1() { - if (ifstream("./trained_classifierNM1.xml")) + if (ifstream("./trained_classifierNM1.xml")) { // The file with default classifier exists boost.load("./trained_classifierNM1.xml", "boost"); - } - else if (ifstream("./training/trained_classifierNM1.xml")) + } + else if (ifstream("./training/trained_classifierNM1.xml")) { // The file with default classifier exists boost.load("./training/trained_classifierNM1.xml", "boost"); - } - else + } + else { - // File not found + // File not found CV_Error(CV_StsBadArg, "Default classifier ./trained_classifierNM1.xml not found!"); } }; @@ -1017,19 +1017,19 @@ double ERClassifierNM1::eval(const ERStat& stat) ERClassifierNM2::ERClassifierNM2() { - if (ifstream("./trained_classifierNM2.xml")) + if (ifstream("./trained_classifierNM2.xml")) { // The file with default classifier exists boost.load("./trained_classifierNM2.xml", "boost"); - } - else if (ifstream("./training/trained_classifierNM2.xml")) + } + else if (ifstream("./training/trained_classifierNM2.xml")) { // The file with default classifier exists boost.load("./training/trained_classifierNM2.xml", "boost"); - } - else + } + else { - // File not found + // File not found CV_Error(CV_StsBadArg, "Default classifier ./trained_classifierNM2.xml not found!"); } }; @@ -1040,7 +1040,7 @@ double ERClassifierNM2::eval(const ERStat& stat) float arr[] = {0,(float)(stat.rect.width)/(stat.rect.height), // aspect ratio sqrt((float)(stat.area))/stat.perimeter, // compactness (float)(1-stat.euler), //number of holes - stat.med_crossings, stat.hole_area_ratio, + stat.med_crossings, stat.hole_area_ratio, stat.convex_hull_ratio, stat.num_inflexion_points}; vector sample (arr, arr + sizeof(arr) / sizeof(arr[0]) ); @@ -1055,15 +1055,15 @@ double ERClassifierNM2::eval(const ERStat& stat) /*! Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012 - + The component tree of the image is extracted by a threshold increased step by step - from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness, - number of holes, and number of horizontal crossings) are computed for each ER - and used as features for a classifier which estimates the class-conditional - probability P(er|character). The value of P(er|character) is tracked using the inclusion - relation of ER across all thresholds and only the ERs which correspond to local maximum + from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness, + number of holes, and number of horizontal crossings) are computed for each ER + and used as features for a classifier which estimates the class-conditional + probability P(er|character). The value of P(er|character) is tracked using the inclusion + relation of ER across all thresholds and only the ERs which correspond to local maximum of the probability P(er|character) are selected (if the local maximum of the - probability is above a global limit pmin and the difference between local maximum and + probability is above a global limit pmin and the difference between local maximum and local minimum is greater than minProbabilityDiff). \param cb Callback with the classifier. @@ -1072,11 +1072,11 @@ double ERClassifierNM2::eval(const ERStat& stat) \param minArea The minimum area (% of image size) allowed for retreived ER's \param minArea The maximum area (% of image size) allowed for retreived ER's \param minProbability The minimum probability P(er|character) allowed for retreived ER's - \param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities + \param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities \param minProbability The minimum probability difference between local maxima and local minima ERs */ -Ptr createERFilterNM1(const Ptr& cb, int thresholdDelta, - float minArea, float maxArea, float minProbability, +Ptr createERFilterNM1(const Ptr& cb, int thresholdDelta, + float minArea, float maxArea, float minProbability, bool nonMaxSuppression, float minProbabilityDiff) { @@ -1086,7 +1086,7 @@ Ptr createERFilterNM1(const Ptr& cb, int threshold CV_Assert( (minProbabilityDiff >= 0.) && (minProbabilityDiff <= 1.) ); Ptr filter = new ERFilterNM(); - + if (cb == NULL) filter->setCallback(new ERClassifierNM1()); else @@ -1105,9 +1105,9 @@ Ptr createERFilterNM1(const Ptr& cb, int threshold Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012 - In the second stage, the ERs that passed the first stage are classified into character + In the second stage, the ERs that passed the first stage are classified into character and non-character classes using more informative but also more computationally expensive - features. The classifier uses all the features calculated in the first stage and the following + features. The classifier uses all the features calculated in the first stage and the following additional features: hole area ratio, convex hull ratio, and number of outer inflexion points. \param cb Callback with the classifier @@ -1121,7 +1121,7 @@ Ptr createERFilterNM2(const Ptr& cb, float minProb Ptr filter = new ERFilterNM(); - + if (cb == NULL) filter->setCallback(new ERClassifierNM2()); else diff --git a/modules/ocl/doc/image_filtering.rst b/modules/ocl/doc/image_filtering.rst index e7fd50399..d0a456f63 100644 --- a/modules/ocl/doc/image_filtering.rst +++ b/modules/ocl/doc/image_filtering.rst @@ -151,9 +151,9 @@ Returns void :param temp1: Convolution kernel, a single-channel floating point matrix. The size is not greater than the ``image`` size. The type is the same as ``image``. :param result: The destination image - + :param ccorr: Flags to evaluate cross-correlation instead of convolution. - + :param buf: Optional buffer to avoid extra memory allocations and to adjust some specific parameters. See :ocv:struct:`ocl::ConvolveBuf`. Convolves an image with the kernel. Supports only CV_32FC1 data types and do not support ROI. diff --git a/modules/ocl/include/opencv2/ocl.hpp b/modules/ocl/include/opencv2/ocl.hpp index 7aaafca44..f8e201a6f 100644 --- a/modules/ocl/include/opencv2/ocl.hpp +++ b/modules/ocl/include/opencv2/ocl.hpp @@ -1782,7 +1782,7 @@ namespace cv }; //! Returns the sorted result of all the elements in input based on equivalent keys. // - // The element unit in the values to be sorted is determined from the data type, + // The element unit in the values to be sorted is determined from the data type, // i.e., a CV_32FC2 input {a1a2, b1b2} will be considered as two elements, regardless its // matrix dimension. // both keys and values will be sorted inplace diff --git a/modules/ocl/src/matrix_operations.cpp b/modules/ocl/src/matrix_operations.cpp index e6af56d57..ddbd76db4 100644 --- a/modules/ocl/src/matrix_operations.cpp +++ b/modules/ocl/src/matrix_operations.cpp @@ -189,7 +189,7 @@ void cv::ocl::oclMat::upload(const Mat &m) temp = clCreateBuffer((cl_context)clCxt->oclContext(), CL_MEM_READ_WRITE, (pitch * wholeSize.height + tail_padding - 1) / tail_padding * tail_padding, 0, &err); openCLVerifyCall(err); - openCLMemcpy2D(clCxt, temp, pitch, m.datastart, m.step, + openCLMemcpy2D(clCxt, temp, pitch, m.datastart, m.step, wholeSize.width * m.elemSize(), wholeSize.height, clMemcpyHostToDevice, 3); } else{ @@ -198,7 +198,7 @@ void cv::ocl::oclMat::upload(const Mat &m) openCLVerifyCall(err); } - + convert_C3C4(temp, *this); openCLSafeCall(clReleaseMemObject(temp)); } diff --git a/modules/optim/src/lpsolver.cpp b/modules/optim/src/lpsolver.cpp index 72db13a0c..924b756a9 100644 --- a/modules/optim/src/lpsolver.cpp +++ b/modules/optim/src/lpsolver.cpp @@ -14,20 +14,20 @@ static void print_matrix(const Mat& x){ } static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector N,const std::vector B){ printf("\tprint simplex state\n"); - + printf("v=%g\n",v); - + printf("here c goes\n"); print_matrix(c); - + printf("non-basic: "); print(Mat(N)); printf("\n"); - + printf("here b goes\n"); print_matrix(b); printf("basic: "); - + print(Mat(B)); printf("\n"); } @@ -185,7 +185,7 @@ static int initialize_simplex(Mat_& c, Mat_& b,double& v,vector< if(indexToRow[I]& c, Mat_& b,double& v,vector& } } -static inline void pivot(Mat_& c,Mat_& b,double& v,vector& N,vector& B, +static inline void pivot(Mat_& c,Mat_& b,double& v,vector& N,vector& B, int leaving_index,int entering_index,vector& indexToRow){ double Coef=b(leaving_index,entering_index); for(int i=0;i& c,Mat_& b,double& v,vector& } dprintf(("v was %g\n",v)); v+=Coef*b(leaving_index,b.cols-1); - + SWAP(int,N[entering_index],B[leaving_index]); SWAP(int,indexToRow[N[entering_index]],indexToRow[B[leaving_index]]); } diff --git a/modules/softcascade/src/octave.cpp b/modules/softcascade/src/octave.cpp index 935898d56..5c5aa2eec 100644 --- a/modules/softcascade/src/octave.cpp +++ b/modules/softcascade/src/octave.cpp @@ -321,7 +321,7 @@ void BoostedSoftCascadeOctave::traverse(const CvBoostTree* tree, cv::FileStorage fs << "}"; - + delete [] leafs; } diff --git a/samples/cpp/erfilter.cpp b/samples/cpp/erfilter.cpp index f318371d7..8a2a45f9c 100644 --- a/samples/cpp/erfilter.cpp +++ b/samples/cpp/erfilter.cpp @@ -1,6 +1,6 @@ //-------------------------------------------------------------------------------------------------- -// A demo program of the Extremal Region Filter algorithm described in +// A demo program of the Extremal Region Filter algorithm described in // Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012 //-------------------------------------------------------------------------------------------------- @@ -21,7 +21,7 @@ void er_draw(Mat &src, Mat &dst, ERStat& er); void er_draw(Mat &src, Mat &dst, ERStat& er) { - if (er.parent != NULL) // deprecate the root region + if (er.parent != NULL) // deprecate the root region { int newMaskVal = 255; int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY; @@ -29,7 +29,7 @@ void er_draw(Mat &src, Mat &dst, ERStat& er) } } - + int main(int argc, const char * argv[]) { @@ -54,14 +54,14 @@ int main(int argc, const char * argv[]) } Mat grey(original.size(),CV_8UC1); cvtColor(original,grey,COLOR_RGB2GRAY); - + double t = (double)getTickCount(); - + // Build ER tree and filter with the 1st stage default classifier Ptr er_filter1 = createERFilterNM1(); - + er_filter1->run(grey, regions); - + t = (double)getTickCount() - t; cout << " --------------------------------------------------------------------------------------------------" << endl; cout << "\t FIRST STAGE CLASSIFIER done in " << t * 1000. / getTickFrequency() << " ms." << endl; @@ -87,11 +87,11 @@ int main(int argc, const char * argv[]) } t = (double)getTickCount(); - + // Default second stage classifier Ptr er_filter2 = createERFilterNM2(); er_filter2->run(grey, regions); - + t = (double)getTickCount() - t; cout << " --------------------------------------------------------------------------------------------------" << endl; cout << "\t SECOND STAGE CLASSIFIER done in " << t * 1000. / getTickFrequency() << " ms." << endl; diff --git a/samples/cpp/image_sequence.cpp b/samples/cpp/image_sequence.cpp index 3bb23f00b..e4815ebea 100644 --- a/samples/cpp/image_sequence.cpp +++ b/samples/cpp/image_sequence.cpp @@ -17,7 +17,7 @@ static void help(char** argv) int main(int argc, char** argv) { - if(argc != 2) + if(argc != 2) { help(argv); return 1; @@ -25,28 +25,28 @@ int main(int argc, char** argv) string first_file = argv[1]; VideoCapture sequence(first_file); - + if (!sequence.isOpened()) { cerr << "Failed to open the image sequence!\n" << endl; return 1; } - + Mat image; namedWindow("Image sequence | press ESC to close", 1); - + for(;;) { // Read in image from sequence sequence >> image; - + // If no image was retrieved -> end of sequence if(image.empty()) { cout << "End of Sequence" << endl; break; } - + imshow("Image sequence | press ESC to close", image); if(waitKey(500) == 27) diff --git a/samples/cpp/starter_video.cpp b/samples/cpp/starter_video.cpp index 87b414df6..1a3d5b0c9 100644 --- a/samples/cpp/starter_video.cpp +++ b/samples/cpp/starter_video.cpp @@ -41,15 +41,15 @@ namespace { cout << "press space to save a picture. q or esc to quit" << endl; namedWindow(window_name, WINDOW_KEEPRATIO); //resizable window; Mat frame; - + for (;;) { capture >> frame; if (frame.empty()) break; - + imshow(window_name, frame); char key = (char)waitKey(30); //delay N millis, usually long enough to display and capture input - + switch (key) { case 'q': case 'Q': diff --git a/samples/python2/asift.py b/samples/python2/asift.py index 965a06155..ae044d527 100755 --- a/samples/python2/asift.py +++ b/samples/python2/asift.py @@ -119,19 +119,19 @@ if __name__ == '__main__': img1 = cv2.imread(fn1, 0) img2 = cv2.imread(fn2, 0) detector, matcher = init_feature(feature_name) - + if img1 is None: print 'Failed to load fn1:', fn1 sys.exit(1) - + if img2 is None: print 'Failed to load fn2:', fn2 sys.exit(1) - + if detector is None: print 'unknown feature:', feature_name sys.exit(1) - + print 'using', feature_name pool=ThreadPool(processes = cv2.getNumberOfCPUs()) diff --git a/samples/python2/camshift.py b/samples/python2/camshift.py index 7fb51fca4..6e9402095 100755 --- a/samples/python2/camshift.py +++ b/samples/python2/camshift.py @@ -102,7 +102,7 @@ class App(object): vis[:] = prob[...,np.newaxis] try: cv2.ellipse(vis, track_box, (0, 0, 255), 2) - except: + except: print track_box cv2.imshow('camshift', vis) @@ -119,7 +119,7 @@ if __name__ == '__main__': import sys try: video_src = sys.argv[1] - except: + except: video_src = 0 print __doc__ App(video_src).run() diff --git a/samples/python2/coherence.py b/samples/python2/coherence.py index 2db26e63d..92122e876 100755 --- a/samples/python2/coherence.py +++ b/samples/python2/coherence.py @@ -40,9 +40,9 @@ def coherence_filter(img, sigma = 11, str_sigma = 11, blend = 0.5, iter_n = 4): if __name__ == '__main__': import sys - try: + try: fn = sys.argv[1] - except: + except: fn = '../cpp/baboon.jpg' src = cv2.imread(fn) diff --git a/samples/python2/demo.py b/samples/python2/demo.py index 2ea181344..03d624ddc 100755 --- a/samples/python2/demo.py +++ b/samples/python2/demo.py @@ -141,7 +141,7 @@ class App: count = tk.IntVar() while True: match_index = text.search(pattern, 'matchPos', count=count, regexp=regexp, stopindex='end') - if not match_index: + if not match_index: break end_index = text.index( "%s+%sc" % (match_index, count.get()) ) text.mark_set('matchPos', end_index) diff --git a/samples/python2/find_obj.py b/samples/python2/find_obj.py index ccab39214..908da68fe 100755 --- a/samples/python2/find_obj.py +++ b/samples/python2/find_obj.py @@ -143,15 +143,15 @@ if __name__ == '__main__': if img1 is None: print 'Failed to load fn1:', fn1 sys.exit(1) - + if img2 is None: print 'Failed to load fn2:', fn2 sys.exit(1) - + if detector is None: print 'unknown feature:', feature_name sys.exit(1) - + print 'using', feature_name kp1, desc1 = detector.detectAndCompute(img1, None) diff --git a/samples/python2/gabor_threads.py b/samples/python2/gabor_threads.py index 1f56a9beb..6d10ffdb4 100755 --- a/samples/python2/gabor_threads.py +++ b/samples/python2/gabor_threads.py @@ -51,14 +51,14 @@ if __name__ == '__main__': print __doc__ try: img_fn = sys.argv[1] - except: + except: img_fn = '../cpp/baboon.jpg' img = cv2.imread(img_fn) if img is None: print 'Failed to load image file:', img_fn sys.exit(1) - + filters = build_filters() with Timer('running single-threaded'): diff --git a/samples/python2/hist.py b/samples/python2/hist.py index e1edb2315..41eec1d3a 100755 --- a/samples/python2/hist.py +++ b/samples/python2/hist.py @@ -61,7 +61,7 @@ if __name__ == '__main__': print "usage : python hist.py " im = cv2.imread(fname) - + if im is None: print 'Failed to load image file:', fname sys.exit(1) diff --git a/samples/python2/houghcircles.py b/samples/python2/houghcircles.py index 620118cce..392e4e1c5 100755 --- a/samples/python2/houghcircles.py +++ b/samples/python2/houghcircles.py @@ -2,7 +2,7 @@ ''' This example illustrates how to use cv2.HoughCircles() function. -Usage: ./houghcircles.py [] +Usage: ./houghcircles.py [] image argument defaults to ../cpp/board.jpg ''' diff --git a/samples/python2/inpaint.py b/samples/python2/inpaint.py index e38610019..5044afb89 100755 --- a/samples/python2/inpaint.py +++ b/samples/python2/inpaint.py @@ -23,16 +23,16 @@ if __name__ == '__main__': import sys try: fn = sys.argv[1] - except: + except: fn = '../cpp/fruits.jpg' - + print __doc__ img = cv2.imread(fn) if img is None: print 'Failed to load image file:', fn sys.exit(1) - + img_mark = img.copy() mark = np.zeros(img.shape[:2], np.uint8) sketch = Sketcher('img', [img_mark, mark], lambda : ((255, 255, 255), 255)) diff --git a/samples/python2/morphology.py b/samples/python2/morphology.py index cfed9b8b0..d9bdb7f1c 100755 --- a/samples/python2/morphology.py +++ b/samples/python2/morphology.py @@ -27,13 +27,13 @@ if __name__ == '__main__': fn = sys.argv[1] except: fn = '../cpp/baboon.jpg' - + img = cv2.imread(fn) - + if img is None: print 'Failed to load image file:', fn sys.exit(1) - + cv2.imshow('original', img) modes = cycle(['erode/dilate', 'open/close', 'blackhat/tophat', 'gradient'])