a bit refactoring in LBP face detection on GPU
This commit is contained in:
@@ -1441,7 +1441,7 @@ public:
|
||||
Size getClassifierSize() const;
|
||||
private:
|
||||
bool read(const FileNode &root);
|
||||
void initializeBuffers(cv::Size frame);
|
||||
void allocateBuffers(cv::Size frame = cv::Size());
|
||||
|
||||
static const stage stageType = BOOST;
|
||||
static const feature featureType = LBP;
|
||||
@@ -1463,6 +1463,8 @@ private:
|
||||
GpuMat integral;
|
||||
GpuMat integralBuffer;
|
||||
GpuMat resuzeBuffer;
|
||||
|
||||
GpuMat candidates;
|
||||
};
|
||||
|
||||
////////////////////////////////// SURF //////////////////////////////////////////
|
||||
|
||||
@@ -75,14 +75,14 @@ double /*scaleFactor*/, int /*minNeighbors*/, cv::Size /*maxObjectSize*/){ throw
|
||||
|
||||
#else
|
||||
|
||||
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP(cv::Size detectionFrameSize)
|
||||
{
|
||||
if (detectionFrameSize != cv::Size())
|
||||
initializeBuffers(detectionFrameSize);
|
||||
}
|
||||
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP(cv::Size detectionFrameSize) { allocateBuffers(detectionFrameSize); }
|
||||
cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP(){}
|
||||
|
||||
void cv::gpu::CascadeClassifier_GPU_LBP::initializeBuffers(cv::Size frame)
|
||||
void cv::gpu::CascadeClassifier_GPU_LBP::allocateBuffers(cv::Size frame)
|
||||
{
|
||||
if (frame == cv::Size())
|
||||
return;
|
||||
|
||||
if (resuzeBuffer.empty() || frame.width > resuzeBuffer.cols || frame.height > resuzeBuffer.rows)
|
||||
{
|
||||
resuzeBuffer.create(frame, CV_8UC1);
|
||||
@@ -98,10 +98,12 @@ void cv::gpu::CascadeClassifier_GPU_LBP::initializeBuffers(cv::Size frame)
|
||||
Ncv32u bufSize;
|
||||
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
|
||||
integralBuffer.create(1, bufSize, CV_8UC1);
|
||||
|
||||
candidates.create(1 , frame.width >> 1, CV_32SC4);
|
||||
}
|
||||
}
|
||||
|
||||
cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP(){}
|
||||
|
||||
|
||||
void cv::gpu::CascadeClassifier_GPU_LBP::preallocateIntegralBuffer(cv::Size desired)
|
||||
{
|
||||
@@ -335,7 +337,8 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
|
||||
objects.reshape(4, 1);
|
||||
else
|
||||
objects.create(1 , image.cols >> 4, CV_32SC4);
|
||||
GpuMat candidates(1 , image.cols >> 1, CV_32SC4);
|
||||
|
||||
candidates.create(1 , image.cols >> 1, CV_32SC4);
|
||||
// GpuMat candidates(1 , defaultObjSearchNum, CV_32SC4);
|
||||
// used for debug
|
||||
// candidates.setTo(cv::Scalar::all(0));
|
||||
@@ -343,13 +346,12 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
|
||||
if (maxObjectSize == cv::Size())
|
||||
maxObjectSize = image.size();
|
||||
|
||||
initializeBuffers(image.size());
|
||||
|
||||
unsigned int* classified = new unsigned int[1];
|
||||
*classified = 0;
|
||||
allocateBuffers(image.size());
|
||||
|
||||
unsigned int classified = 0;
|
||||
unsigned int* dclassified;
|
||||
cudaMalloc(&dclassified, sizeof(int));
|
||||
cudaMemcpy(dclassified, classified, sizeof(int), cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(dclassified, &classified, sizeof(int), cudaMemcpyHostToDevice);
|
||||
int step = 2;
|
||||
// cv::gpu::device::lbp::bindIntegral(integral);
|
||||
|
||||
@@ -370,8 +372,8 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
|
||||
// if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
|
||||
// continue;
|
||||
|
||||
GpuMat scaledImg(resuzeBuffer, cv::Rect(0, 0, scaledImageSize.width, scaledImageSize.height));
|
||||
GpuMat scaledIntegral(integral, cv::Rect(0, 0, scaledImageSize.width + 1, scaledImageSize.height + 1));
|
||||
GpuMat scaledImg = resuzeBuffer(cv::Rect(0, 0, scaledImageSize.width, scaledImageSize.height));
|
||||
GpuMat scaledIntegral = integral(cv::Rect(0, 0, scaledImageSize.width + 1, scaledImageSize.height + 1));
|
||||
GpuMat currBuff = integralBuffer;
|
||||
|
||||
cv::gpu::resize(image, scaledImg, scaledImageSize, 0, 0, CV_INTER_LINEAR);
|
||||
@@ -391,12 +393,13 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
|
||||
// cv::gpu::device::lbp::unbindIntegral();
|
||||
if (groupThreshold <= 0 || objects.empty())
|
||||
return 0;
|
||||
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
|
||||
cv::gpu::device::lbp::connectedConmonents(candidates, *classified, objects, groupThreshold, grouping_eps, dclassified);
|
||||
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
|
||||
cudaMemcpy(&classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
|
||||
cv::gpu::device::lbp::connectedConmonents(candidates, classified, objects, groupThreshold, grouping_eps, dclassified);
|
||||
cudaMemcpy(&classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
step = *classified;
|
||||
delete[] classified;
|
||||
|
||||
step = classified;
|
||||
|
||||
cudaFree(dclassified);
|
||||
return step;
|
||||
}
|
||||
|
||||
@@ -285,6 +285,10 @@ TEST_P(HOG, GetDescriptors)
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, HOG, ALL_DEVICES);
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// LBP classifier
|
||||
|
||||
PARAM_TEST_CASE(LBP_Read_classifier, cv::gpu::DeviceInfo, int)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
@@ -303,10 +307,9 @@ TEST_P(LBP_Read_classifier, Accuracy)
|
||||
ASSERT_TRUE(classifier.load(classifierXmlPath));
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_Read_classifier, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values<int>(0)
|
||||
));
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_Read_classifier,
|
||||
testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
|
||||
|
||||
|
||||
PARAM_TEST_CASE(LBP_classify, cv::gpu::DeviceInfo, int)
|
||||
{
|
||||
@@ -328,7 +331,7 @@ TEST_P(LBP_classify, Accuracy)
|
||||
ASSERT_FALSE(cpuClassifier.empty());
|
||||
|
||||
cv::Mat image = cv::imread(imagePath);
|
||||
image = image.colRange(0, image.cols / 2);
|
||||
image = image.colRange(0, image.cols/2);
|
||||
cv::Mat grey;
|
||||
cvtColor(image, grey, CV_BGR2GRAY);
|
||||
ASSERT_FALSE(image.empty());
|
||||
@@ -339,27 +342,29 @@ TEST_P(LBP_classify, Accuracy)
|
||||
|
||||
std::vector<cv::Rect>::iterator it = rects.begin();
|
||||
for (; it != rects.end(); ++it)
|
||||
cv::rectangle(markedImage, *it, cv::Scalar(255, 0, 0, 255));
|
||||
cv::rectangle(markedImage, *it, CV_RGB(0, 0, 255));
|
||||
|
||||
cv::gpu::CascadeClassifier_GPU_LBP gpuClassifier;
|
||||
ASSERT_TRUE(gpuClassifier.load(classifierXmlPath));
|
||||
|
||||
cv::gpu::GpuMat gpu_rects;
|
||||
cv::gpu::GpuMat tested(grey);
|
||||
int count = gpuClassifier.detectMultiScale(tested, gpu_rects);
|
||||
|
||||
cv::Mat gpu_f(gpu_rects);
|
||||
int* gpu_faces = (int*)gpu_f.ptr();
|
||||
cv::Mat downloaded(gpu_rects);
|
||||
const cv::Rect* faces = downloaded.ptr<cv::Rect>();
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
cv::Rect r(gpu_faces[i * 4],gpu_faces[i * 4 + 1],gpu_faces[i * 4 + 2],gpu_faces[i * 4 + 3]);
|
||||
std::cout << gpu_faces[i * 4]<< " " << gpu_faces[i * 4 + 1] << " " << gpu_faces[i * 4 + 2] << " " << gpu_faces[i * 4 + 3] << std::endl;
|
||||
cv::rectangle(markedImage, r , cv::Scalar(0, 0, 255, 255));
|
||||
cv::Rect r = faces[i];
|
||||
|
||||
std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl;
|
||||
cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
|
||||
}
|
||||
|
||||
cv::imshow("Res", markedImage); cv::waitKey();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_classify, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values<int>(0)
|
||||
));
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_classify,
|
||||
testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
|
||||
|
||||
} // namespace
|
||||
|
||||
Reference in New Issue
Block a user