lot's of changes; nonfree & photo modules added; SIFT & SURF -> nonfree module; Inpainting -> photo; refactored features2d (ORB is still failing tests), optimized brute-force matcher and made it non-template.

This commit is contained in:
Vadim Pisarevsky
2012-03-15 14:36:01 +00:00
parent 6300215b94
commit 957e80abbd
99 changed files with 6719 additions and 7240 deletions

View File

@@ -94,27 +94,6 @@ HarrisResponses(const Mat& img, vector<KeyPoint>& pts, int blockSize, float harr
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
struct KeypointResponseGreaterThanThreshold
{
KeypointResponseGreaterThanThreshold(float _value) :
value(_value)
{
}
inline bool operator()(const KeyPoint& kpt) const
{
return kpt.response >= value;
}
float value;
};
struct KeypointResponseGreater
{
inline bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) const
{
return kp1.response > kp2.response;
}
};
static float IC_Angle(const Mat& image, const int half_k, Point2f pt,
const vector<int> & u_max)
{
@@ -224,37 +203,37 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
{
for (int i = 0; i < dsize; ++i, pattern += 16)
{
int t0, t1, t2, t3, a, b, k, val;
int t0, t1, t2, t3, u, v, k, val;
t0 = GET_VALUE(0); t1 = GET_VALUE(1);
t2 = GET_VALUE(2); t3 = GET_VALUE(3);
a = 0, b = 2;
if( t1 > t0 ) t0 = t1, a = 1;
if( t3 > t2 ) t2 = t3, b = 3;
k = t0 > t2 ? a : b;
u = 0, v = 2;
if( t1 > t0 ) t0 = t1, u = 1;
if( t3 > t2 ) t2 = t3, v = 3;
k = t0 > t2 ? u : v;
val = k;
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
t2 = GET_VALUE(6); t3 = GET_VALUE(7);
a = 0, b = 2;
if( t1 > t0 ) t0 = t1, a = 1;
if( t3 > t2 ) t2 = t3, b = 3;
k = t0 > t2 ? a : b;
u = 0, v = 2;
if( t1 > t0 ) t0 = t1, u = 1;
if( t3 > t2 ) t2 = t3, v = 3;
k = t0 > t2 ? u : v;
val |= k << 2;
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
t2 = GET_VALUE(10); t3 = GET_VALUE(11);
a = 0, b = 2;
if( t1 > t0 ) t0 = t1, a = 1;
if( t3 > t2 ) t2 = t3, b = 3;
k = t0 > t2 ? a : b;
u = 0, v = 2;
if( t1 > t0 ) t0 = t1, u = 1;
if( t3 > t2 ) t2 = t3, v = 3;
k = t0 > t2 ? u : v;
val |= k << 4;
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
t2 = GET_VALUE(14); t3 = GET_VALUE(15);
a = 0, b = 2;
if( t1 > t0 ) t0 = t1, a = 1;
if( t3 > t2 ) t2 = t3, b = 3;
k = t0 > t2 ? a : b;
u = 0, v = 2;
if( t1 > t0 ) t0 = t1, u = 1;
if( t3 > t2 ) t2 = t3, v = 3;
k = t0 > t2 ? u : v;
val |= k << 6;
desc[i] = (uchar)val;
@@ -567,168 +546,195 @@ static void makeRandomPattern(int patchSize, Point* pattern, int npoints)
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////
void ORB::CommonParams::read(const FileNode& fn)
static Algorithm* createORB() { return new ORB; }
static AlgorithmInfo orb_info("Feature2D.ORB", createORB);
AlgorithmInfo* ORB::info() const
{
scale_factor_ = fn["scaleFactor"];
n_levels_ = int(fn["nLevels"]);
first_level_ = int(fn["firstLevel"]);
edge_threshold_ = fn["edgeThreshold"];
patch_size_ = fn["patchSize"];
WTA_K_ = fn["WTA_K"];
if( WTA_K_ == 0 ) WTA_K_ = 2;
score_type_ = fn["scoreType"];
static volatile bool initialized = false;
if( !initialized )
{
orb_info.addParam(this, "nFeatures", nfeatures);
orb_info.addParam(this, "scaleFactor", scaleFactor);
orb_info.addParam(this, "nLevels", nlevels);
orb_info.addParam(this, "firstLevel", firstLevel);
orb_info.addParam(this, "edgeThreshold", edgeThreshold);
orb_info.addParam(this, "patchSize", patchSize);
orb_info.addParam(this, "WTA_K", WTA_K);
orb_info.addParam(this, "scoreType", scoreType);
initialized = true;
}
return &orb_info;
}
void ORB::CommonParams::write(FileStorage& fs) const
static inline float getScale(int level, int firstLevel, double scaleFactor)
{
fs << "scaleFactor" << scale_factor_;
fs << "nLevels" << int(n_levels_);
fs << "firstLevel" << int(first_level_);
fs << "edgeThreshold" << int(edge_threshold_);
fs << "patchSize" << int(patch_size_);
fs << "WTA_K" << WTA_K_;
fs << "scoreType" << score_type_;
}
void ORB::read(const FileNode& fn)
{
CommonParams params;
params.read(fn);
int n_features = int(fn["nFeatures"]);
*this = ORB(n_features, params);
}
void ORB::write(FileStorage& fs) const
{
params_.write(fs);
fs << "nFeatures" << int(n_features_);
}
static inline float get_scale(const ORB::CommonParams& params, int level)
{
return std::pow(params.scale_factor_, float(level) - float(params.first_level_));
return (float)std::pow(scaleFactor, (double)(level - firstLevel));
}
/** Constructor
* @param detector_params parameters to use
*/
ORB::ORB(size_t n_features, const CommonParams & detector_params) :
params_(detector_params), n_features_(n_features)
{
// fill the extractors and descriptors for the corresponding scales
int n_levels = (int)params_.n_levels_;
float factor = (float)(1.0 / params_.scale_factor_);
float n_desired_features_per_scale = n_features_*(1 - factor)/(1 - (float)pow((double)factor, (double)n_levels));
n_features_per_level_.resize(n_levels);
int sum_n_features = 0;
for( int level = 0; level < n_levels-1; level++ )
{
n_features_per_level_[level] = cvRound(n_desired_features_per_scale);
sum_n_features += n_features_per_level_[level];
n_desired_features_per_scale *= factor;
}
n_features_per_level_[n_levels-1] = n_features - sum_n_features;
// Make sure we forget about what is too close to the boundary
//params_.edge_threshold_ = std::max(params_.edge_threshold_, params_.patch_size_/2 + kKernelWidth / 2 + 2);
// pre-compute the end of a row in a circular patch
int half_patch_size = params_.patch_size_ / 2;
u_max_.resize(half_patch_size + 1);
for (int v = 0; v <= half_patch_size * sqrt(2.f) / 2 + 1; ++v)
u_max_[v] = cvRound(sqrt(float(half_patch_size * half_patch_size - v * v)));
// Make sure we are symmetric
for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * sqrt(2.f) / 2; --v)
{
while (u_max_[v_0] == u_max_[v_0 + 1])
++v_0;
u_max_[v] = v_0;
++v_0;
}
const int npoints = 512;
Point pattern_buf[npoints];
const Point* pattern0 = (const Point*)bit_pattern_31_;
if( params_.patch_size_ != 31 )
{
pattern0 = pattern_buf;
makeRandomPattern(params_.patch_size_, pattern_buf, npoints);
}
CV_Assert( params_.WTA_K_ == 2 || params_.WTA_K_ == 3 || params_.WTA_K_ == 4 );
if( params_.WTA_K_ == 2 )
std::copy(pattern0, pattern0 + npoints, back_inserter(pattern));
else
{
int ntuples = descriptorSize()*4;
initializeOrbPattern(pattern0, pattern, ntuples, params_.WTA_K_, npoints);
}
}
ORB::ORB(int _nfeatures, float _scaleFactor, int _nlevels, int _edgeThreshold,
int _firstLevel, int WTA_K, int _scoreType, int _patchSize) :
nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
edgeThreshold(_edgeThreshold), firstLevel(_firstLevel), WTA_K(WTA_K),
scoreType(_scoreType), patchSize(_patchSize)
{}
/** destructor to empty the patterns */
ORB::~ORB()
{
}
/** returns the descriptor size in bytes */
int ORB::descriptorSize() const
{
return kBytes;
}
int ORB::descriptorType() const
{
return CV_8U;
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
*/
void ORB::operator()(const Mat &image, const Mat &mask, vector<KeyPoint> & keypoints)
void ORB::operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const
{
Mat empty_descriptors;
this->operator ()(image, mask, keypoints, empty_descriptors, true, false);
(*this)(image, mask, keypoints, noArray(), false);
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
/** Compute the ORB keypoint orientations
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the iamge (can be empty, but the computation will be slower)
* @param scale the scale at which we compute the orientation
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param useProvidedKeypoints if true, the keypoints are used as an input
*/
void ORB::operator()(const Mat &image, const Mat &mask, vector<KeyPoint> & keypoints,
Mat & descriptors, bool useProvidedKeypoints)
static void computeOrientation(const Mat& image, vector<KeyPoint>& keypoints,
int halfPatchSize, const vector<int>& umax)
{
this->operator ()(image, mask, keypoints, descriptors, !useProvidedKeypoints, true);
}
//takes keypoints and culls them by the response
static void cull(vector<KeyPoint>& keypoints, size_t n_points)
{
//this is only necessary if the keypoints size is greater than the number of desired points.
if (keypoints.size() > n_points)
// Process each keypoint
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
{
if (n_points==0) {
keypoints.clear();
return;
}
//first use nth element to partition the keypoints into the best and worst.
std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), KeypointResponseGreater());
//this is the boundary response, and in the case of FAST may be ambigous
float ambiguous_response = keypoints[n_points - 1].response;
//use std::partition to grab all of the keypoints with the boundary response.
vector<KeyPoint>::const_iterator new_end =
std::partition(keypoints.begin() + n_points, keypoints.end(),
KeypointResponseGreaterThanThreshold(ambiguous_response));
//resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
keypoints.resize(new_end - keypoints.begin());
keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax);
}
}
/** Compute the ORB keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
* @param mask_pyramid the masks to apply at every level
* @param keypoints the resulting keypoints, clustered per level
*/
static void computeKeyPoints(const vector<Mat>& imagePyramid,
const vector<Mat>& maskPyramid,
vector<vector<KeyPoint> >& allKeypoints,
int nfeatures, int firstLevel, double scaleFactor,
int edgeThreshold, int patchSize, int scoreType )
{
int nlevels = (int)imagePyramid.size();
vector<int> nfeaturesPerLevel(nlevels);
// fill the extractors and descriptors for the corresponding scales
float factor = (float)(1.0 / scaleFactor);
float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));
int sumFeatures = 0;
for( int level = 0; level < nlevels-1; level++ )
{
nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale);
sumFeatures += nfeaturesPerLevel[level];
ndesiredFeaturesPerScale *= factor;
}
nfeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);
// Make sure we forget about what is too close to the boundary
//edge_threshold_ = std::max(edge_threshold_, patch_size_/2 + kKernelWidth / 2 + 2);
// pre-compute the end of a row in a circular patch
int halfPatchSize = patchSize / 2;
vector<int> umax(halfPatchSize + 1);
int v, v0, vmax = cvFloor(halfPatchSize * sqrt(2.f) / 2 + 1);
int vmin = cvCeil(halfPatchSize * sqrt(2.f) / 2);
for (v = 0; v <= vmax; ++v)
umax[v] = cvRound(sqrt(halfPatchSize * halfPatchSize - v * v));
// Make sure we are symmetric
for (v = halfPatchSize, v0 = 0; v >= vmin; --v)
{
while (umax[v0] == umax[v0 + 1])
++v0;
umax[v] = v0;
++v0;
}
allKeypoints.resize(nlevels);
for (int level = 0; level < nlevels; ++level)
{
int nfeatures = nfeaturesPerLevel[level];
allKeypoints[level].reserve(nfeatures*2);
vector<KeyPoint> & keypoints = allKeypoints[level];
// Detect FAST features, 20 is a good threshold
FastFeatureDetector fd(20, true);
fd.detect(imagePyramid[level], keypoints, maskPyramid[level]);
// Remove keypoints very close to the border
KeyPointsFilter::runByImageBorder(keypoints, imagePyramid[level].size(), edgeThreshold);
if( scoreType == ORB::HARRIS_SCORE )
{
// Keep more points than necessary as FAST does not give amazing corners
KeyPointsFilter::retainBest(keypoints, 2 * nfeatures);
// Compute the Harris cornerness (better scoring than FAST)
HarrisResponses(imagePyramid[level], keypoints, 7, HARRIS_K);
}
//cull to the final desired level, using the new Harris scores or the original FAST scores.
KeyPointsFilter::retainBest(keypoints, nfeatures);
float sf = getScale(level, firstLevel, scaleFactor);
// Set the level of the coordinates
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
{
keypoint->octave = level;
keypoint->size = patchSize*sf;
}
computeOrientation(imagePyramid[level], keypoints, halfPatchSize, umax);
}
}
/** Compute the ORB decriptors
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
* @param level the scale at which we compute the orientation
* @param keypoints the keypoints to use
* @param descriptors the resulting descriptors
*/
static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors,
const vector<Point>& pattern, int dsize, int WTA_K)
{
//convert to grayscale if more than one color
CV_Assert(image.type() == CV_8UC1);
//create the descriptor mat, keypoints.size() rows, BYTES cols
descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1);
for (size_t i = 0; i < keypoints.size(); i++)
computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, WTA_K);
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
@@ -738,24 +744,25 @@ static void cull(vector<KeyPoint>& keypoints, size_t n_points)
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input
* @param do_descriptors if true, also computes the descriptors
*/
void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & keypoints_in_out,
Mat& descriptors, bool do_keypoints, bool do_descriptors)
void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _keypoints,
OutputArray _descriptors, bool useProvidedKeypoints) const
{
if (((!do_keypoints) && (!do_descriptors)) || (image_in.empty()))
bool do_keypoints = !useProvidedKeypoints;
bool do_descriptors = _descriptors.needed();
if( (!do_keypoints && !do_descriptors) || _image.empty() )
return;
//ROI handling
const int HARRIS_BLOCK_SIZE = 9;
int half_patch_size = params_.patch_size_ / 2;
int border = std::max(params_.edge_threshold_, std::max(half_patch_size, HARRIS_BLOCK_SIZE/2))+1;
int halfPatchSize = patchSize / 2;
int border = std::max(edgeThreshold, std::max(halfPatchSize, HARRIS_BLOCK_SIZE/2))+1;
Mat image;
if (image_in.type() != CV_8UC1)
cvtColor(image_in, image, CV_BGR2GRAY);
else
image = image_in;
Mat image = _image.getMat(), mask = _mask.getMat();
if( image.type() != CV_8UC1 )
cvtColor(_image, image, CV_BGR2GRAY);
int n_levels = (int)params_.n_levels_;
int nlevels = this->nlevels;
if( !do_keypoints )
{
@@ -768,46 +775,46 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
//
// In short, ultimately the descriptor should
// ignore octave parameter and deal only with the keypoint size.
n_levels = 0;
for( size_t i = 0; i < keypoints_in_out.size(); i++ )
n_levels = std::max(n_levels, std::max(keypoints_in_out[i].octave, 0));
n_levels++;
nlevels = 0;
for( size_t i = 0; i < _keypoints.size(); i++ )
nlevels = std::max(nlevels, std::max(_keypoints[i].octave, 0));
nlevels++;
}
// Pre-compute the scale pyramids
vector<Mat> image_pyramid(n_levels), mask_pyramid(n_levels);
for (int level = 0; level < n_levels; ++level)
vector<Mat> imagePyramid(nlevels), maskPyramid(nlevels);
for (int level = 0; level < nlevels; ++level)
{
float scale = 1/get_scale(params_, level);
float scale = 1/getScale(level, firstLevel, scale);
Size sz(cvRound(image.cols*scale), cvRound(image.rows*scale));
Size wholeSize(sz.width + border*2, sz.height + border*2);
Mat temp(wholeSize, image.type()), masktemp;
image_pyramid[level] = temp(Rect(border, border, sz.width, sz.height));
imagePyramid[level] = temp(Rect(border, border, sz.width, sz.height));
if( !mask.empty() )
{
masktemp = Mat(wholeSize, mask.type());
mask_pyramid[level] = masktemp(Rect(border, border, sz.width, sz.height));
maskPyramid[level] = masktemp(Rect(border, border, sz.width, sz.height));
}
// Compute the resized image
if (level != (int)params_.first_level_)
if( level != firstLevel )
{
if( level < (int)params_.first_level_ )
if( level < firstLevel )
{
resize(image, image_pyramid[level], sz, scale, scale, INTER_LINEAR);
resize(image, imagePyramid[level], sz, scale, scale, INTER_LINEAR);
if (!mask.empty())
resize(mask, mask_pyramid[level], sz, scale, scale, INTER_LINEAR);
copyMakeBorder(image_pyramid[level], temp, border, border, border, border,
resize(mask, maskPyramid[level], sz, scale, scale, INTER_LINEAR);
copyMakeBorder(imagePyramid[level], temp, border, border, border, border,
BORDER_REFLECT_101+BORDER_ISOLATED);
}
else
{
float sf = params_.scale_factor_;
resize(image_pyramid[level-1], image_pyramid[level], sz, 1./sf, 1./sf, INTER_LINEAR);
float sf = scaleFactor;
resize(imagePyramid[level-1], imagePyramid[level], sz, 1./sf, 1./sf, INTER_LINEAR);
if (!mask.empty())
resize(mask_pyramid[level-1], mask_pyramid[level], sz, 1./sf, 1./sf, INTER_LINEAR);
copyMakeBorder(image_pyramid[level], temp, border, border, border, border,
resize(maskPyramid[level-1], maskPyramid[level], sz, 1./sf, 1./sf, INTER_LINEAR);
copyMakeBorder(imagePyramid[level], temp, border, border, border, border,
BORDER_REFLECT_101+BORDER_ISOLATED);
}
}
@@ -815,22 +822,24 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
{
copyMakeBorder(image, temp, border, border, border, border,
BORDER_REFLECT_101);
image.copyTo(image_pyramid[level]);
image.copyTo(imagePyramid[level]);
if( !mask.empty() )
mask.copyTo(mask_pyramid[level]);
mask.copyTo(maskPyramid[level]);
}
if( !mask.empty() )
copyMakeBorder(mask_pyramid[level], masktemp, border, border, border, border,
copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border,
BORDER_CONSTANT+BORDER_ISOLATED);
}
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
vector < vector<KeyPoint> > all_keypoints;
if (do_keypoints)
vector < vector<KeyPoint> > allKeypoints;
if( do_keypoints )
{
// Get keypoints, those will be far enough from the border that no check will be required for the descriptor
computeKeyPoints(image_pyramid, mask_pyramid, all_keypoints);
computeKeyPoints(imagePyramid, maskPyramid, allKeypoints,
nfeatures, firstLevel, scaleFactor,
edgeThreshold, patchSize, scoreType);
// make sure we have the right number of keypoints keypoints
/*vector<KeyPoint> temp;
@@ -842,7 +851,7 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
keypoints.clear();
}
cull(temp, n_features_);
KeyPoint::retainBest(temp, n_features_);
for (vector<KeyPoint>::iterator keypoint = temp.begin(),
keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint)
@@ -851,48 +860,72 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
else
{
// Remove keypoints very close to the border
KeyPointsFilter::runByImageBorder(keypoints_in_out, image.size(), params_.edge_threshold_);
KeyPointsFilter::runByImageBorder(_keypoints, image.size(), edgeThreshold);
// Cluster the input keypoints depending on the level they were computed at
all_keypoints.resize(n_levels);
for (vector<KeyPoint>::iterator keypoint = keypoints_in_out.begin(),
keypoint_end = keypoints_in_out.end(); keypoint != keypoint_end; ++keypoint)
all_keypoints[keypoint->octave].push_back(*keypoint);
allKeypoints.resize(nlevels);
for (vector<KeyPoint>::iterator keypoint = _keypoints.begin(),
keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint)
allKeypoints[keypoint->octave].push_back(*keypoint);
// Make sure we rescale the coordinates
for (int level = 0; level < n_levels; ++level)
for (int level = 0; level < nlevels; ++level)
{
if (level == (int)params_.first_level_)
if (level == firstLevel)
continue;
vector<KeyPoint> & keypoints = all_keypoints[level];
float scale = 1/get_scale(params_, level);
vector<KeyPoint> & keypoints = allKeypoints[level];
float scale = 1/getScale(level, firstLevel, scaleFactor);
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypoint_end = keypoints.end(); keypoint != keypoint_end; ++keypoint)
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
keypoint->pt *= scale;
}
}
if (do_descriptors)
Mat descriptors;
vector<Point> pattern;
if( do_descriptors )
{
int nkeypoints = 0;
for (int level = 0; level < n_levels; ++level)
nkeypoints += (int)all_keypoints[level].size();
for (int level = 0; level < nlevels; ++level)
nkeypoints += (int)allKeypoints[level].size();
if( nkeypoints == 0 )
descriptors.release();
_descriptors.release();
else
descriptors.create(nkeypoints, descriptorSize(), CV_8U);
{
_descriptors.create(nkeypoints, descriptorSize(), CV_8U);
descriptors = _descriptors.getMat();
}
const int npoints = 512;
Point patternbuf[npoints];
const Point* pattern0 = (const Point*)bit_pattern_31_;
if( patchSize != 31 )
{
pattern0 = patternbuf;
makeRandomPattern(patchSize, patternbuf, npoints);
}
CV_Assert( WTA_K == 2 || WTA_K == 3 || WTA_K == 4 );
if( WTA_K == 2 )
std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));
else
{
int ntuples = descriptorSize()*4;
initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints);
}
}
keypoints_in_out.clear();
_keypoints.clear();
int offset = 0;
for (int level = 0; level < n_levels; ++level)
for (int level = 0; level < nlevels; ++level)
{
// Get the features and compute their orientation
vector<KeyPoint>& keypoints = all_keypoints[level];
vector<KeyPoint>& keypoints = allKeypoints[level];
int nkeypoints = (int)keypoints.size();
if (nkeypoints==0)
continue;
// Compute the descriptors
if (do_descriptors)
@@ -900,122 +933,33 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
Mat desc = descriptors.rowRange(offset, offset + nkeypoints);
offset += nkeypoints;
// preprocess the resized image
Mat& working_mat = image_pyramid[level];
Mat& workingMat = imagePyramid[level];
//boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101);
GaussianBlur(working_mat, working_mat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
computeDescriptors(working_mat, Mat(), level, keypoints, desc);
GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
computeDescriptors(workingMat, keypoints, desc, pattern, descriptorSize(), WTA_K);
}
// Copy to the output data
if (level != (int)params_.first_level_)
if (level != firstLevel)
{
float scale = get_scale(params_, level);
float scale = getScale(level, firstLevel, scaleFactor);
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypoint_end = keypoints.end(); keypoint != keypoint_end; ++keypoint)
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
keypoint->pt *= scale;
}
// And add the keypoints to the output
keypoints_in_out.insert(keypoints_in_out.end(), keypoints.begin(), keypoints.end());
_keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());
}
}
/** Compute the ORB keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
* @param mask_pyramid the masks to apply at every level
* @param keypoints the resulting keypoints, clustered per level
*/
void ORB::computeKeyPoints(const vector<Mat>& image_pyramid,
const vector<Mat>& mask_pyramid,
vector<vector<KeyPoint> >& all_keypoints_out) const
{
all_keypoints_out.resize(params_.n_levels_);
for (int level = 0; level < (int)params_.n_levels_; ++level)
{
int n_features = n_features_per_level_[level];
all_keypoints_out[level].reserve(n_features*2);
vector<KeyPoint> & keypoints = all_keypoints_out[level];
// Detect FAST features, 20 is a good threshold
FastFeatureDetector fd(20, true);
fd.detect(image_pyramid[level], keypoints, mask_pyramid[level]);
// Remove keypoints very close to the border
KeyPointsFilter::runByImageBorder(keypoints, image_pyramid[level].size(), params_.edge_threshold_);
if( params_.score_type_ == CommonParams::HARRIS_SCORE )
{
// Keep more points than necessary as FAST does not give amazing corners
cull(keypoints, 2 * n_features);
// Compute the Harris cornerness (better scoring than FAST)
HarrisResponses(image_pyramid[level], keypoints, 7, HARRIS_K);
}
//cull to the final desired level, using the new Harris scores or the original FAST scores.
cull(keypoints, n_features);
float sf = get_scale(params_, level);
// Set the level of the coordinates
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypoint_end = keypoints.end(); keypoint != keypoint_end; ++keypoint)
{
keypoint->octave = level;
keypoint->size = params_.patch_size_*sf;
}
computeOrientation(image_pyramid[level], Mat(), level, keypoints);
}
}
/** Compute the ORB keypoint orientations
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the iamge (can be empty, but the computation will be slower)
* @param scale the scale at which we compute the orientation
* @param keypoints the resulting keypoints
*/
void ORB::computeOrientation(const Mat& image, const Mat&, unsigned int /*scale*/,
vector<KeyPoint>& keypoints) const
void ORB::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
int half_patch_size = params_.patch_size_/2;
// Process each keypoint
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypoint_end = keypoints.end(); keypoint != keypoint_end; ++keypoint)
{
keypoint->angle = IC_Angle(image, half_patch_size, keypoint->pt, u_max_);
}
}
(*this)(image, mask, keypoints, noArray(), false);
}
/** Compute the integral image and upadte the cached values
* @param image the image to compute the features and descriptors on
* @param level the scale at which we compute the orientation
* @param descriptors the resulting descriptors
*/
void ORB::computeIntegralImage(const Mat&, unsigned int, Mat&)
void ORB::computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const
{
}
/** Compute the ORB decriptors
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
* @param level the scale at which we compute the orientation
* @param keypoints the keypoints to use
* @param descriptors the resulting descriptors
*/
void ORB::computeDescriptors(const Mat& image, const Mat& /*integral_image*/, unsigned int,
vector<KeyPoint>& keypoints, Mat& descriptors) const
{
//convert to grayscale if more than one color
CV_Assert(image.type() == CV_8UC1);
//create the descriptor mat, keypoints.size() rows, BYTES cols
int dsize = descriptorSize();
descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1);
for (size_t i = 0; i < keypoints.size(); i++)
computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, params_.WTA_K_);
(*this)(image, Mat(), keypoints, descriptors, true);
}
}