lot's of changes; nonfree & photo modules added; SIFT & SURF -> nonfree module; Inpainting -> photo; refactored features2d (ORB is still failing tests), optimized brute-force matcher and made it non-template.

This commit is contained in:
Vadim Pisarevsky
2012-03-15 14:36:01 +00:00
parent 6300215b94
commit 957e80abbd
99 changed files with 6719 additions and 7240 deletions

View File

@@ -77,7 +77,7 @@ template<typename _KeyTp, typename _ValueTp> struct sorted_vector
b = c;
}
if( vec[a].first == key )
if( a < vec.size() && vec[a].first == key )
{
value = vec[a].second;
return true;
@@ -176,6 +176,66 @@ string Algorithm::name() const
{
return info()->name();
}
void Algorithm::set(const string& name, int value)
{
info()->set(this, name.c_str(), ParamType<int>::type, &value);
}
void Algorithm::set(const string& name, double value)
{
info()->set(this, name.c_str(), ParamType<double>::type, &value);
}
void Algorithm::set(const string& name, bool value)
{
info()->set(this, name.c_str(), ParamType<bool>::type, &value);
}
void Algorithm::set(const string& name, const string& value)
{
info()->set(this, name.c_str(), ParamType<string>::type, &value);
}
void Algorithm::set(const string& name, const Mat& value)
{
info()->set(this, name.c_str(), ParamType<Mat>::type, &value);
}
void Algorithm::set(const string& name, const Ptr<Algorithm>& value)
{
info()->set(this, name.c_str(), ParamType<Algorithm>::type, &value);
}
void Algorithm::set(const char* name, int value)
{
info()->set(this, name, ParamType<int>::type, &value);
}
void Algorithm::set(const char* name, double value)
{
info()->set(this, name, ParamType<double>::type, &value);
}
void Algorithm::set(const char* name, bool value)
{
info()->set(this, name, ParamType<bool>::type, &value);
}
void Algorithm::set(const char* name, const string& value)
{
info()->set(this, name, ParamType<string>::type, &value);
}
void Algorithm::set(const char* name, const Mat& value)
{
info()->set(this, name, ParamType<Mat>::type, &value);
}
void Algorithm::set(const char* name, const Ptr<Algorithm>& value)
{
info()->set(this, name, ParamType<Algorithm>::type, &value);
}
string Algorithm::paramHelp(const string& name) const
{
@@ -261,25 +321,25 @@ void AlgorithmInfo::read(Algorithm* algo, const FileNode& fn) const
if( n.empty() )
continue;
if( p.type == Param::INT )
algo->set<int>(pname, (int)n);
algo->set(pname, (int)n);
else if( p.type == Param::BOOLEAN )
algo->set<bool>(pname, (int)n != 0);
algo->set(pname, (int)n != 0);
else if( p.type == Param::REAL )
algo->set<double>(pname, (double)n);
algo->set(pname, (double)n);
else if( p.type == Param::STRING )
algo->set<string>(pname, (string)n);
algo->set(pname, (string)n);
else if( p.type == Param::MAT )
{
Mat m;
cv::read(fn, m);
algo->set<Mat>(pname, m);
algo->set(pname, m);
}
else if( p.type == Param::ALGORITHM )
{
Ptr<Algorithm> nestedAlgo = Algorithm::_create((string)n["name"]);
CV_Assert( !nestedAlgo.empty() );
nestedAlgo->read(n);
algo->set<Algorithm>(pname, nestedAlgo);
algo->set(pname, nestedAlgo);
}
else
CV_Error( CV_StsUnsupportedFormat, "unknown/unsupported parameter type");
@@ -505,6 +565,16 @@ void AlgorithmInfo::addParam(const Algorithm* algo, const char* name,
(Algorithm::Getter)getter, (Algorithm::Setter)setter, help);
}
void AlgorithmInfo::addParam(const Algorithm* algo, const char* name,
const bool& value, bool readOnly,
int (Algorithm::*getter)(),
void (Algorithm::*setter)(int),
const string& help)
{
addParam_(algo, name, ParamType<bool>::type, &value, readOnly,
(Algorithm::Getter)getter, (Algorithm::Setter)setter, help);
}
void AlgorithmInfo::addParam(const Algorithm* algo, const char* name,
const double& value, bool readOnly,
double (Algorithm::*getter)(),

View File

@@ -113,11 +113,13 @@ namespace
const CvOpenGlFuncTab* g_glFuncTab = 0;
#ifdef HAVE_CUDA
const CvOpenGlFuncTab* glFuncTab()
{
static EmptyGlFuncTab empty;
return g_glFuncTab ? g_glFuncTab : &empty;
}
#endif
}
CvOpenGlFuncTab::~CvOpenGlFuncTab()

View File

@@ -41,6 +41,7 @@
//M*/
#include "precomp.hpp"
#include <climits>
namespace cv
{
@@ -1425,6 +1426,339 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m
}
///////////////////////////////////// batch distance ///////////////////////////////////////
namespace cv
{
template<typename _Tp, typename _Rt>
void batchDistL1_(const _Tp* src1, const _Tp* src2, size_t step2,
int nvecs, int len, _Rt* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = normL1<_Tp, _Rt>(src1, src2 + step2*i, len);
}
else
{
_Rt val0 = std::numeric_limits<_Rt>::max();
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? normL1<_Tp, _Rt>(src1, src2 + step2*i, len) : val0;
}
}
template<typename _Tp, typename _Rt>
void batchDistL2Sqr_(const _Tp* src1, const _Tp* src2, size_t step2,
int nvecs, int len, _Rt* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len);
}
else
{
_Rt val0 = std::numeric_limits<_Rt>::max();
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len) : val0;
}
}
template<typename _Tp, typename _Rt>
void batchDistL2_(const _Tp* src1, const _Tp* src2, size_t step2,
int nvecs, int len, _Rt* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len));
}
else
{
_Rt val0 = std::numeric_limits<_Rt>::max();
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)) : val0;
}
}
static void batchDistHamming(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, int* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = normHamming(src1, src2 + step2*i, len);
}
else
{
int val0 = INT_MAX;
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len) : val0;
}
}
static void batchDistHamming2(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, int* dist, const uchar* mask)
{
step2 /= sizeof(src2[0]);
if( !mask )
{
for( int i = 0; i < nvecs; i++ )
dist[i] = normHamming(src1, src2 + step2*i, len, 2);
}
else
{
int val0 = INT_MAX;
for( int i = 0; i < nvecs; i++ )
dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len, 2) : val0;
}
}
static void batchDistL1_8u32s(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, int* dist, const uchar* mask)
{
batchDistL1_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL1_8u32f(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL1_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2Sqr_8u32s(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, int* dist, const uchar* mask)
{
batchDistL2Sqr_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2Sqr_8u32f(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL2Sqr_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2_8u32f(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL2_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL1_32f(const float* src1, const float* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL1_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2Sqr_32f(const float* src1, const float* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL2Sqr_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
}
static void batchDistL2_32f(const float* src1, const float* src2, size_t step2,
int nvecs, int len, float* dist, const uchar* mask)
{
batchDistL2_<float, float>(src1, src2, step2, nvecs, len, dist, mask);
}
typedef void (*BatchDistFunc)(const uchar* src1, const uchar* src2, size_t step2,
int nvecs, int len, uchar* dist, const uchar* mask);
struct BatchDistInvoker
{
BatchDistInvoker( const Mat& _src1, const Mat& _src2,
Mat& _dist, Mat& _nidx, int _K,
const Mat& _mask, int _update,
BatchDistFunc _func)
{
src1 = &_src1;
src2 = &_src2;
dist = &_dist;
nidx = &_nidx;
K = _K;
mask = &_mask;
update = _update;
func = _func;
}
void operator()(const BlockedRange& range) const
{
AutoBuffer<int> buf(src2->rows);
int* bufptr = buf;
Cv32suf val0;
if( dist->type() == CV_32S )
val0.i = INT_MAX;
else
val0.f = FLT_MAX;
for( int i = range.begin(); i < range.end(); i++ )
{
func(src1->ptr(i), src2->ptr(), src2->step, src2->rows, src2->cols,
K > 0 ? (uchar*)bufptr : dist->ptr(i), mask->data ? mask->ptr(i) : 0);
if( K > 0 )
{
int* nidxptr = nidx->ptr<int>(i);
// since positive float's can be compared just like int's,
// we handle both CV_32S and CV_32F cases with a single branch
int* distptr = (int*)dist->ptr(i);
int k, k0, k0_, j;
for( k0 = 0; k0 < K; k0++ )
if( nidxptr[k0] < 0 )
break;
k0_ = std::max(k0, 1);
for( j = 0; j < src2->rows; j++ )
{
int d = bufptr[j];
if( d < distptr[k0_-1] )
{
for( k = std::min(k0-1, K-2); k >= 0 && distptr[k] > d; k-- )
{
nidxptr[k+1] = nidxptr[k];
distptr[k+1] = distptr[k];
}
nidxptr[k+1] = j + update;
distptr[k+1] = d;
k0_ = k0 = std::min(k0 + 1, K);
}
}
}
}
}
const Mat *src1;
const Mat *src2;
Mat *dist;
Mat *nidx;
const Mat *mask;
int K;
int update;
BatchDistFunc func;
};
}
void cv::batchDistance( InputArray _src1, InputArray _src2,
OutputArray _dist, int dtype, OutputArray _nidx,
int normType, int K, InputArray _mask,
int update, bool crosscheck )
{
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
int type = src1.type();
CV_Assert( type == src2.type() && src1.cols == src2.cols &&
(type == CV_32F || type == CV_8U));
CV_Assert( _nidx.needed() == (K > 0) );
if( dtype == -1 )
{
dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F;
}
CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F);
K = std::min(K, src2.rows);
_dist.create(src1.rows, (K > 0 ? K : src2.rows), dtype);
Mat dist = _dist.getMat(), nidx;
if( _nidx.needed() )
{
_nidx.create(dist.size(), CV_32S);
nidx = _nidx.getMat();
}
if( update == 0 && K > 0 )
{
dist = Scalar::all(dtype == CV_32S ? (double)INT_MAX : (double)FLT_MAX);
nidx = Scalar::all(-1);
}
if( crosscheck )
{
CV_Assert( K == 1 && update == 0 && mask.empty() );
Mat tdist, tidx;
batchDistance(src2, src1, tdist, dtype, tidx, normType, K, mask, 0, false);
// if an idx-th element from src1 appeared to be the nearest to i-th element of src2,
// we update the minimum mutual distance between idx-th element of src1 and the whole src2 set.
// As a result, if nidx[idx] = i*, it means that idx-th element of src1 is the nearest
// to i*-th element of src2 and i*-th element of src2 is the closest to idx-th element of src1.
// If nidx[idx] = -1, it means that there is no such ideal couple for it in src2.
// This O(N) procedure is called cross-check and it helps to eliminate some false matches.
if( dtype == CV_32S )
{
for( int i = 0; i < tdist.rows; i++ )
{
int idx = tidx.at<int>(i);
int d = tdist.at<int>(i), d0 = dist.at<int>(idx);
if( d < d0 )
{
dist.at<int>(idx) = d0;
nidx.at<int>(idx) = i + update;
}
}
}
else
{
for( int i = 0; i < tdist.rows; i++ )
{
int idx = tidx.at<int>(i);
float d = tdist.at<float>(i), d0 = dist.at<float>(idx);
if( d < d0 )
{
dist.at<float>(idx) = d0;
nidx.at<int>(idx) = i + update;
}
}
}
return;
}
BatchDistFunc func = 0;
if( type == CV_8U )
{
if( normType == NORM_L1 && dtype == CV_32S )
func = (BatchDistFunc)batchDistL1_8u32s;
else if( normType == NORM_L1 && dtype == CV_32F )
func = (BatchDistFunc)batchDistL1_8u32f;
else if( normType == NORM_L2SQR && dtype == CV_32S )
func = (BatchDistFunc)batchDistL2Sqr_8u32s;
else if( normType == NORM_L2SQR && dtype == CV_32F )
func = (BatchDistFunc)batchDistL2Sqr_8u32f;
else if( normType == NORM_L2 && dtype == CV_32F )
func = (BatchDistFunc)batchDistL2_8u32f;
else if( normType == NORM_HAMMING && dtype == CV_32S )
func = (BatchDistFunc)batchDistHamming;
else if( normType == NORM_HAMMING2 && dtype == CV_32S )
func = (BatchDistFunc)batchDistHamming2;
}
else if( type == CV_32F && dtype == CV_32F )
{
if( normType == NORM_L1 )
func = (BatchDistFunc)batchDistL1_32f;
else if( normType == NORM_L2SQR )
func = (BatchDistFunc)batchDistL2Sqr_32f;
else if( normType == NORM_L2 )
func = (BatchDistFunc)batchDistL2_32f;
}
if( func == 0 )
CV_Error_(CV_StsUnsupportedFormat,
("The combination of type=%d, dtype=%d and normType=%d is not supported",
type, dtype, normType));
parallel_for(BlockedRange(0, src1.rows),
BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func));
}
CV_IMPL CvScalar cvSum( const CvArr* srcarr )
{
cv::Scalar sum = cv::sum(cv::cvarrToMat(srcarr, false, true, 1));