format files to ANSI C style with coolformat
change the download channels to oclchannles() fix bugs of arithm functions perf fix of bilateral bug fix of split test case add build_warps functions
This commit is contained in:
@@ -46,16 +46,16 @@
|
||||
#include "precomp.hpp"
|
||||
#include <iomanip>
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
|
||||
#define FILTER_IMAGE "../../../samples/gpu/road.png"
|
||||
|
||||
|
||||
#ifndef MWC_TEST_UTILITY
|
||||
#define MWC_TEST_UTILITY
|
||||
|
||||
@@ -76,92 +76,92 @@ class name \
|
||||
}
|
||||
|
||||
#endif // IMPLEMENT_PARAM_CLASS
|
||||
#endif // MWC_TEST_UTILITY
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(WinSizw48, bool);
|
||||
|
||||
PARAM_TEST_CASE(HOG, WinSizw48, bool)
|
||||
{
|
||||
bool is48;
|
||||
vector<float> detector;
|
||||
virtual void SetUp()
|
||||
{
|
||||
is48 = GET_PARAM(0);
|
||||
if(is48)
|
||||
{
|
||||
detector = cv::ocl::HOGDescriptor::getPeopleDetector48x96();
|
||||
}
|
||||
else
|
||||
{
|
||||
detector = cv::ocl::HOGDescriptor::getPeopleDetector64x128();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HOG, Performance)
|
||||
{
|
||||
cv::Mat img = readImage(FILTER_IMAGE,cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty());
|
||||
|
||||
// define HOG related arguments
|
||||
#endif // MWC_TEST_UTILITY
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(WinSizw48, bool);
|
||||
|
||||
PARAM_TEST_CASE(HOG, WinSizw48, bool)
|
||||
{
|
||||
bool is48;
|
||||
vector<float> detector;
|
||||
virtual void SetUp()
|
||||
{
|
||||
is48 = GET_PARAM(0);
|
||||
if(is48)
|
||||
{
|
||||
detector = cv::ocl::HOGDescriptor::getPeopleDetector48x96();
|
||||
}
|
||||
else
|
||||
{
|
||||
detector = cv::ocl::HOGDescriptor::getPeopleDetector64x128();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HOG, Performance)
|
||||
{
|
||||
cv::Mat img = readImage(FILTER_IMAGE, cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty());
|
||||
|
||||
// define HOG related arguments
|
||||
float scale = 1.05;
|
||||
int nlevels = 13;
|
||||
float gr_threshold = 8;
|
||||
float hit_threshold = 1.4;
|
||||
bool hit_threshold_auto = true;
|
||||
|
||||
int win_width = is48? 48 : 64;
|
||||
int win_width = is48 ? 48 : 64;
|
||||
int win_stride_width = 8;
|
||||
int win_stride_height = 8;
|
||||
|
||||
bool gamma_corr = true;
|
||||
|
||||
bool gamma_corr = true;
|
||||
|
||||
Size win_size(win_width, win_width * 2); //(64, 128) or (48, 96)
|
||||
Size win_stride(win_stride_width, win_stride_height);
|
||||
|
||||
Size win_stride(win_stride_width, win_stride_height);
|
||||
|
||||
cv::ocl::HOGDescriptor gpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9,
|
||||
cv::ocl::HOGDescriptor::DEFAULT_WIN_SIGMA, 0.2, gamma_corr,
|
||||
cv::ocl::HOGDescriptor::DEFAULT_NLEVELS);
|
||||
cv::ocl::HOGDescriptor::DEFAULT_WIN_SIGMA, 0.2, gamma_corr,
|
||||
cv::ocl::HOGDescriptor::DEFAULT_NLEVELS);
|
||||
|
||||
gpu_hog.setSVMDetector(detector);
|
||||
|
||||
double totalgputick=0;
|
||||
double totalgputick_kernel=0;
|
||||
|
||||
double t1=0;
|
||||
double t2=0;
|
||||
for(int j = 0; j < LOOP_TIMES+1; j ++)
|
||||
{
|
||||
t1 = (double)cvGetTickCount();//gpu start1
|
||||
|
||||
ocl::oclMat d_src(img);//upload
|
||||
|
||||
t2=(double)cvGetTickCount();//kernel
|
||||
|
||||
vector<Rect> found;
|
||||
|
||||
double totalgputick = 0;
|
||||
double totalgputick_kernel = 0;
|
||||
|
||||
double t1 = 0;
|
||||
double t2 = 0;
|
||||
for(int j = 0; j < LOOP_TIMES + 1; j ++)
|
||||
{
|
||||
t1 = (double)cvGetTickCount();//gpu start1
|
||||
|
||||
ocl::oclMat d_src(img);//upload
|
||||
|
||||
t2 = (double)cvGetTickCount(); //kernel
|
||||
|
||||
vector<Rect> found;
|
||||
gpu_hog.detectMultiScale(d_src, found, hit_threshold, win_stride,
|
||||
Size(0, 0), scale, gr_threshold);
|
||||
|
||||
t2 = (double)cvGetTickCount() - t2;//kernel
|
||||
|
||||
// no download time for HOG
|
||||
|
||||
t1 = (double)cvGetTickCount() - t1;//gpu end1
|
||||
|
||||
if(j == 0)
|
||||
continue;
|
||||
|
||||
totalgputick=t1+totalgputick;
|
||||
|
||||
totalgputick_kernel=t2+totalgputick_kernel;
|
||||
|
||||
}
|
||||
|
||||
cout << "average gpu runtime is " << totalgputick/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
|
||||
cout << "average gpu runtime without data transfer is " << totalgputick_kernel/((double)cvGetTickFrequency()* LOOP_TIMES *1000.) << "ms" << endl;
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, HOG, testing::Combine(testing::Values(WinSizw48(false), WinSizw48(true)), testing::Values(false)));
|
||||
|
||||
Size(0, 0), scale, gr_threshold);
|
||||
|
||||
t2 = (double)cvGetTickCount() - t2;//kernel
|
||||
|
||||
// no download time for HOG
|
||||
|
||||
t1 = (double)cvGetTickCount() - t1;//gpu end1
|
||||
|
||||
if(j == 0)
|
||||
continue;
|
||||
|
||||
totalgputick = t1 + totalgputick;
|
||||
|
||||
totalgputick_kernel = t2 + totalgputick_kernel;
|
||||
|
||||
}
|
||||
|
||||
cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
|
||||
cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl;
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, HOG, testing::Combine(testing::Values(WinSizw48(false), WinSizw48(true)), testing::Values(false)));
|
||||
|
||||
#endif //Have opencl
|
Reference in New Issue
Block a user