Added local outlier rejector. Added rigid motion estimator. Refactored videostab module.
This commit is contained in:
parent
6e830cf8f8
commit
95efec7539
@ -48,8 +48,10 @@
|
||||
#include <fstream>
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/videostab/optical_flow.hpp"
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#include "opencv2/videostab/optical_flow.hpp"
|
||||
#include "opencv2/videostab/motion_core.hpp"
|
||||
#include "opencv2/videostab/outlier_rejection.hpp"
|
||||
|
||||
#if HAVE_OPENCV_GPU
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
@ -60,44 +62,9 @@ namespace cv
|
||||
namespace videostab
|
||||
{
|
||||
|
||||
enum MotionModel
|
||||
{
|
||||
MM_TRANSLATION = 0,
|
||||
MM_TRANSLATION_AND_SCALE = 1,
|
||||
MM_SIMILARITY = 2,
|
||||
MM_AFFINE = 3,
|
||||
MM_HOMOGRAPHY = 4,
|
||||
MM_UNKNOWN = 5
|
||||
};
|
||||
|
||||
CV_EXPORTS Mat estimateGlobalMotionLeastSquares(
|
||||
int npoints, Point2f *points0, Point2f *points1, int model = MM_AFFINE, float *rmse = 0);
|
||||
|
||||
struct CV_EXPORTS RansacParams
|
||||
{
|
||||
int size; // subset size
|
||||
float thresh; // max error to classify as inlier
|
||||
float eps; // max outliers ratio
|
||||
float prob; // probability of success
|
||||
|
||||
RansacParams() : size(0), thresh(0), eps(0), prob(0) {}
|
||||
RansacParams(int size, float thresh, float eps, float prob)
|
||||
: size(size), thresh(thresh), eps(eps), prob(prob) {}
|
||||
|
||||
static RansacParams default2dMotion(MotionModel model)
|
||||
{
|
||||
CV_Assert(model < MM_UNKNOWN);
|
||||
if (model == MM_TRANSLATION)
|
||||
return RansacParams(1, 0.5f, 0.5f, 0.99f);
|
||||
if (model == MM_TRANSLATION_AND_SCALE)
|
||||
return RansacParams(2, 0.5f, 0.5f, 0.99f);
|
||||
if (model == MM_SIMILARITY)
|
||||
return RansacParams(2, 0.5f, 0.5f, 0.99f);
|
||||
if (model == MM_AFFINE)
|
||||
return RansacParams(3, 0.5f, 0.5f, 0.99f);
|
||||
return RansacParams(4, 0.5f, 0.5f, 0.99f);
|
||||
}
|
||||
};
|
||||
|
||||
CV_EXPORTS Mat estimateGlobalMotionRobust(
|
||||
const std::vector<Point2f> &points0, const std::vector<Point2f> &points1,
|
||||
@ -106,8 +73,7 @@ CV_EXPORTS Mat estimateGlobalMotionRobust(
|
||||
|
||||
class CV_EXPORTS GlobalMotionEstimatorBase
|
||||
{
|
||||
public:
|
||||
GlobalMotionEstimatorBase() : motionModel_(MM_UNKNOWN) {}
|
||||
public:
|
||||
virtual ~GlobalMotionEstimatorBase() {}
|
||||
|
||||
virtual void setMotionModel(MotionModel val) { motionModel_ = val; }
|
||||
@ -116,6 +82,8 @@ public:
|
||||
virtual Mat estimate(const Mat &frame0, const Mat &frame1, bool *ok = 0) = 0;
|
||||
|
||||
protected:
|
||||
GlobalMotionEstimatorBase(MotionModel model) { setMotionModel(model); }
|
||||
|
||||
MotionModel motionModel_;
|
||||
};
|
||||
|
||||
@ -140,7 +108,27 @@ private:
|
||||
Ptr<GlobalMotionEstimatorBase> estimator_;
|
||||
};
|
||||
|
||||
class CV_EXPORTS PyrLkRobustMotionEstimator : public GlobalMotionEstimatorBase
|
||||
class CV_EXPORTS PyrLkRobustMotionEstimatorBase : public GlobalMotionEstimatorBase
|
||||
{
|
||||
public:
|
||||
virtual void setRansacParams(const RansacParams &val) { ransacParams_ = val; }
|
||||
virtual RansacParams ransacParams() const { return ransacParams_; }
|
||||
|
||||
virtual void setOutlierRejector(Ptr<IOutlierRejector> val) { outlierRejector_ = val; }
|
||||
virtual Ptr<IOutlierRejector> outlierRejector() const { return outlierRejector_; }
|
||||
|
||||
virtual void setMinInlierRatio(float val) { minInlierRatio_ = val; }
|
||||
virtual float minInlierRatio() const { return minInlierRatio_; }
|
||||
|
||||
protected:
|
||||
PyrLkRobustMotionEstimatorBase(MotionModel model);
|
||||
|
||||
RansacParams ransacParams_;
|
||||
Ptr<IOutlierRejector> outlierRejector_;
|
||||
float minInlierRatio_;
|
||||
};
|
||||
|
||||
class CV_EXPORTS PyrLkRobustMotionEstimator : public PyrLkRobustMotionEstimatorBase
|
||||
{
|
||||
public:
|
||||
PyrLkRobustMotionEstimator(MotionModel model = MM_AFFINE);
|
||||
@ -151,12 +139,6 @@ public:
|
||||
void setOptFlowEstimator(Ptr<ISparseOptFlowEstimator> val) { optFlowEstimator_ = val; }
|
||||
Ptr<ISparseOptFlowEstimator> optFlowEstimator() const { return optFlowEstimator_; }
|
||||
|
||||
void setRansacParams(const RansacParams &val) { ransacParams_ = val; }
|
||||
RansacParams ransacParams() const { return ransacParams_; }
|
||||
|
||||
void setMinInlierRatio(float val) { minInlierRatio_ = val; }
|
||||
float minInlierRatio() const { return minInlierRatio_; }
|
||||
|
||||
void setGridSize(Size val) { gridSize_ = val; }
|
||||
Size gridSize() const { return gridSize_; }
|
||||
|
||||
@ -165,8 +147,6 @@ public:
|
||||
private:
|
||||
Ptr<FeatureDetector> detector_;
|
||||
Ptr<ISparseOptFlowEstimator> optFlowEstimator_;
|
||||
RansacParams ransacParams_;
|
||||
float minInlierRatio_;
|
||||
Size gridSize_;
|
||||
|
||||
std::vector<uchar> status_;
|
||||
@ -176,30 +156,25 @@ private:
|
||||
};
|
||||
|
||||
#if HAVE_OPENCV_GPU
|
||||
class CV_EXPORTS PyrLkRobustMotionEstimatorGpu : public GlobalMotionEstimatorBase
|
||||
class CV_EXPORTS PyrLkRobustMotionEstimatorGpu : public PyrLkRobustMotionEstimatorBase
|
||||
{
|
||||
public:
|
||||
PyrLkRobustMotionEstimatorGpu(MotionModel model = MM_AFFINE);
|
||||
|
||||
void setRansacParams(const RansacParams &val) { ransacParams_ = val; }
|
||||
RansacParams ransacParams() const { return ransacParams_; }
|
||||
|
||||
void setMinInlierRatio(float val) { minInlierRatio_ = val; }
|
||||
float minInlierRatio() const { return minInlierRatio_; }
|
||||
|
||||
virtual Mat estimate(const Mat &frame0, const Mat &frame1, bool *ok = 0);
|
||||
Mat estimate(const gpu::GpuMat &frame0, const gpu::GpuMat &frame1, bool *ok = 0);
|
||||
|
||||
private:
|
||||
gpu::GoodFeaturesToTrackDetector_GPU detector_;
|
||||
SparsePyrLkOptFlowEstimatorGpu optFlowEstimator_;
|
||||
RansacParams ransacParams_;
|
||||
float minInlierRatio_;
|
||||
|
||||
gpu::GpuMat frame0_, grayFrame0_, frame1_;
|
||||
gpu::GpuMat pointsPrev_, points_;
|
||||
Mat hostPointsPrev_, hostPoints_;
|
||||
gpu::GpuMat status_;
|
||||
|
||||
Mat hostPointsPrev_, hostPoints_;
|
||||
std::vector<Point2f> hostPointsPrevGood_, hostPointsGood_;
|
||||
std::vector<uchar> rejectionStatus_;
|
||||
};
|
||||
#endif
|
||||
|
||||
|
103
modules/videostab/include/opencv2/videostab/motion_core.hpp
Normal file
103
modules/videostab/include/opencv2/videostab/motion_core.hpp
Normal file
@ -0,0 +1,103 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_VIDEOSTAB_MOTION_CORE_HPP__
|
||||
#define __OPENCV_VIDEOSTAB_MOTION_CORE_HPP__
|
||||
|
||||
#include <cmath>
|
||||
#include "opencv2/core/core.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace videostab
|
||||
{
|
||||
|
||||
enum MotionModel
|
||||
{
|
||||
MM_TRANSLATION = 0,
|
||||
MM_TRANSLATION_AND_SCALE = 1,
|
||||
MM_RIGID = 2,
|
||||
MM_SIMILARITY = 3,
|
||||
MM_AFFINE = 4,
|
||||
MM_HOMOGRAPHY = 5,
|
||||
MM_UNKNOWN = 6
|
||||
};
|
||||
|
||||
struct CV_EXPORTS RansacParams
|
||||
{
|
||||
int size; // subset size
|
||||
float thresh; // max error to classify as inlier
|
||||
float eps; // max outliers ratio
|
||||
float prob; // probability of success
|
||||
|
||||
RansacParams() : size(0), thresh(0), eps(0), prob(0) {}
|
||||
RansacParams(int size, float thresh, float eps, float prob)
|
||||
: size(size), thresh(thresh), eps(eps), prob(prob) {}
|
||||
|
||||
int niters() const
|
||||
{
|
||||
return static_cast<int>(
|
||||
std::ceil(std::log(1 - prob) / std::log(1 - std::pow(1 - eps, size))));
|
||||
}
|
||||
|
||||
static RansacParams default2dMotion(MotionModel model)
|
||||
{
|
||||
CV_Assert(model < MM_UNKNOWN);
|
||||
if (model == MM_TRANSLATION)
|
||||
return RansacParams(1, 0.5f, 0.5f, 0.99f);
|
||||
if (model == MM_TRANSLATION_AND_SCALE)
|
||||
return RansacParams(2, 0.5f, 0.5f, 0.99f);
|
||||
if (model == MM_RIGID)
|
||||
return RansacParams(2, 0.5f, 0.5f, 0.99f);
|
||||
if (model == MM_SIMILARITY)
|
||||
return RansacParams(2, 0.5f, 0.5f, 0.99f);
|
||||
if (model == MM_AFFINE)
|
||||
return RansacParams(3, 0.5f, 0.5f, 0.99f);
|
||||
return RansacParams(4, 0.5f, 0.5f, 0.99f);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // namespace videostab
|
||||
} // namespace cv
|
||||
|
||||
#endif
|
@ -78,11 +78,11 @@ class CV_EXPORTS PyrLkOptFlowEstimatorBase
|
||||
public:
|
||||
PyrLkOptFlowEstimatorBase() { setWinSize(Size(21, 21)); setMaxLevel(3); }
|
||||
|
||||
void setWinSize(Size val) { winSize_ = val; }
|
||||
Size winSize() const { return winSize_; }
|
||||
virtual void setWinSize(Size val) { winSize_ = val; }
|
||||
virtual Size winSize() const { return winSize_; }
|
||||
|
||||
void setMaxLevel(int val) { maxLevel_ = val; }
|
||||
int maxLevel() const { return maxLevel_; }
|
||||
virtual void setMaxLevel(int val) { maxLevel_ = val; }
|
||||
virtual int maxLevel() const { return maxLevel_; }
|
||||
|
||||
protected:
|
||||
Size winSize_;
|
||||
|
@ -0,0 +1,96 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_VIDEOSTAB_OUTLIER_REJECTION_HPP__
|
||||
#define __OPENCV_VIDEOSTAB_OUTLIER_REJECTION_HPP__
|
||||
|
||||
#include <vector>
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/videostab/motion_core.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace videostab
|
||||
{
|
||||
|
||||
class CV_EXPORTS IOutlierRejector
|
||||
{
|
||||
public:
|
||||
virtual ~IOutlierRejector() {}
|
||||
|
||||
virtual void process(
|
||||
Size frameSize, InputArray points0, InputArray points1, OutputArray mask) = 0;
|
||||
};
|
||||
|
||||
class CV_EXPORTS NullOutlierRejector : public IOutlierRejector
|
||||
{
|
||||
public:
|
||||
virtual void process(
|
||||
Size frameSize, InputArray points0, InputArray points1, OutputArray mask);
|
||||
};
|
||||
|
||||
class CV_EXPORTS TranslationBasedLocalOutlierRejector : public IOutlierRejector
|
||||
{
|
||||
public:
|
||||
TranslationBasedLocalOutlierRejector();
|
||||
|
||||
void setCellSize(Size val) { cellSize_ = val; }
|
||||
Size cellSize() const { return cellSize_; }
|
||||
|
||||
void setRansacParams(RansacParams val) { ransacParams_ = val; }
|
||||
RansacParams ransacParams() const { return ransacParams_; }
|
||||
|
||||
virtual void process(
|
||||
Size frameSize, InputArray points0, InputArray points1, OutputArray mask);
|
||||
|
||||
private:
|
||||
Size cellSize_;
|
||||
RansacParams ransacParams_;
|
||||
|
||||
typedef std::vector<int> Cell;
|
||||
std::vector<Cell> grid_;
|
||||
};
|
||||
|
||||
} // namespace videostab
|
||||
} // namespace cv
|
||||
|
||||
#endif
|
@ -40,7 +40,7 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
// References:
|
||||
// REFERENCES
|
||||
// 1. "Full-Frame Video Stabilization with Motion Inpainting"
|
||||
// Yasuyuki Matsushita, Eyal Ofek, Weina Ge, Xiaoou Tang, Senior Member, and Heung-Yeung Shum
|
||||
// 2. "Auto-Directed Video Stabilization with Robust L1 Optimal Camera Paths"
|
||||
|
@ -101,12 +101,12 @@ public:
|
||||
class CV_EXPORTS MoreAccurateMotionWobbleSuppressorBase : public WobbleSuppressorBase
|
||||
{
|
||||
public:
|
||||
MoreAccurateMotionWobbleSuppressorBase() { setPeriod(30); }
|
||||
|
||||
void setPeriod(int val) { period_ = val; }
|
||||
int period() const { return period_; }
|
||||
virtual void setPeriod(int val) { period_ = val; }
|
||||
virtual int period() const { return period_; }
|
||||
|
||||
protected:
|
||||
MoreAccurateMotionWobbleSuppressorBase() { setPeriod(30); }
|
||||
|
||||
int period_;
|
||||
};
|
||||
|
||||
|
@ -43,6 +43,7 @@
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/videostab/global_motion.hpp"
|
||||
#include "opencv2/videostab/ring_buffer.hpp"
|
||||
#include "opencv2/videostab/outlier_rejection.hpp"
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
|
||||
using namespace std;
|
||||
@ -150,6 +151,61 @@ static Mat estimateGlobMotionLeastSquaresTranslationAndScale(
|
||||
}
|
||||
|
||||
|
||||
static Mat estimateGlobMotionLeastSquaresRigid(
|
||||
int npoints, Point2f *points0, Point2f *points1, float *rmse)
|
||||
{
|
||||
Point2f mean0(0.f, 0.f);
|
||||
Point2f mean1(0.f, 0.f);
|
||||
|
||||
for (int i = 0; i < npoints; ++i)
|
||||
{
|
||||
mean0 += points0[i];
|
||||
mean1 += points1[i];
|
||||
}
|
||||
|
||||
mean0 *= 1.f / npoints;
|
||||
mean1 *= 1.f / npoints;
|
||||
|
||||
Mat_<float> A = Mat::zeros(2, 2, CV_32F);
|
||||
Point2f pt0, pt1;
|
||||
|
||||
for (int i = 0; i < npoints; ++i)
|
||||
{
|
||||
pt0 = points0[i] - mean0;
|
||||
pt1 = points1[i] - mean1;
|
||||
A(0,0) += pt1.x * pt0.x;
|
||||
A(0,1) += pt1.x * pt0.y;
|
||||
A(1,0) += pt1.y * pt0.x;
|
||||
A(1,1) += pt1.y * pt0.y;
|
||||
}
|
||||
|
||||
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
||||
|
||||
SVD svd(A);
|
||||
Mat_<float> R = svd.u * svd.vt;
|
||||
Mat tmp(M(Rect(0,0,2,2)));
|
||||
R.copyTo(tmp);
|
||||
|
||||
M(0,2) = mean1.x - R(0,0)*mean0.x - R(0,1)*mean0.y;
|
||||
M(1,2) = mean1.y - R(1,0)*mean0.x - R(1,1)*mean0.y;
|
||||
|
||||
if (rmse)
|
||||
{
|
||||
*rmse = 0;
|
||||
for (int i = 0; i < npoints; ++i)
|
||||
{
|
||||
pt0 = points0[i];
|
||||
pt1 = points1[i];
|
||||
*rmse += sqr(pt1.x - M(0,0)*pt0.x - M(0,1)*pt0.y - M(0,2)) +
|
||||
sqr(pt1.y - M(1,0)*pt0.x - M(1,1)*pt0.y - M(1,2));
|
||||
}
|
||||
*rmse = sqrt(*rmse / npoints);
|
||||
}
|
||||
|
||||
return M;
|
||||
}
|
||||
|
||||
|
||||
static Mat estimateGlobMotionLeastSquaresSimilarity(
|
||||
int npoints, Point2f *points0, Point2f *points1, float *rmse)
|
||||
{
|
||||
@ -234,6 +290,7 @@ Mat estimateGlobalMotionLeastSquares(
|
||||
typedef Mat (*Impl)(int, Point2f*, Point2f*, float*);
|
||||
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
|
||||
estimateGlobMotionLeastSquaresTranslationAndScale,
|
||||
estimateGlobMotionLeastSquaresRigid,
|
||||
estimateGlobMotionLeastSquaresSimilarity,
|
||||
estimateGlobMotionLeastSquaresAffine };
|
||||
|
||||
@ -247,8 +304,7 @@ Mat estimateGlobalMotionRobust(
|
||||
{
|
||||
CV_Assert(model <= MM_AFFINE);
|
||||
|
||||
const int niters = static_cast<int>(ceil(log(1 - params.prob) /
|
||||
log(1 - pow(1 - params.eps, params.size))));
|
||||
const int niters = params.niters();
|
||||
|
||||
// current hypothesis
|
||||
vector<int> indices(params.size);
|
||||
@ -338,6 +394,7 @@ Mat estimateGlobalMotionRobust(
|
||||
|
||||
|
||||
FromFileMotionReader::FromFileMotionReader(const string &path)
|
||||
: GlobalMotionEstimatorBase(MM_UNKNOWN)
|
||||
{
|
||||
file_.open(path.c_str());
|
||||
CV_Assert(file_.is_open());
|
||||
@ -357,6 +414,7 @@ Mat FromFileMotionReader::estimate(const Mat &/*frame0*/, const Mat &/*frame1*/,
|
||||
|
||||
|
||||
ToFileMotionWriter::ToFileMotionWriter(const string &path, Ptr<GlobalMotionEstimatorBase> estimator)
|
||||
: GlobalMotionEstimatorBase(estimator->motionModel())
|
||||
{
|
||||
file_.open(path.c_str());
|
||||
CV_Assert(file_.is_open());
|
||||
@ -376,13 +434,20 @@ Mat ToFileMotionWriter::estimate(const Mat &frame0, const Mat &frame1, bool *ok)
|
||||
}
|
||||
|
||||
|
||||
PyrLkRobustMotionEstimatorBase::PyrLkRobustMotionEstimatorBase(MotionModel model)
|
||||
: GlobalMotionEstimatorBase(model)
|
||||
{
|
||||
setRansacParams(RansacParams::default2dMotion(model));
|
||||
setOutlierRejector(new NullOutlierRejector());
|
||||
setMinInlierRatio(0.1f);
|
||||
}
|
||||
|
||||
|
||||
PyrLkRobustMotionEstimator::PyrLkRobustMotionEstimator(MotionModel model)
|
||||
: PyrLkRobustMotionEstimatorBase(model)
|
||||
{
|
||||
setDetector(new GoodFeaturesToTrackDetector());
|
||||
setOptFlowEstimator(new SparsePyrLkOptFlowEstimator());
|
||||
setMotionModel(model);
|
||||
setRansacParams(RansacParams::default2dMotion(model));
|
||||
setMinInlierRatio(0.1f);
|
||||
setGridSize(Size(0,0));
|
||||
}
|
||||
|
||||
@ -428,6 +493,29 @@ Mat PyrLkRobustMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, b
|
||||
}
|
||||
}
|
||||
|
||||
// perfrom outlier rejection
|
||||
|
||||
IOutlierRejector *outlierRejector = static_cast<IOutlierRejector*>(outlierRejector_);
|
||||
if (!dynamic_cast<NullOutlierRejector*>(outlierRejector))
|
||||
{
|
||||
pointsPrev_.swap(pointsPrevGood_);
|
||||
points_.swap(pointsGood_);
|
||||
|
||||
outlierRejector_->process(frame0.size(), pointsPrev_, points_, status_);
|
||||
|
||||
pointsPrevGood_.clear(); pointsPrevGood_.reserve(points_.size());
|
||||
pointsGood_.clear(); pointsGood_.reserve(points_.size());
|
||||
|
||||
for (size_t i = 0; i < points_.size(); ++i)
|
||||
{
|
||||
if (status_[i])
|
||||
{
|
||||
pointsPrevGood_.push_back(pointsPrev_[i]);
|
||||
pointsGood_.push_back(points_[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t npoints = pointsGood_.size();
|
||||
|
||||
// find motion
|
||||
@ -462,11 +550,9 @@ Mat PyrLkRobustMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, b
|
||||
|
||||
#if HAVE_OPENCV_GPU
|
||||
PyrLkRobustMotionEstimatorGpu::PyrLkRobustMotionEstimatorGpu(MotionModel model)
|
||||
: PyrLkRobustMotionEstimatorBase(model)
|
||||
{
|
||||
CV_Assert(gpu::getCudaEnabledDeviceCount() > 0);
|
||||
setMotionModel(model);
|
||||
setRansacParams(RansacParams::default2dMotion(model));
|
||||
setMinInlierRatio(0.1f);
|
||||
}
|
||||
|
||||
|
||||
@ -506,8 +592,34 @@ Mat PyrLkRobustMotionEstimatorGpu::estimate(const gpu::GpuMat &frame0, const gpu
|
||||
pointsPrev_.download(hostPointsPrev_);
|
||||
points_.download(hostPoints_);
|
||||
|
||||
Point2f *points0 = hostPointsPrev_.ptr<Point2f>();
|
||||
Point2f *points1 = hostPoints_.ptr<Point2f>();
|
||||
int npoints = hostPointsPrev_.cols;
|
||||
|
||||
// perfrom outlier rejection
|
||||
|
||||
IOutlierRejector *outlierRejector = static_cast<IOutlierRejector*>(outlierRejector_);
|
||||
if (!dynamic_cast<NullOutlierRejector*>(outlierRejector))
|
||||
{
|
||||
outlierRejector_->process(frame0.size(), hostPointsPrev_, hostPoints_, rejectionStatus_);
|
||||
|
||||
hostPointsPrevGood_.clear(); hostPointsPrevGood_.reserve(hostPoints_.cols);
|
||||
hostPointsGood_.clear(); hostPointsGood_.reserve(hostPoints_.cols);
|
||||
|
||||
for (int i = 0; i < hostPoints_.cols; ++i)
|
||||
{
|
||||
if (rejectionStatus_[i])
|
||||
{
|
||||
hostPointsPrevGood_.push_back(hostPointsPrev_.at<Point2f>(0,i));
|
||||
hostPointsGood_.push_back(hostPoints_.at<Point2f>(0,i));
|
||||
}
|
||||
}
|
||||
|
||||
points0 = &hostPointsPrevGood_[0];
|
||||
points1 = &hostPointsGood_[0];
|
||||
npoints = static_cast<int>(hostPointsGood_.size());
|
||||
}
|
||||
|
||||
// find motion
|
||||
|
||||
int ninliers = 0;
|
||||
@ -515,12 +627,13 @@ Mat PyrLkRobustMotionEstimatorGpu::estimate(const gpu::GpuMat &frame0, const gpu
|
||||
|
||||
if (motionModel_ != MM_HOMOGRAPHY)
|
||||
M = estimateGlobalMotionRobust(
|
||||
npoints, hostPointsPrev_.ptr<Point2f>(0), hostPoints_.ptr<Point2f>(), motionModel_,
|
||||
ransacParams_, 0, &ninliers);
|
||||
npoints, points0, points1, motionModel_, ransacParams_, 0, &ninliers);
|
||||
else
|
||||
{
|
||||
vector<uchar> mask;
|
||||
M = findHomography(hostPointsPrev_, hostPoints_, mask, CV_RANSAC, ransacParams_.thresh);
|
||||
M = findHomography(
|
||||
Mat(1, npoints, CV_32FC2, points0), Mat(1, npoints, CV_32FC2, points1),
|
||||
mask, CV_RANSAC, ransacParams_.thresh);
|
||||
for (int i = 0; i < npoints; ++i)
|
||||
if (mask[i]) ninliers++;
|
||||
}
|
||||
@ -558,3 +671,4 @@ Mat getMotion(int from, int to, const vector<Mat> &motions)
|
||||
|
||||
} // namespace videostab
|
||||
} // namespace cv
|
||||
|
||||
|
201
modules/videostab/src/outlier_rejection.cpp
Normal file
201
modules/videostab/src/outlier_rejection.cpp
Normal file
@ -0,0 +1,201 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/videostab/outlier_rejection.hpp"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace videostab
|
||||
{
|
||||
|
||||
void NullOutlierRejector::process(
|
||||
Size frameSize, InputArray points0, InputArray points1, OutputArray mask)
|
||||
{
|
||||
CV_Assert(points0.type() == points1.type());
|
||||
CV_Assert(points0.getMat().checkVector(2) == points1.getMat().checkVector(2));
|
||||
|
||||
int npoints = points0.getMat().checkVector(2);
|
||||
mask.create(1, npoints, CV_8U);
|
||||
Mat mask_ = mask.getMat();
|
||||
mask_.setTo(1);
|
||||
}
|
||||
|
||||
TranslationBasedLocalOutlierRejector::TranslationBasedLocalOutlierRejector()
|
||||
{
|
||||
setCellSize(Size(50, 50));
|
||||
setRansacParams(RansacParams::default2dMotion(MM_TRANSLATION));
|
||||
}
|
||||
|
||||
|
||||
void TranslationBasedLocalOutlierRejector::process(
|
||||
Size frameSize, InputArray points0, InputArray points1, OutputArray mask)
|
||||
{
|
||||
CV_Assert(points0.type() == points1.type());
|
||||
CV_Assert(points0.getMat().checkVector(2) == points1.getMat().checkVector(2));
|
||||
|
||||
int npoints = points0.getMat().checkVector(2);
|
||||
|
||||
const Point2f* points0_ = points0.getMat().ptr<Point2f>();
|
||||
const Point2f* points1_ = points1.getMat().ptr<Point2f>();
|
||||
|
||||
mask.create(1, npoints, CV_8U);
|
||||
uchar* mask_ = mask.getMat().ptr<uchar>();
|
||||
|
||||
Size ncells((frameSize.width + cellSize_.width - 1) / cellSize_.width,
|
||||
(frameSize.height + cellSize_.height - 1) / cellSize_.height);
|
||||
|
||||
int cx, cy;
|
||||
|
||||
// fill grid cells
|
||||
|
||||
grid_.assign(ncells.area(), Cell());
|
||||
|
||||
for (int i = 0; i < npoints; ++i)
|
||||
{
|
||||
cx = std::min(cvRound(points0_[i].x / cellSize_.width), ncells.width - 1);
|
||||
cy = std::min(cvRound(points0_[i].y / cellSize_.height), ncells.height - 1);
|
||||
grid_[cy * ncells.width + cx].push_back(i);
|
||||
}
|
||||
|
||||
// process each cell
|
||||
|
||||
RNG rng(0);
|
||||
int niters = ransacParams_.niters();
|
||||
int ninliers, ninliersMax;
|
||||
vector<int> inliers;
|
||||
float dx, dy, dxBest, dyBest;
|
||||
float x1, y1;
|
||||
int idx;
|
||||
|
||||
for (size_t ci = 0; ci < grid_.size(); ++ci)
|
||||
{
|
||||
// estimate translation model at the current cell using RANSAC
|
||||
|
||||
const Cell &cell = grid_[ci];
|
||||
ninliersMax = 0;
|
||||
dxBest = dyBest = 0.f;
|
||||
|
||||
// find the best hypothesis
|
||||
|
||||
if (!cell.empty())
|
||||
{
|
||||
for (int iter = 0; iter < niters; ++iter)
|
||||
{
|
||||
idx = cell[static_cast<unsigned>(rng) % cell.size()];
|
||||
dx = points1_[idx].x - points0_[idx].x;
|
||||
dy = points1_[idx].y - points0_[idx].y;
|
||||
|
||||
ninliers = 0;
|
||||
for (size_t i = 0; i < cell.size(); ++i)
|
||||
{
|
||||
x1 = points0_[cell[i]].x + dx;
|
||||
y1 = points0_[cell[i]].y + dy;
|
||||
if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) <
|
||||
sqr(ransacParams_.thresh))
|
||||
{
|
||||
ninliers++;
|
||||
}
|
||||
}
|
||||
|
||||
if (ninliers > ninliersMax)
|
||||
{
|
||||
ninliersMax = ninliers;
|
||||
dxBest = dx;
|
||||
dyBest = dy;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// get the best hypothesis inliers
|
||||
|
||||
ninliers = 0;
|
||||
inliers.resize(ninliersMax);
|
||||
for (size_t i = 0; i < cell.size(); ++i)
|
||||
{
|
||||
x1 = points0_[cell[i]].x + dxBest;
|
||||
y1 = points0_[cell[i]].y + dyBest;
|
||||
if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) <
|
||||
sqr(ransacParams_.thresh))
|
||||
{
|
||||
inliers[ninliers++] = cell[i];
|
||||
}
|
||||
}
|
||||
|
||||
// refine the best hypothesis
|
||||
|
||||
dxBest = dyBest = 0.f;
|
||||
for (size_t i = 0; i < inliers.size(); ++i)
|
||||
{
|
||||
dxBest += points1_[inliers[i]].x - points0_[inliers[i]].x;
|
||||
dyBest += points1_[inliers[i]].y - points0_[inliers[i]].y;
|
||||
}
|
||||
if (!inliers.empty())
|
||||
{
|
||||
dxBest /= inliers.size();
|
||||
dyBest /= inliers.size();
|
||||
}
|
||||
|
||||
// set mask elements for refined model inliers
|
||||
|
||||
for (size_t i = 0; i < cell.size(); ++i)
|
||||
{
|
||||
x1 = points0_[cell[i]].x + dxBest;
|
||||
y1 = points0_[cell[i]].y + dyBest;
|
||||
if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) <
|
||||
sqr(ransacParams_.thresh))
|
||||
{
|
||||
mask_[cell[i]] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
mask_[cell[i]] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace videostab
|
||||
} // namespace cv
|
@ -29,6 +29,7 @@ bool quietMode;
|
||||
void run();
|
||||
void saveMotionsIfNecessary();
|
||||
void printHelp();
|
||||
MotionModel motionModel(const string &str);
|
||||
|
||||
|
||||
void run()
|
||||
@ -70,7 +71,7 @@ void printHelp()
|
||||
cout << "OpenCV video stabilizer.\n"
|
||||
"Usage: videostab <file_path> [arguments]\n\n"
|
||||
"Arguments:\n"
|
||||
" -m, --model=(transl|transl_and_scale|similarity|affine|homography)\n"
|
||||
" -m, --model=(transl|transl_and_scale|rigid|similarity|affine|homography)\n"
|
||||
" Set motion model. The default is affine.\n"
|
||||
" --subset=(<int_number>|auto)\n"
|
||||
" Number of random samples per one motion hypothesis. The default is auto.\n"
|
||||
@ -83,7 +84,9 @@ void printHelp()
|
||||
" --nkps=<int_number>\n"
|
||||
" Number of keypoints to find in each frame. The default is 1000.\n"
|
||||
" --extra-kps=<int_number>\n"
|
||||
" Extra keypoint grid size for motion estimation. The default is 0.\n\n"
|
||||
" Extra keypoint grid size for motion estimation. The default is 0.\n"
|
||||
" --local-outlier-rejection=(yes|no)\n"
|
||||
" Perform local outlier rejection. The default is no.\n\n"
|
||||
" -sm, --save-motions=(<file_path>|no)\n"
|
||||
" Save estimated motions into file. The default is no.\n"
|
||||
" -lm, --load-motions=(<file_path>|no)\n"
|
||||
@ -134,7 +137,7 @@ void printHelp()
|
||||
" Perform wobble suppression. The default is no.\n"
|
||||
" --ws-period=<int_number>\n"
|
||||
" Set wobble suppression period. The default is 30.\n"
|
||||
" --ws-model=(transl|transl_and_scale|similarity|affine|homography)\n"
|
||||
" --ws-model=(transl|transl_and_scale|rigid|similarity|affine|homography)\n"
|
||||
" Set wobble suppression motion model (must have more DOF than motion \n"
|
||||
" estimation model). The default is homography.\n"
|
||||
" --ws-subset=(<int_number>|auto)\n"
|
||||
@ -148,7 +151,9 @@ void printHelp()
|
||||
" --ws-nkps=<int_number>\n"
|
||||
" Number of keypoints to find in each frame. The default is 1000.\n"
|
||||
" --ws-extra-kps=<int_number>\n"
|
||||
" Extra keypoint grid size for motion estimation. The default is 0.\n\n"
|
||||
" Extra keypoint grid size for motion estimation. The default is 0.\n"
|
||||
" --ws-local-outlier-rejection=(yes|no)\n"
|
||||
" Perform local outlier rejection. The default is no.\n\n"
|
||||
" -sm2, --save-motions2=(<file_path>|no)\n"
|
||||
" Save motions estimated for wobble suppression. The default is no.\n"
|
||||
" -lm2, --load-motions2=(<file_path>|no)\n"
|
||||
@ -180,6 +185,7 @@ int main(int argc, const char **argv)
|
||||
"{ | min-inlier-ratio | 0.1 | }"
|
||||
"{ | nkps | 1000 | }"
|
||||
"{ | extra-kps | 0 | }"
|
||||
"{ | local-outlier-rejection | no | }"
|
||||
"{ sm | save-motions | no | }"
|
||||
"{ lm | load-motions | no | }"
|
||||
"{ r | radius | 15 | }"
|
||||
@ -211,6 +217,7 @@ int main(int argc, const char **argv)
|
||||
"{ | ws-min-inlier-ratio | 0.1 | }"
|
||||
"{ | ws-nkps | 1000 | }"
|
||||
"{ | ws-extra-kps | 0 | }"
|
||||
"{ | ws-local-outlier-rejection | no | }"
|
||||
"{ sm2 | save-motions2 | no | }"
|
||||
"{ lm2 | load-motions2 | no | }"
|
||||
"{ gpu | | no }"
|
||||
@ -273,29 +280,21 @@ int main(int argc, const char **argv)
|
||||
twoPassStabilizer->setMotionStabilizer(new GaussianMotionFilter(argi("radius"), argf("stdev")));
|
||||
if (arg("wobble-suppress") == "yes")
|
||||
{
|
||||
MoreAccurateMotionWobbleSuppressorBase *ws;
|
||||
MoreAccurateMotionWobbleSuppressorBase *ws = 0;
|
||||
|
||||
Ptr<IOutlierRejector> outlierRejector = new NullOutlierRejector();
|
||||
if (arg("local-outlier-rejection") == "yes")
|
||||
{
|
||||
TranslationBasedLocalOutlierRejector *tor = new TranslationBasedLocalOutlierRejector();
|
||||
RansacParams ransacParams = tor->ransacParams();
|
||||
if (arg("ws-thresh") != "auto") ransacParams.thresh = argf("ws-thresh");
|
||||
tor->setRansacParams(ransacParams);
|
||||
outlierRejector = tor;
|
||||
}
|
||||
|
||||
if (arg("gpu") == "no")
|
||||
{
|
||||
ws = new MoreAccurateMotionWobbleSuppressor();
|
||||
PyrLkRobustMotionEstimator *est = 0;
|
||||
|
||||
if (arg("ws-model") == "transl")
|
||||
est = new PyrLkRobustMotionEstimator(MM_TRANSLATION);
|
||||
else if (arg("ws-model") == "transl_and_scale")
|
||||
est = new PyrLkRobustMotionEstimator(MM_TRANSLATION_AND_SCALE);
|
||||
else if (arg("ws-model") == "similarity")
|
||||
est = new PyrLkRobustMotionEstimator(MM_SIMILARITY);
|
||||
else if (arg("ws-model") == "affine")
|
||||
est = new PyrLkRobustMotionEstimator(MM_AFFINE);
|
||||
else if (arg("ws-model") == "homography")
|
||||
est = new PyrLkRobustMotionEstimator(MM_HOMOGRAPHY);
|
||||
else
|
||||
{
|
||||
delete est;
|
||||
throw runtime_error("unknown wobble suppression motion model: " + arg("ws-model"));
|
||||
}
|
||||
|
||||
PyrLkRobustMotionEstimator *est = new PyrLkRobustMotionEstimator(motionModel(arg("ws-model")));
|
||||
est->setDetector(new GoodFeaturesToTrackDetector(argi("ws-nkps")));
|
||||
|
||||
RansacParams ransac = est->ransacParams();
|
||||
@ -306,29 +305,15 @@ int main(int argc, const char **argv)
|
||||
|
||||
est->setMinInlierRatio(argf("ws-min-inlier-ratio"));
|
||||
est->setGridSize(Size(argi("ws-extra-kps"), argi("ws-extra-kps")));
|
||||
est->setOutlierRejector(outlierRejector);
|
||||
|
||||
ws = new MoreAccurateMotionWobbleSuppressor();
|
||||
ws->setMotionEstimator(est);
|
||||
}
|
||||
else if (arg("gpu") == "yes")
|
||||
{
|
||||
#if HAVE_OPENCV_GPU
|
||||
ws = new MoreAccurateMotionWobbleSuppressorGpu();
|
||||
PyrLkRobustMotionEstimatorGpu *est = 0;
|
||||
|
||||
if (arg("ws-model") == "transl")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_TRANSLATION);
|
||||
else if (arg("ws-model") == "transl_and_scale")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_TRANSLATION_AND_SCALE);
|
||||
else if (arg("ws-model") == "similarity")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_SIMILARITY);
|
||||
else if (arg("ws-model") == "affine")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_AFFINE);
|
||||
else if (arg("ws-model") == "homography")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_HOMOGRAPHY);
|
||||
else
|
||||
{
|
||||
delete est;
|
||||
throw runtime_error("unknown wobble suppression motion model: " + arg("ws-model"));
|
||||
}
|
||||
PyrLkRobustMotionEstimatorGpu *est = new PyrLkRobustMotionEstimatorGpu(motionModel(arg("ws-model")));
|
||||
|
||||
RansacParams ransac = est->ransacParams();
|
||||
if (arg("ws-subset") != "auto") ransac.size = argi("ws-subset");
|
||||
@ -337,6 +322,9 @@ int main(int argc, const char **argv)
|
||||
est->setRansacParams(ransac);
|
||||
|
||||
est->setMinInlierRatio(argf("ws-min-inlier-ratio"));
|
||||
est->setOutlierRejector(outlierRejector);
|
||||
|
||||
ws = new MoreAccurateMotionWobbleSuppressorGpu();
|
||||
ws->setMotionEstimator(est);
|
||||
#else
|
||||
throw runtime_error("OpenCV is built without GPU support");
|
||||
@ -376,27 +364,21 @@ int main(int argc, const char **argv)
|
||||
stabilizer->setFrameSource(source);
|
||||
stabilizedFrames = dynamic_cast<IFrameSource*>(stabilizer);
|
||||
|
||||
Ptr<IOutlierRejector> outlierRejector = new NullOutlierRejector();
|
||||
if (arg("local-outlier-rejection") == "yes")
|
||||
{
|
||||
TranslationBasedLocalOutlierRejector *tor = new TranslationBasedLocalOutlierRejector();
|
||||
RansacParams ransacParams = tor->ransacParams();
|
||||
if (arg("thresh") != "auto") ransacParams.thresh = argf("thresh");
|
||||
tor->setRansacParams(ransacParams);
|
||||
outlierRejector = tor;
|
||||
}
|
||||
|
||||
if (arg("gpu") == "no")
|
||||
{
|
||||
PyrLkRobustMotionEstimator *est = 0;
|
||||
|
||||
if (arg("model") == "transl")
|
||||
est = new PyrLkRobustMotionEstimator(MM_TRANSLATION);
|
||||
else if (arg("model") == "transl_and_scale")
|
||||
est = new PyrLkRobustMotionEstimator(MM_TRANSLATION_AND_SCALE);
|
||||
else if (arg("model") == "similarity")
|
||||
est = new PyrLkRobustMotionEstimator(MM_SIMILARITY);
|
||||
else if (arg("model") == "affine")
|
||||
est = new PyrLkRobustMotionEstimator(MM_AFFINE);
|
||||
else if (arg("model") == "homography")
|
||||
est = new PyrLkRobustMotionEstimator(MM_HOMOGRAPHY);
|
||||
else
|
||||
{
|
||||
delete est;
|
||||
throw runtime_error("unknown motion model: " + arg("model"));
|
||||
}
|
||||
|
||||
PyrLkRobustMotionEstimator *est = new PyrLkRobustMotionEstimator(motionModel(arg("model")));;
|
||||
est->setDetector(new GoodFeaturesToTrackDetector(argi("nkps")));
|
||||
|
||||
RansacParams ransac = est->ransacParams();
|
||||
if (arg("subset") != "auto") ransac.size = argi("subset");
|
||||
if (arg("thresh") != "auto") ransac.thresh = argi("thresh");
|
||||
@ -405,28 +387,14 @@ int main(int argc, const char **argv)
|
||||
|
||||
est->setMinInlierRatio(argf("min-inlier-ratio"));
|
||||
est->setGridSize(Size(argi("extra-kps"), argi("extra-kps")));
|
||||
est->setOutlierRejector(outlierRejector);
|
||||
|
||||
stabilizer->setMotionEstimator(est);
|
||||
}
|
||||
else if (arg("gpu") == "yes")
|
||||
{
|
||||
#if HAVE_OPENCV_GPU
|
||||
PyrLkRobustMotionEstimatorGpu *est = 0;
|
||||
|
||||
if (arg("model") == "transl")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_TRANSLATION);
|
||||
else if (arg("model") == "transl_and_scale")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_TRANSLATION_AND_SCALE);
|
||||
else if (arg("model") == "similarity")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_SIMILARITY);
|
||||
else if (arg("model") == "affine")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_AFFINE);
|
||||
else if (arg("model") == "homography")
|
||||
est = new PyrLkRobustMotionEstimatorGpu(MM_HOMOGRAPHY);
|
||||
else
|
||||
{
|
||||
delete est;
|
||||
throw runtime_error("unknown wobble suppression motion model: " + arg("ws-model"));
|
||||
}
|
||||
PyrLkRobustMotionEstimatorGpu *est = new PyrLkRobustMotionEstimatorGpu(motionModel(arg("model")));;
|
||||
|
||||
RansacParams ransac = est->ransacParams();
|
||||
if (arg("subset") != "auto") ransac.size = argi("subset");
|
||||
@ -435,6 +403,8 @@ int main(int argc, const char **argv)
|
||||
est->setRansacParams(ransac);
|
||||
|
||||
est->setMinInlierRatio(argf("min-inlier-ratio"));
|
||||
est->setOutlierRejector(outlierRejector);
|
||||
|
||||
stabilizer->setMotionEstimator(est);
|
||||
#else
|
||||
throw runtime_error("OpenCV is built without GPU support");
|
||||
@ -523,3 +493,21 @@ int main(int argc, const char **argv)
|
||||
stabilizedFrames.release();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
MotionModel motionModel(const string &str)
|
||||
{
|
||||
if (str == "transl")
|
||||
return MM_TRANSLATION;
|
||||
if (str == "transl_and_scale")
|
||||
return MM_TRANSLATION_AND_SCALE;
|
||||
if (str == "rigid")
|
||||
return MM_RIGID;
|
||||
if (str == "similarity")
|
||||
return MM_SIMILARITY;
|
||||
if (str == "affine")
|
||||
return MM_AFFINE;
|
||||
if (str == "homography")
|
||||
return MM_HOMOGRAPHY;
|
||||
throw runtime_error("unknown motion model: " + str);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user