added test on CalonderDescriptorExtractor::compute

This commit is contained in:
Maria Dimashova 2010-07-27 12:38:01 +00:00
parent e83c9b08d8
commit 99e2a9bd8d

View File

@ -41,650 +41,120 @@
//M*/
#include "cvtest.h"
#if 0
#include "highgui.h"
#include <vector>
#include <string>
using namespace std;
#include <fstream>
#include <iostream>
using namespace cv;
using namespace std;
#define GET_RES 0
class CV_CalonderTest : public CvTest
{
public:
CV_CalonderTest();
~CV_CalonderTest();
CV_CalonderTest() : CvTest("CalonderDescriptorExtractor", "CalonderDescriptorExtractor::compute") {}
protected:
void run(int);
void cvmSet6(CvMat* m, int row, int col, float val1, float val2, float val3, float val4, float val5, float val6);
void FindAffineTransform(const vector<CvPoint>& p1, const vector<CvPoint>& p2, CvMat* affine);
void MapVectorAffine(const vector<CvPoint>& p1, vector<CvPoint>& p2, CvMat* transform);
float CalcAffineReprojectionError(const vector<CvPoint>& p1, const vector<CvPoint>& p2, CvMat* transform);
void ExtractFeatures(const IplImage* image, vector<CvPoint>& points);
void TrainDetector(RTreeClassifier& detector, int/* patch_size*/, const vector<CvPoint>& train_points,const IplImage* train_image, int n_keypoints = 0);
void GetCorrespondences(const RTreeClassifier& detector, int patch_size,
const vector<CvPoint>& objectKeypoints, const vector<CvPoint>& imageKeypoints, const IplImage* image,
vector<CvPoint>& object, vector<CvPoint>& features);
// Scales the source image (x and y) and rotate to the angle (Positive values mean counter-clockwise rotation)
void RotateAndScale(const IplImage* src, IplImage* dst, float angle, float scale_x, float scale_y);
// Scales the source image point and rotate to the angle (Positive values mean counter-clockwise rotation)
void RotateAndScale(const CvPoint& src, CvPoint& dst, const CvPoint& center, float angle, float scale_x, float scale_y);
float RunTestsSeries(const IplImage* train_image, vector<CvPoint>& keypoints/*, bool drawResults = false*/);
//returns 1 in the case of success, 0 otherwise
int SaveKeypoints(const vector<CvPoint>& points, const char* path);
////returns 1 in the case of success, 0 otherwise
int LoadKeypoints(vector<CvPoint>& points, const char* path);
void ExtractKeypointSignatures(const IplImage* test_image, int patch_size, const RTreeClassifier& detector, const vector<CvPoint>& keypoints, vector<vector<float> >& signatures);
//returns 1 in the case of success, 0 otherwise
int SaveKeypointSignatures(const char* path, const vector<vector<float> >& signatures);
//returns 1 in the case of success, 0 otherwise
int LoadKeypointSignatures(const char* path, vector<vector<float> >& signatures);
//returns 1 in the case signatures are identical, 0 otherwise
int CompareSignatures(const vector<vector<float> > & signatures1, const vector<vector<float> >& signatures2);
};
void CV_CalonderTest::cvmSet6(CvMat* m, int row, int col, float val1, float val2, float val3, float val4, float val5, float val6)
void writeMatInBin( const Mat& mat, const string& filename )
{
cvmSet(m, row, col, val1);
cvmSet(m, row, col + 1, val2);
cvmSet(m, row, col + 2, val3);
cvmSet(m, row, col + 3, val4);
cvmSet(m, row, col + 4, val5);
cvmSet(m, row, col + 5, val6);
ofstream os( filename.c_str() );
int type = mat.type();
os.write( (char*)&mat.rows, sizeof(int) );
os.write( (char*)&mat.cols, sizeof(int) );
os.write( (char*)&type, sizeof(int) );
os.write( (char*)&mat.step, sizeof(int) );
os.write( (char*)mat.data, mat.step*mat.rows );
}
void CV_CalonderTest::FindAffineTransform(const vector<CvPoint>& p1, const vector<CvPoint>& p2, CvMat* affine)
Mat readMatFromBin( const string& filename )
{
int eq_num = 2*(int)p1.size();
CvMat* A = cvCreateMat(eq_num, 6, CV_32FC1);
CvMat* B = cvCreateMat(eq_num, 1, CV_32FC1);
CvMat* X = cvCreateMat(6, 1, CV_32FC1);
ifstream is( filename.c_str() );
int rows, cols, type, step;
is.read( (char*)&rows, sizeof(int) );
is.read( (char*)&cols, sizeof(int) );
is.read( (char*)&type, sizeof(int) );
is.read( (char*)&step, sizeof(int) );
for(int i = 0; i < (int)p1.size(); i++)
{
cvmSet6(A, 2*i, 0, (float)p1[i].x, (float)p1[i].y, 1, 0, 0, 0);
cvmSet6(A, 2*i + 1, 0, 0, 0, 0, (float)p1[i].x, (float)p1[i].y, 1);
cvmSet(B, 2*i, 0, (double)p2[i].x);
cvmSet(B, 2*i + 1, 0, (double)p2[i].y);
}
cvSolve(A, B, X, CV_SVD);
cvmSet(affine, 0, 0, cvmGet(X, 0, 0));
cvmSet(affine, 0, 1, cvmGet(X, 1, 0));
cvmSet(affine, 0, 2, cvmGet(X, 2, 0));
cvmSet(affine, 1, 0, cvmGet(X, 3, 0));
cvmSet(affine, 1, 1, cvmGet(X, 4, 0));
cvmSet(affine, 1, 2, cvmGet(X, 5, 0));
cvReleaseMat(&A);
cvReleaseMat(&B);
cvReleaseMat(&X);
uchar* data = (uchar*)cvAlloc(step*rows);
is.read( (char*)data, step*rows );
return Mat( rows, cols, type, data );
}
void CV_CalonderTest::MapVectorAffine(const vector<CvPoint>& p1, vector<CvPoint>& p2, CvMat* transform)
void CV_CalonderTest::run(int)
{
double a = cvmGet(transform, 0, 0);
double b = cvmGet(transform, 0, 1);
double c = cvmGet(transform, 0, 2);
double d = cvmGet(transform, 1, 0);
double e = cvmGet(transform, 1, 1);
double f = cvmGet(transform, 1, 2);
for(int i = 0; i < (int)p1.size(); i++)
string dir = string(ts->get_data_path()) + "/calonder";
Mat img = imread(dir +"/boat.png",0);
if( img.empty() )
{
double x = a*p1[i].x + b*p1[i].y + c;
double y = d*p1[i].x + e*p1[i].y + f;
p2.push_back(cvPoint((int)x, (int)y));
}
}
float CV_CalonderTest::CalcAffineReprojectionError(const vector<CvPoint>& p1, const vector<CvPoint>& p2, CvMat* transform)
{
vector<CvPoint> mapped_p1;
MapVectorAffine(p1, mapped_p1, transform);
float error = 0;
for(int i = 0; i < (int)p2.size(); i++)
{
//float l = length(p2[i] - mapped_p1[i]);
error += ((p2[i].x - mapped_p1[i].x)*(p2[i].x - mapped_p1[i].x)+(p2[i].y - mapped_p1[i].y)*(p2[i].y - mapped_p1[i].y));
}
error /= p2.size();
return error;
}
void CV_CalonderTest::ExtractFeatures(const IplImage* image, vector<CvPoint>& points)
{
points.clear();
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq *keypoints = 0, *descriptors = 0;
CvSURFParams params = cvSURFParams(1000, 1);
cvExtractSURF( image, 0, &keypoints, &descriptors, storage, params );
CvSURFPoint* point;
for (int i=0;i<keypoints->total;i++)
{
point=(CvSURFPoint*)cvGetSeqElem(keypoints,i);
points.push_back(cvPoint((int)(point->pt.x),(int)(point->pt.y)));
}
cvReleaseMemStorage(&storage);
}
void CV_CalonderTest::TrainDetector(RTreeClassifier& detector, int/* patch_size*/, const vector<CvPoint>& train_points,const IplImage* train_image, int n_keypoints)
{
vector<BaseKeypoint> base_set;
int n = (int)(train_points.size());
if (n_keypoints)
n = n_keypoints;
for (int i=0;i<n;i++)
{
base_set.push_back(BaseKeypoint(train_points[i].x,train_points[i].y,const_cast<IplImage*>(train_image)));
}
//Detector training
//CvRNG r = cvRNG(1);
RNG rng( cvRandInt(this->ts->get_rng()));
PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3,-CV_PI/3,CV_PI/3);
//int64 t0 = cvGetTickCount();
detector.train(base_set,rng,gen,6,DEFAULT_DEPTH,3000,(int)base_set.size(),detector.DEFAULT_NUM_QUANT_BITS,false);
//int64 t1 = cvGetTickCount();
//printf("Train: %f s\n",(float)(t1-t0)/cvGetTickFrequency()*1e-6);
}
void CV_CalonderTest::GetCorrespondences(const RTreeClassifier& detector, int patch_size,
const vector<CvPoint>& objectKeypoints, const vector<CvPoint>& imageKeypoints, const IplImage* image,
vector<CvPoint>& object, vector<CvPoint>& features)
{
IplImage* test_image = cvCloneImage(image);
object.clear();
features.clear();
float* signature = new float[(const_cast<RTreeClassifier&>(detector)).original_num_classes()];
float* best_corr;
int* best_corr_idx;
if (imageKeypoints.size() > 0)
{
best_corr = new float[(int)imageKeypoints.size()];
best_corr_idx = new int[(int)imageKeypoints.size()];
for(int i=0; i < (int)imageKeypoints.size(); i++)
{
int part_idx = -1;
float prob = 0.0f;
//CvPoint center = cvPoint((int)(imageKeypoints[i].x),(int)(imageKeypoints[i].y));
CvRect roi = cvRect((int)(imageKeypoints[i].x) - patch_size/2,(int)(imageKeypoints[i].y) - patch_size/2, patch_size, patch_size);
cvSetImageROI(test_image, roi);
roi = cvGetImageROI(test_image);
if(roi.width != patch_size || roi.height != patch_size)
{
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
}
else
{
cvSetImageROI(test_image, roi);
IplImage* roi_image = cvCreateImage(cvSize(roi.width, roi.height), test_image->depth, test_image->nChannels);
cvCopy(test_image,roi_image);
(const_cast<RTreeClassifier&>(detector)).getSignature(roi_image, signature);
for (int j = 0; j< (const_cast<RTreeClassifier&>(detector)).original_num_classes();j++)
{
if (prob < signature[j])
{
part_idx = j;
prob = signature[j];
}
}
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
if (roi_image)
cvReleaseImage(&roi_image);
}
cvResetImageROI(test_image);
}
float min_prob = 0.0f;
for (int j=0;j<(int)objectKeypoints.size();j++)
{
float prob = 0.0f;
int idx = -1;
for (int i = 0; i<(int)imageKeypoints.size();i++)
{
if ((best_corr_idx[i]!=j)||(best_corr[i] < min_prob))
continue;
if (best_corr[i] > prob)
{
prob = best_corr[i];
idx = i;
}
}
if (idx >=0)
{
object.push_back(objectKeypoints[j]);
features.push_back(imageKeypoints[idx]);
}
}
if (best_corr)
delete[] best_corr;
if (best_corr_idx)
delete[] best_corr_idx;
}
cvReleaseImage(&test_image);
if (signature)
delete[] signature;
}
// Scales the source image (x and y) and rotate to the angle (Positive values mean counter-clockwise rotation)
void CV_CalonderTest::RotateAndScale(const IplImage* src, IplImage* dst, float angle, float scale_x, float scale_y)
{
IplImage* temp = cvCreateImage(cvSize((int)(src->width*scale_x),(int)(src->height*scale_y)),src->depth,src->nChannels);
cvResize(src,temp);
CvMat* transform = cvCreateMat(2,3,CV_32FC1);
cv2DRotationMatrix(cvPoint2D32f(((double)temp->width)/2,((double)temp->height)/2), angle*180/CV_PI,
1.0f, transform );
cvWarpAffine( temp, dst, transform,CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS);
cvReleaseImage(&temp);
cvReleaseMat(&transform);
}
// Scales the source image point and rotate to the angle (Positive values mean counter-clockwise rotation)
void CV_CalonderTest::RotateAndScale(const CvPoint& src, CvPoint& dst, const CvPoint& center, float angle, float scale_x, float scale_y)
{
CvPoint temp;
temp.x = (int)(src.x*scale_x);
temp.y = (int)(src.y*scale_y);
CvMat* transform = cvCreateMat(2,3,CV_32FC1);
cv2DRotationMatrix(cvPoint2D32f((double)center.x*scale_x,(double)center.y*scale_y), angle*180/CV_PI,
1.0f, transform );
double a = cvmGet(transform, 0, 0);
double b = cvmGet(transform, 0, 1);
double c = cvmGet(transform, 0, 2);
double d = cvmGet(transform, 1, 0);
double e = cvmGet(transform, 1, 1);
double f = cvmGet(transform, 1, 2);
double x = a*temp.x + b*temp.y + c;
double y = d*temp.x + e*temp.y + f;
dst= cvPoint((int)x, (int)y);
cvReleaseMat(&transform);
}
float CV_CalonderTest::RunTestsSeries(const IplImage* train_image, vector<CvPoint>& keypoints)
{
float angles[] = {(float)-CV_PI/4,(float)CV_PI/4};
float scales_x[] = {0.85f,1.15f};
float scales_y[] = {0.85f,1.15f};
int n_angles = 4;
int n_scales_x = 3;
int n_scales_y = 3;
int accuracy = 4;
int are_keypoints_loaded = (int)keypoints.size();
int total_cases = n_angles*n_scales_x*n_scales_y;
int n_case = 0;
int length = max(train_image->width,train_image->height);
int move_x = (int)(1.5*scales_x[0]*length);
int move_y = (int)(1.5*scales_y[0]*length);
IplImage* test_image = cvCreateImage(cvSize((int)(scales_x[1]*(move_x+length*1.5)),(int)(scales_y[1]*(move_y+length*1.5))),
train_image->depth, train_image->nChannels);
cvSet(test_image,cvScalar(0));
cvSetImageROI(test_image,cvRect(move_x,move_y,train_image->width,train_image->height));
cvCopy(train_image,test_image);
cvResetImageROI(test_image);
vector<CvPoint> objectKeypoints;
if (!are_keypoints_loaded)
{
ExtractFeatures(train_image,objectKeypoints);
for (int i=0;i<(int)objectKeypoints.size();i++)
{
keypoints.push_back(objectKeypoints[i]);
}
}
else
{
for (int i=0;i<(int)keypoints.size();i++)
{
objectKeypoints.push_back(keypoints[i]);
}
}
//Checking signatures are identical
vector <vector<float> > signatures1;
string signatures_path = string(ts->get_data_path()) + "calonder/signatures.txt";
int can_load_signatures = LoadKeypointSignatures(signatures_path.c_str(),signatures1);
// end of region
RTreeClassifier detector;
int patch_size = PATCH_SIZE;
//this->update_progress(1,0,total_cases,5);
TrainDetector(detector,patch_size,objectKeypoints,train_image,20);
//Checking signatures are identical
vector <vector<float> > signatures2;
ExtractKeypointSignatures(train_image,patch_size,detector,objectKeypoints,signatures2);
if (!can_load_signatures)
{
//SaveKeypointSignatures(signatures_path.c_str(),signatures2);
}
else
{
// if (!CompareSignatures(signatures1,signatures2))
// return 0;
}
// end of region
int points_total = 0;
int points_correct = 0;
vector<CvPoint> imageKeypoints;
vector<CvPoint> object;
vector<CvPoint> features;
IplImage* temp = cvCloneImage(test_image);
int progress = 0;
//int64 t0 = cvGetTickCount();
//printf("\n\n-----------\nTest started\n-----------\n");
for (float angle = angles[0]; angle<=angles[1];angle+=(n_angles > 1 ?(angles[1]-angles[0])/n_angles : 1))
{
for (float scale_x = scales_x[0]; scale_x<=scales_x[1];scale_x+=(n_scales_x > 1 ? (scales_x[1]-scales_x[0])/n_scales_x : 1))
{
for (float scale_y = scales_y[0]; scale_y<=scales_y[1];scale_y+=(n_scales_y > 1 ? (scales_y[1]-scales_y[0])/n_scales_y : 1))
{
//printf("---\nAngle: %f, scaleX: %f, scaleY: %f\n", angle,scale_x,scale_y);
cvSet(temp,cvScalar(0));
imageKeypoints.clear();
object.clear();
features.clear();
RotateAndScale(test_image,temp,angle,scale_x,scale_y);
ExtractFeatures(temp,imageKeypoints);
GetCorrespondences(detector,patch_size,objectKeypoints,imageKeypoints,temp,object,features);
int correct = 0;
CvPoint res;
for (int i = 0; i< (int)object.size(); i++)
{
CvPoint current = object[i];
current.x+=move_x;
current.y+=move_y;
RotateAndScale(current,res,cvPoint(temp->width/2,temp->height/2),angle,scale_x,scale_y);
int dist = (res.x - features[i].x)*(res.x - features[i].x)+(res.y - features[i].y)*(res.y - features[i].y);
if (dist < accuracy*accuracy)
correct++;
}
//printf("Image points: %d\nCorrespondences found: %d/%d\n", (int)imageKeypoints.size(), correct, (int)object.size());
points_correct+=correct;
points_total+=(int)object.size();
progress = update_progress( progress, n_case++, total_cases, 0 );
//if (drawResults)
//{
// DrawResult(train_image, temp,object,features);
//}
}
}
}
// int64 t1 = cvGetTickCount();
//printf("%f s\n",(float)(t1-t0)/cvGetTickFrequency()*1e-6);
cvReleaseImage(&temp);
cvReleaseImage(&test_image);
//printf("\n\n-----------\nTest completed\n-----------\n");
//printf("Total correspondences found: %d/%d\n", points_correct, points_total);
//FILE* f = fopen("test_result.txt","w");
//fprintf(f,"Total correspondences found: %d/%d\n", points_correct, points_total);
//fclose(f);
if (points_total < 1)
{
points_correct = 0;
points_total = 1;
}
return (float)points_correct/(float)points_total;
}
CV_CalonderTest::CV_CalonderTest() : CvTest("calonder","RTreeClassifier")
{
}
CV_CalonderTest::~CV_CalonderTest() {}
int CV_CalonderTest::SaveKeypoints(const vector<CvPoint>& points, const char* path)
{
FILE* f = fopen(path,"w");
if (f==NULL)
{
return 0;
}
for (int i=0;i<(int)points.size();i++)
{
fprintf(f,"%d,%d\n",points[i].x,points[i].y);
}
fclose(f);
return 1;
}
int CV_CalonderTest::LoadKeypoints(vector<CvPoint>& points, const char* path)
{
FILE* f = fopen(path,"r");
points.clear();
if (f==NULL)
{
return 0;
}
while (!feof(f))
{
int x,y;
fscanf(f,"%d,%d\n",&x,&y);
points.push_back(cvPoint(x,y));
}
fclose(f);
return 1;
}
void CV_CalonderTest::ExtractKeypointSignatures(const IplImage* test_image, int patch_size, const RTreeClassifier& detector, const vector<CvPoint>& keypoints, vector<vector<float> >& signatures)
{
IplImage* _test_image = cvCloneImage(test_image);
signatures.clear();
float* signature = new float[(const_cast<RTreeClassifier&>(detector)).original_num_classes()];
for (int i=0;i<(int)keypoints.size();i++)
{
CvRect roi = cvRect((int)(keypoints[i].x) - patch_size/2,(int)(keypoints[i].y) - patch_size/2, patch_size, patch_size);
cvSetImageROI(_test_image, roi);
roi = cvGetImageROI(_test_image);
if(roi.width != patch_size || roi.height != patch_size)
{
continue;
}
cvSetImageROI(_test_image, roi);
IplImage* roi_image = cvCreateImage(cvSize(roi.width, roi.height), _test_image->depth, _test_image->nChannels);
cvCopy(_test_image,roi_image);
(const_cast<RTreeClassifier&>(detector)).getSignature(roi_image, signature);
vector<float> vec;
for (int j=0;j<(const_cast<RTreeClassifier&>(detector)).original_num_classes();j++)
{
vec.push_back(signature[j]);
}
signatures.push_back(vec);
cvReleaseImage(&roi_image);
}
delete[] signature;
cvReleaseImage(&_test_image);
}
int CV_CalonderTest::SaveKeypointSignatures(const char* path, const vector<vector<float> >& signatures)
{
FILE* f = fopen(path,"w");
if (!f)
return 0;
for (int i=0;i<(int)signatures.size();i++)
{
for (int j=0;j<(int)signatures[i].size();j++)
{
fprintf(f,"%f",signatures[i][j]);
if (j<((int)signatures[i].size()-1))
fprintf(f,",");
}
if (i<((int)signatures.size()-1))
fprintf(f,"\n");
}
fclose(f);
return 1;
}
int CV_CalonderTest::LoadKeypointSignatures(const char* path, vector<vector<float> >& signatures)
{
signatures.clear();
FILE* f = fopen(path,"r");
if (!f)
return 0;
char line[4096];
vector<float> vec;
char* tok;
while(fgets(line,4096,f))
{
vec.clear();
float val;
tok = strtok(line,",");
if (tok)
{
sscanf(tok,"%f",&val);
vec.push_back(val);
tok = strtok(NULL,",");
while (tok)
{
sscanf(tok,"%f",&val);
vec.push_back(val);
tok = strtok(NULL,",");
}
signatures.push_back(vec);
}
}
fclose(f);
return(1);
}
int CV_CalonderTest::CompareSignatures(const vector<vector<float> >& signatures1, const vector<vector<float> >& signatures2)
{
if (signatures1.size() != signatures2.size())
{
return 0;
}
float accuracy = 0.05f;
for (int i=0;i<(int)signatures1.size();i++)
{
if (signatures1[i].size() != signatures2[i].size())
{
return 0;
}
for (int j=0;j<(int)signatures1[i].size();j++)
{
if (abs(signatures1[i][j]-signatures2[i][j]) > accuracy)
return 0;
}
}
return 1;
}
void CV_CalonderTest::run( int /* start_from */)
{
string train_image_path = string(ts->get_data_path()) + "calonder/baboon200.jpg";
string train_keypoints_path = string(ts->get_data_path()) + "calonder/train_features.txt";
IplImage* train_image = cvLoadImage(train_image_path.c_str(),0);
if (!train_image)
{
ts->printf( CvTS::LOG, "Unable to open train image calonder/baboon200.jpg");
ts->set_failed_test_info(CvTS::FAIL_MISSING_TEST_DATA);
ts->printf(CvTS::LOG, "Test image can not be read\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
return;
}
vector<KeyPoint> keypoints;
#if GET_RES
FastFeatureDetector fd;
fd.detect(img, keypoints);
// Testing rtree classifier
float min_accuracy = 0.35f;
vector<CvPoint> train_keypoints;
train_keypoints.clear();
float correctness;
if (!LoadKeypoints(train_keypoints,train_keypoints_path.c_str()))
{
correctness = RunTestsSeries(train_image,train_keypoints);
SaveKeypoints(train_keypoints,train_keypoints_path.c_str());
}
FileStorage fs( dir + "/keypoints.xml", FileStorage::WRITE );
if( fs.isOpened() )
write( fs, "keypoints", keypoints );
else
{
correctness = RunTestsSeries(train_image,train_keypoints);
ts->printf(CvTS::LOG, "File for writting keypoints can not be opened\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
return;
}
if (correctness > min_accuracy)
ts->set_failed_test_info(CvTS::OK);
#else
FileStorage fs( dir + "/keypoints.xml", FileStorage::READ);
if( fs.isOpened() )
read( fs.getFirstTopLevelNode(), keypoints );
else
{
ts->set_failed_test_info(CvTS::FAIL_BAD_ACCURACY);
ts->printf( CvTS::LOG, "Correct correspondences: %f, less than %f",correctness,min_accuracy);
ts->printf(CvTS::LOG, "File for reading keypoints can not be opened\n");
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
return;
}
#endif
CalonderDescriptorExtractor<float> fde(dir + "/classifier.rtc");
Mat fdescriptors;
double t = getTickCount();
fde.compute(img, keypoints, fdescriptors);
t = getTickCount() - t;
ts->printf(CvTS::LOG, "\nAverage time of computiting float descriptor = %g ms\n", t/((double)cvGetTickFrequency()*1000.)/fdescriptors.rows );
#if GET_RES
assert(fdescriptors.type() == CV_32FC1);
writeMatInBin( fdescriptors, "" );
#else
Mat ros_fdescriptors = readMatFromBin( dir + "/ros_float_desc" );
double fnorm = norm(fdescriptors, ros_fdescriptors, NORM_INF );
ts->printf(CvTS::LOG, "nofm (inf) BTW valid and calculated float descriptors = %f\n", fnorm );
if( fnorm > FLT_EPSILON )
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
#endif
CalonderDescriptorExtractor<uchar> cde(dir + "/classifier.rtc");
Mat cdescriptors;
t = getTickCount();
cde.compute(img, keypoints, cdescriptors);
t = getTickCount() - t;
ts->printf(CvTS::LOG, "Average time of computiting uchar descriptor = %g ms\n", t/((double)cvGetTickFrequency()*1000.)/cdescriptors.rows );
#if GET_RES
assert(cdescriptors.type() == CV_8UC1);
writeMatInBin( fdescriptors, "" );
#else
Mat ros_cdescriptors = readMatFromBin( dir + "/ros_uchar_desc" );
double cnorm = norm(cdescriptors, ros_cdescriptors, NORM_INF );
ts->printf(CvTS::LOG, "nofm (inf) BTW valid and calculated uchar descriptors = %f\n", cnorm );
if( cnorm > FLT_EPSILON )
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
#endif
}
CV_CalonderTest calonder_test;
#endif
CV_CalonderTest calonderTest;