Basic doxygen documentation support
- updated existing Doxyfile.in - added corresponding cmake instructions - added some specific files (layout, icon) - clean existing doxygen warnings Conflicts: CMakeLists.txt doc/CMakeLists.txt modules/core/include/opencv2/core.hpp modules/core/include/opencv2/core/base.hpp modules/core/include/opencv2/core/cuda.inl.hpp modules/core/include/opencv2/core/mat.hpp modules/core/include/opencv2/core/matx.hpp modules/core/include/opencv2/core/types.hpp modules/flann/include/opencv2/flann/lsh_table.h modules/imgproc/include/opencv2/imgproc.hpp
This commit is contained in:
@@ -664,6 +664,7 @@ namespace cv
|
||||
*\param center the transformation center: where the output precision is maximal
|
||||
*\param R the number of rings of the cortical image (default value 70 pixel)
|
||||
*\param ro0 the radius of the blind spot (default value 3 pixel)
|
||||
*\param interp interpolation algorithm
|
||||
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
||||
* \a 0 means that the retinal image is computed within the inscribed circle.
|
||||
*\param S the number of sectors of the cortical image (default value 70 pixel).
|
||||
|
@@ -88,7 +88,7 @@ enum RETINA_COLORSAMPLINGMETHOD
|
||||
class RetinaFilter;
|
||||
|
||||
/**
|
||||
* @class Retina a wrapper class which allows the Gipsa/Listic Labs model to be used.
|
||||
* a wrapper class which allows the Gipsa/Listic Labs model to be used.
|
||||
* This retina model allows spatio-temporal image processing (applied on still images, video sequences).
|
||||
* As a summary, these are the retina model properties:
|
||||
* => It applies a spectral whithening (mid-frequency details enhancement)
|
||||
@@ -199,7 +199,6 @@ public:
|
||||
* => if the xml file does not exist, then default setup is applied
|
||||
* => warning, Exceptions are thrown if read XML file is not valid
|
||||
* @param newParameters : a parameters structures updated with the new target configuration
|
||||
* @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
|
||||
*/
|
||||
void setup(RetinaParameters newParameters);
|
||||
|
||||
@@ -216,7 +215,7 @@ public:
|
||||
|
||||
/**
|
||||
* write xml/yml formated parameters information
|
||||
* @rparam fs : the filename of the xml file that will be open and writen with formatted parameters information
|
||||
* @param fs : the filename of the xml file that will be open and writen with formatted parameters information
|
||||
*/
|
||||
virtual void write( std::string fs ) const;
|
||||
|
||||
|
@@ -48,6 +48,8 @@
|
||||
|
||||
#include <opencv2/core/core.hpp>
|
||||
|
||||
/*! @file */
|
||||
|
||||
namespace cv
|
||||
{
|
||||
template<typename T>
|
||||
@@ -429,6 +431,7 @@ cv::Affine3<Y> cv::Affine3<T>::cast() const
|
||||
return Affine3<Y>(matrix);
|
||||
}
|
||||
|
||||
/** @cond IGNORED */
|
||||
template<typename T> inline
|
||||
cv::Affine3<T> cv::operator*(const cv::Affine3<T>& affine1, const cv::Affine3<T>& affine2)
|
||||
{
|
||||
@@ -446,6 +449,7 @@ V cv::operator*(const cv::Affine3<T>& affine, const V& v)
|
||||
r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11];
|
||||
return r;
|
||||
}
|
||||
/** @endcond */
|
||||
|
||||
static inline
|
||||
cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v)
|
||||
|
@@ -716,9 +716,6 @@ public:
|
||||
};
|
||||
|
||||
|
||||
/*!
|
||||
\typedef
|
||||
*/
|
||||
typedef Complex<float> Complexf;
|
||||
typedef Complex<double> Complexd;
|
||||
|
||||
@@ -885,11 +882,6 @@ public:
|
||||
};
|
||||
|
||||
|
||||
/*!
|
||||
\typedef
|
||||
|
||||
shorter aliases for the most popular cv::Point_<>, cv::Size_<> and cv::Rect_<> specializations
|
||||
*/
|
||||
typedef Point_<int> Point2i;
|
||||
typedef Point2i Point;
|
||||
typedef Size_<int> Size2i;
|
||||
@@ -1623,8 +1615,6 @@ public:
|
||||
cv::Mat::step that is used to actually compute address of a matrix element. cv::Mat::step is needed because the matrix can be
|
||||
a part of another matrix or because there can some padding space in the end of each row for a proper alignment.
|
||||
|
||||
\image html roi.png
|
||||
|
||||
Given these parameters, address of the matrix element M_{ij} is computed as following:
|
||||
|
||||
addr(M_{ij})=M.data + M.step*i + j*M.elemSize()
|
||||
@@ -2266,7 +2256,7 @@ CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
|
||||
//! set mask elements for those array elements which are within the element-specific bounding box (dst = lowerb <= src && src < upperb)
|
||||
CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
|
||||
InputArray upperb, OutputArray dst);
|
||||
//! compares elements of two arrays (dst = src1 <cmpop> src2)
|
||||
//! compares elements of two arrays (dst = src1 \<cmpop\> src2)
|
||||
CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
|
||||
//! computes per-element minimum of two arrays (dst = min(src1, src2))
|
||||
CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
|
||||
@@ -2731,7 +2721,7 @@ CV_EXPORTS_W Size getTextSize(const string& text, int fontFace,
|
||||
|
||||
While cv::Mat is sufficient in most cases, cv::Mat_ can be more convenient if you use a lot of element
|
||||
access operations and if you know matrix type at compile time.
|
||||
Note that cv::Mat::at<_Tp>(int y, int x) and cv::Mat_<_Tp>::operator ()(int y, int x) do absolutely the
|
||||
Note that cv::Mat::at\<_Tp\>(int y, int x) and cv::Mat_\<_Tp\>::operator ()(int y, int x) do absolutely the
|
||||
same thing and run at the same speed, but the latter is certainly shorter:
|
||||
|
||||
\code
|
||||
@@ -3443,6 +3433,7 @@ public:
|
||||
void convertTo( SparseMat& m, int rtype, double alpha=1 ) const;
|
||||
//! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling.
|
||||
/*!
|
||||
\param m Destination matrix
|
||||
\param rtype The output matrix data type. When it is =-1, the output array will have the same data type as (*this)
|
||||
\param alpha The scale factor
|
||||
\param beta The optional delta added to the scaled values before the conversion
|
||||
|
@@ -512,6 +512,7 @@ namespace cv { namespace gpu
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** @cond IGNORED */
|
||||
template <class T> inline GpuMat::operator PtrStepSz<T>() const
|
||||
{
|
||||
return PtrStepSz<T>(rows, cols, (T*)data, step);
|
||||
@@ -531,6 +532,7 @@ namespace cv { namespace gpu
|
||||
{
|
||||
return PtrStep_<T>(static_cast< DevMem2D_<T> >(*this));
|
||||
}
|
||||
/** @endcond */
|
||||
|
||||
inline GpuMat createContinuous(int rows, int cols, int type)
|
||||
{
|
||||
|
@@ -365,7 +365,7 @@ template<typename _Tp, int m, int n> inline double Matx<_Tp, m, n>::ddot(const M
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** @cond IGNORED */
|
||||
template<typename _Tp, int m, int n> inline
|
||||
Matx<_Tp,m,n> Matx<_Tp,m,n>::diag(const typename Matx<_Tp,m,n>::diag_type& d)
|
||||
{
|
||||
@@ -374,6 +374,7 @@ Matx<_Tp,m,n> Matx<_Tp,m,n>::diag(const typename Matx<_Tp,m,n>::diag_type& d)
|
||||
M(i,i) = d(i, 0);
|
||||
return M;
|
||||
}
|
||||
/** @endcond */
|
||||
|
||||
template<typename _Tp, int m, int n> inline
|
||||
Matx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b)
|
||||
|
@@ -415,7 +415,7 @@ public:
|
||||
* @param orientationNormalized enable orientation normalization
|
||||
* @param scaleNormalized enable scale normalization
|
||||
* @param patternScale scaling of the description pattern
|
||||
* @param nbOctave number of octaves covered by the detected keypoints
|
||||
* @param nOctaves number of octaves covered by the detected keypoints
|
||||
* @param selectedPairs (optional) user defined selected pairs
|
||||
*/
|
||||
explicit FREAK( bool orientationNormalized = true,
|
||||
@@ -814,6 +814,8 @@ class CV_EXPORTS FastAdjuster: public AdjusterAdapter
|
||||
public:
|
||||
/**\param init_thresh the initial threshold to start with, default = 20
|
||||
* \param nonmax whether to use non max or not for fast feature detection
|
||||
* \param min_thresh
|
||||
* \param max_thresh
|
||||
*/
|
||||
FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200);
|
||||
|
||||
|
@@ -57,14 +57,14 @@ namespace cvflann {
|
||||
class DynamicBitset
|
||||
{
|
||||
public:
|
||||
/** @param default constructor
|
||||
/** default constructor
|
||||
*/
|
||||
DynamicBitset()
|
||||
{
|
||||
}
|
||||
|
||||
/** @param only constructor we use in our code
|
||||
* @param the size of the bitset (in bits)
|
||||
/** only constructor we use in our code
|
||||
* @param sz the size of the bitset (in bits)
|
||||
*/
|
||||
DynamicBitset(size_t sz)
|
||||
{
|
||||
@@ -87,7 +87,7 @@ public:
|
||||
return bitset_.empty();
|
||||
}
|
||||
|
||||
/** @param set all the bits to 0
|
||||
/** set all the bits to 0
|
||||
*/
|
||||
void reset()
|
||||
{
|
||||
@@ -95,7 +95,7 @@ public:
|
||||
}
|
||||
|
||||
/** @brief set one bit to 0
|
||||
* @param
|
||||
* @param index
|
||||
*/
|
||||
void reset(size_t index)
|
||||
{
|
||||
@@ -106,15 +106,15 @@ public:
|
||||
* This function is useful when resetting a given set of bits so that the
|
||||
* whole bitset ends up being 0: if that's the case, we don't care about setting
|
||||
* other bits to 0
|
||||
* @param
|
||||
* @param index
|
||||
*/
|
||||
void reset_block(size_t index)
|
||||
{
|
||||
bitset_[index / cell_bit_size_] = 0;
|
||||
}
|
||||
|
||||
/** @param resize the bitset so that it contains at least size bits
|
||||
* @param size
|
||||
/** resize the bitset so that it contains at least sz bits
|
||||
* @param sz
|
||||
*/
|
||||
void resize(size_t sz)
|
||||
{
|
||||
@@ -122,7 +122,7 @@ public:
|
||||
bitset_.resize(sz / cell_bit_size_ + 1);
|
||||
}
|
||||
|
||||
/** @param set a bit to true
|
||||
/** set a bit to true
|
||||
* @param index the index of the bit to set to 1
|
||||
*/
|
||||
void set(size_t index)
|
||||
@@ -130,14 +130,14 @@ public:
|
||||
bitset_[index / cell_bit_size_] |= size_t(1) << (index % cell_bit_size_);
|
||||
}
|
||||
|
||||
/** @param gives the number of contained bits
|
||||
/** gives the number of contained bits
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return size_;
|
||||
}
|
||||
|
||||
/** @param check if a bit is set
|
||||
/** check if a bit is set
|
||||
* @param index the index of the bit to check
|
||||
* @return true if the bit is set
|
||||
*/
|
||||
|
@@ -152,9 +152,13 @@ public:
|
||||
* Create the mask and allocate the memory
|
||||
* @param feature_size is the size of the feature (considered as a ElementType[])
|
||||
* @param key_size is the number of bits that are turned on in the feature
|
||||
* @param indices
|
||||
*/
|
||||
LshTable(unsigned int /*feature_size*/, unsigned int /*key_size*/, std::vector<size_t> & /*indices*/)
|
||||
LshTable(unsigned int feature_size, unsigned int key_size, std::vector<size_t> & indices)
|
||||
{
|
||||
(void)feature_size;
|
||||
(void)key_size;
|
||||
(void)indices;
|
||||
std::cerr << "LSH is not implemented for that type" << std::endl;
|
||||
assert(0);
|
||||
}
|
||||
|
@@ -449,7 +449,7 @@ class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
|
||||
{
|
||||
public:
|
||||
/** Constructor
|
||||
* @param capacity the number of neighbors to store at max
|
||||
* @param radius the maximum distance of a neighbor
|
||||
*/
|
||||
RadiusUniqueResultSet(DistanceType radius) :
|
||||
radius_(radius)
|
||||
@@ -509,6 +509,7 @@ class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
|
||||
public:
|
||||
/** Constructor
|
||||
* @param capacity the number of neighbors to store at max
|
||||
* @param radius the maximum distance of a neighbor
|
||||
*/
|
||||
KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
|
||||
{
|
||||
|
@@ -537,7 +537,7 @@ CV_EXPORTS void log(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null())
|
||||
//! supports all, except depth == CV_64F
|
||||
CV_EXPORTS void pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream = Stream::Null());
|
||||
|
||||
//! compares elements of two arrays (c = a <cmpop> b)
|
||||
//! compares elements of two arrays (c = a \<cmpop\> b)
|
||||
CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void compare(const GpuMat& a, Scalar sc, GpuMat& c, int cmpop, Stream& stream = Stream::Null());
|
||||
|
||||
@@ -2264,6 +2264,7 @@ public:
|
||||
* model.
|
||||
* @param frame Input frame
|
||||
* @param fgmask Output mask image representing foreground and background pixels
|
||||
* @param learningRate determines how quickly features are “forgotten” from histograms
|
||||
* @param stream Stream for the asynchronous version
|
||||
*/
|
||||
void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
|
||||
|
@@ -218,6 +218,7 @@ public:
|
||||
* model.
|
||||
* @param image Input image
|
||||
* @param fgmask Output mask image representing foreground and background pixels
|
||||
* @param learningRate Determines how quickly features are "forgotten" from histograms
|
||||
*/
|
||||
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1.0);
|
||||
|
||||
|
@@ -258,7 +258,7 @@ CV_EXPORTS_W int meanShift( InputArray probImage, CV_OUT CV_IN_OUT Rect& window,
|
||||
/*!
|
||||
Kalman filter.
|
||||
|
||||
The class implements standard Kalman filter \url{http://en.wikipedia.org/wiki/Kalman_filter}.
|
||||
The class implements standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter.
|
||||
However, you can modify KalmanFilter::transitionMatrix, KalmanFilter::controlMatrix and
|
||||
KalmanFilter::measurementMatrix to get the extended Kalman filter functionality.
|
||||
*/
|
||||
|
Reference in New Issue
Block a user