rewrote matchTemplate in C++; added border awareness to crossCorr (ticket #557)

This commit is contained in:
Vadim Pisarevsky 2010-11-12 20:57:01 +00:00
parent 9e7b8d5f67
commit 957cff2493

View File

@ -41,429 +41,320 @@
#include "precomp.hpp"
void
icvCrossCorr( const CvArr* _img, const CvArr* _templ, CvArr* _corr,
CvPoint anchor, double delta, int borderType )
namespace cv
{
const int CV_MAX_THREADS = 1;
const double block_scale = 4.5;
const int min_block_size = 256;
cv::Ptr<CvMat> dft_img[CV_MAX_THREADS];
cv::Ptr<CvMat> dft_templ;
std::vector<uchar> buf[CV_MAX_THREADS];
int k, num_threads = 0;
CvMat istub, *img = (CvMat*)_img;
CvMat tstub, *templ = (CvMat*)_templ;
CvMat cstub, *corr = (CvMat*)_corr;
CvSize dftsize, blocksize;
int depth, templ_depth, corr_depth, max_depth = CV_32F,
cn, templ_cn, corr_cn, buf_size = 0,
tile_count_x, tile_count_y, tile_count;
void crossCorr( const Mat& img, const Mat& templ, Mat& corr,
Size corrsize, int ctype,
Point anchor, double delta, int borderType )
{
const double blockScale = 4.5;
const int minBlockSize = 256;
std::vector<uchar> buf;
img = cvGetMat( img, &istub );
templ = cvGetMat( templ, &tstub );
corr = cvGetMat( corr, &cstub );
int depth = img.depth(), cn = img.channels();
int tdepth = templ.depth(), tcn = templ.channels();
int cdepth = CV_MAT_DEPTH(ctype), ccn = CV_MAT_CN(ctype);
if( CV_MAT_DEPTH( img->type ) != CV_8U &&
CV_MAT_DEPTH( img->type ) != CV_16U &&
CV_MAT_DEPTH( img->type ) != CV_32F &&
CV_MAT_DEPTH( img->type ) != CV_64F )
CV_Error( CV_StsUnsupportedFormat,
"The function supports only 8u, 16u and 32f data types" );
CV_Assert( img.dims <= 2 && templ.dims <= 2 && corr.dims <= 2 );
CV_Assert( depth == CV_8U || depth == CV_16U || depth == CV_32F || depth == CV_64F );
CV_Assert( depth == tdepth || tdepth == CV_32F );
if( !CV_ARE_DEPTHS_EQ( img, templ ) && CV_MAT_DEPTH( templ->type ) != CV_32F )
CV_Error( CV_StsUnsupportedFormat,
"Template (kernel) must be of the same depth as the input image, or be 32f" );
CV_Assert( corrsize.height <= img.rows + templ.rows - 1 &&
corrsize.width <= img.cols + templ.cols - 1 );
if( !CV_ARE_DEPTHS_EQ( img, corr ) && CV_MAT_DEPTH( corr->type ) != CV_32F &&
CV_MAT_DEPTH( corr->type ) != CV_64F )
CV_Error( CV_StsUnsupportedFormat,
"The output image must have the same depth as the input image, or be 32f/64f" );
CV_Assert( ccn == 1 || delta == 0 );
if( (!CV_ARE_CNS_EQ( img, corr ) || CV_MAT_CN(templ->type) > 1) &&
(CV_MAT_CN( corr->type ) > 1 || !CV_ARE_CNS_EQ( img, templ)) )
CV_Error( CV_StsUnsupportedFormat,
"The output must have the same number of channels as the input (when the template has 1 channel), "
"or the output must have 1 channel when the input and the template have the same number of channels" );
corr.create(corrsize, ctype);
depth = CV_MAT_DEPTH(img->type);
cn = CV_MAT_CN(img->type);
templ_depth = CV_MAT_DEPTH(templ->type);
templ_cn = CV_MAT_CN(templ->type);
corr_depth = CV_MAT_DEPTH(corr->type);
corr_cn = CV_MAT_CN(corr->type);
int maxDepth = depth > CV_8U ? CV_64F : std::max(std::max(CV_32F, tdepth), cdepth);
Size blocksize, dftsize;
CV_Assert( corr_cn == 1 || delta == 0 );
blocksize.width = cvRound(templ.cols*blockScale);
blocksize.width = std::max( blocksize.width, minBlockSize - templ.cols + 1 );
blocksize.width = std::min( blocksize.width, corr.cols );
blocksize.height = cvRound(templ.rows*blockScale);
blocksize.height = std::max( blocksize.height, minBlockSize - templ.rows + 1 );
blocksize.height = std::min( blocksize.height, corr.rows );
max_depth = MAX( max_depth, templ_depth );
max_depth = MAX( max_depth, depth );
max_depth = MAX( max_depth, corr_depth );
if( depth > CV_8U )
max_depth = CV_64F;
/*if( img->cols < templ->cols || img->rows < templ->rows )
CV_Error( CV_StsUnmatchedSizes,
"Such a combination of image and template/filter size is not supported" );*/
if( corr->rows > img->rows + templ->rows - 1 ||
corr->cols > img->cols + templ->cols - 1 )
CV_Error( CV_StsUnmatchedSizes,
"output image should not be greater than (W + w - 1)x(H + h - 1)" );
blocksize.width = cvRound(templ->cols*block_scale);
blocksize.width = MAX( blocksize.width, min_block_size - templ->cols + 1 );
blocksize.width = MIN( blocksize.width, corr->cols );
blocksize.height = cvRound(templ->rows*block_scale);
blocksize.height = MAX( blocksize.height, min_block_size - templ->rows + 1 );
blocksize.height = MIN( blocksize.height, corr->rows );
dftsize.width = cvGetOptimalDFTSize(blocksize.width + templ->cols - 1);
if( dftsize.width == 1 )
dftsize.width = 2;
dftsize.height = cvGetOptimalDFTSize(blocksize.height + templ->rows - 1);
dftsize.width = std::max(getOptimalDFTSize(blocksize.width + templ.cols - 1), 2);
dftsize.height = getOptimalDFTSize(blocksize.height + templ.rows - 1);
if( dftsize.width <= 0 || dftsize.height <= 0 )
CV_Error( CV_StsOutOfRange, "the input arrays are too big" );
// recompute block size
blocksize.width = dftsize.width - templ->cols + 1;
blocksize.width = MIN( blocksize.width, corr->cols );
blocksize.height = dftsize.height - templ->rows + 1;
blocksize.height = MIN( blocksize.height, corr->rows );
blocksize.width = dftsize.width - templ.cols + 1;
blocksize.width = MIN( blocksize.width, corr.cols );
blocksize.height = dftsize.height - templ.rows + 1;
blocksize.height = MIN( blocksize.height, corr.rows );
dft_templ = cvCreateMat( dftsize.height*templ_cn, dftsize.width, max_depth );
Mat dftTempl( dftsize.height*tcn, dftsize.width, maxDepth );
Mat dftImg( dftsize, maxDepth );
#ifdef USE_OPENMP
num_threads = cvGetNumThreads();
#else
num_threads = 1;
#endif
int i, k, bufSize = 0;
if( tcn > 1 && tdepth != maxDepth )
bufSize = templ.cols*templ.rows*CV_ELEM_SIZE(tdepth);
for( k = 0; k < num_threads; k++ )
dft_img[k] = cvCreateMat( dftsize.height, dftsize.width, max_depth );
if( cn > 1 && depth != maxDepth )
bufSize = std::max( bufSize, (blocksize.width + templ.cols - 1)*
(blocksize.height + templ.rows - 1)*CV_ELEM_SIZE(depth));
if( templ_cn > 1 && templ_depth != max_depth )
buf_size = templ->cols*templ->rows*CV_ELEM_SIZE(templ_depth);
if( (ccn > 1 || cn > 1) && cdepth != maxDepth )
bufSize = std::max( bufSize, blocksize.width*blocksize.height*CV_ELEM_SIZE(cdepth));
if( cn > 1 && depth != max_depth )
buf_size = MAX( buf_size, (blocksize.width + templ->cols - 1)*
(blocksize.height + templ->rows - 1)*CV_ELEM_SIZE(depth));
if( (corr_cn > 1 || cn > 1) && corr_depth != max_depth )
buf_size = MAX( buf_size, blocksize.width*blocksize.height*CV_ELEM_SIZE(corr_depth));
if( buf_size > 0 )
{
for( k = 0; k < num_threads; k++ )
buf[k].resize(buf_size);
}
buf.resize(bufSize);
// compute DFT of each template plane
for( k = 0; k < templ_cn; k++ )
for( k = 0; k < tcn; k++ )
{
CvMat dstub, *src, *dst, temp;
CvMat* planes[] = { 0, 0, 0, 0 };
int yofs = k*dftsize.height;
Mat src = templ;
Mat dst(dftTempl, Rect(0, yofs, dftsize.width, dftsize.height));
Mat dst1(dftTempl, Rect(0, yofs, templ.cols, templ.rows));
src = templ;
dst = cvGetSubRect( dft_templ, &dstub, cvRect(0,yofs,templ->cols,templ->rows));
if( templ_cn > 1 )
if( tcn > 1 )
{
planes[k] = templ_depth == max_depth ? dst :
cvInitMatHeader( &temp, templ->rows, templ->cols, templ_depth, &buf[0][0] );
cvSplit( templ, planes[0], planes[1], planes[2], planes[3] );
src = planes[k];
planes[k] = 0;
src = tdepth == maxDepth ? dst1 : Mat(templ.size(), tdepth, &buf[0]);
int pairs[] = {k, 0};
mixChannels(&templ, 1, &src, 1, pairs, 1);
}
if( dst != src )
cvConvert( src, dst );
if( dst1.data != src.data )
src.convertTo(dst1, dst1.depth());
if( dft_templ->cols > templ->cols )
if( dst.cols > templ.cols )
{
cvGetSubRect( dft_templ, dst, cvRect(templ->cols, yofs,
dft_templ->cols - templ->cols, templ->rows) );
cvZero( dst );
Mat part(dst, Range(0, templ.rows), Range(templ.cols, dst.cols));
part = Scalar::all(0);
}
cvGetSubRect( dft_templ, dst, cvRect(0,yofs,dftsize.width,dftsize.height) );
cvDFT( dst, dst, CV_DXT_FORWARD + CV_DXT_SCALE, templ->rows );
dft(dst, dst, 0, templ.rows);
}
tile_count_x = (corr->cols + blocksize.width - 1)/blocksize.width;
tile_count_y = (corr->rows + blocksize.height - 1)/blocksize.height;
tile_count = tile_count_x*tile_count_y;
int tileCountX = (corr.cols + blocksize.width - 1)/blocksize.width;
int tileCountY = (corr.rows + blocksize.height - 1)/blocksize.height;
int tileCount = tileCountX * tileCountY;
Size wholeSize = img.size();
Point roiofs(0,0);
Mat img0 = img;
if( !(borderType & BORDER_ISOLATED) )
{
img.locateROI(wholeSize, roiofs);
img0.adjustROI(roiofs.y, wholeSize.height-img.rows-roiofs.y,
roiofs.x, wholeSize.width-img.cols-roiofs.x);
}
#if defined _OPENMP && defined USE_OPENMP
#pragma omp parallel for num_threads(num_threads) schedule(dynamic)
#endif
// calculate correlation by blocks
for( k = 0; k < tile_count; k++ )
for( i = 0; i < tileCount; i++ )
{
#ifdef USE_OPENMP
int thread_idx = cvGetThreadNum();
#else
int thread_idx = 0;
#endif
int x = (k%tile_count_x)*blocksize.width;
int y = (k/tile_count_x)*blocksize.height;
int i, yofs;
CvMat sstub, dstub, *src, *dst, temp;
CvMat* planes[] = { 0, 0, 0, 0 };
CvMat* _dft_img = dft_img[thread_idx];
uchar* _buf = buf_size > 0 ? &buf[thread_idx][0] : 0;
CvSize csz = { blocksize.width, blocksize.height }, isz;
int x0 = x - anchor.x, y0 = y - anchor.y;
int x1 = MAX( 0, x0 ), y1 = MAX( 0, y0 ), x2, y2;
csz.width = MIN( csz.width, corr->cols - x );
csz.height = MIN( csz.height, corr->rows - y );
isz.width = csz.width + templ->cols - 1;
isz.height = csz.height + templ->rows - 1;
x2 = MIN( img->cols, x0 + isz.width );
y2 = MIN( img->rows, y0 + isz.height );
int x = (i%tileCountX)*blocksize.width;
int y = (i/tileCountX)*blocksize.height;
for( i = 0; i < cn; i++ )
Size bsz(std::min(blocksize.width, corr.cols - x),
std::min(blocksize.height, corr.rows - y));
Size dsz(bsz.width + templ.cols - 1, bsz.height + templ.rows - 1);
int x0 = x - anchor.x + roiofs.x, y0 = y - anchor.y + roiofs.y;
int x1 = std::max(0, x0), y1 = std::max(0, y0);
int x2 = std::min(img0.cols, x0 + dsz.width);
int y2 = std::min(img0.rows, y0 + dsz.height);
Mat src0(img0, Range(y1, y2), Range(x1, x2));
Mat dst(dftImg, Rect(0, 0, dsz.width, dsz.height));
Mat dst1(dftImg, Rect(x1-x0, y1-y0, x2-x1, y2-y1));
Mat cdst(corr, Rect(x, y, bsz.width, bsz.height));
for( k = 0; k < cn; k++ )
{
CvMat dstub1, *dst1;
yofs = i*dftsize.height;
src = cvGetSubRect( img, &sstub, cvRect(x1,y1,x2-x1,y2-y1) );
dst = cvGetSubRect( _dft_img, &dstub,
cvRect(0,0,isz.width,isz.height) );
dst1 = dst;
if( x2 - x1 < isz.width || y2 - y1 < isz.height )
dst1 = cvGetSubRect( _dft_img, &dstub1,
cvRect( x1 - x0, y1 - y0, x2 - x1, y2 - y1 ));
Mat src = src0;
if( cn > 1 )
{
planes[i] = dst1;
if( depth != max_depth )
planes[i] = cvInitMatHeader( &temp, y2 - y1, x2 - x1, depth, _buf );
cvSplit( src, planes[0], planes[1], planes[2], planes[3] );
src = planes[i];
planes[i] = 0;
src = depth == maxDepth ? dst1 : Mat(y2-y1, x2-x1, depth, &buf[0]);
int pairs[] = {k, 0};
mixChannels(&src0, 1, &src, 1, pairs, 1);
}
if( dst1 != src )
cvConvert( src, dst1 );
if( dst1.data != src.data )
src.convertTo(dst1, dst1.depth());
if( dst != dst1 )
cvCopyMakeBorder( dst1, dst, cvPoint(x1 - x0, y1 - y0), borderType );
if( x2 - x1 < dsz.width || y2 - y1 < dsz.height )
copyMakeBorder(dst1, dst, y1-y0, dst.rows-dst1.rows-(y1-y0),
x1-x0, dst.cols-dst1.cols-(x1-x0), borderType);
if( dftsize.width > isz.width )
if( dftsize.width > dsz.width )
{
cvGetSubRect( _dft_img, dst, cvRect(isz.width, 0,
dftsize.width - isz.width,dftsize.height) );
cvZero( dst );
Mat part(dftImg, Range(0, dsz.height), Range(dsz.width, dftsize.width));
part = Scalar::all(0);
}
cvDFT( _dft_img, _dft_img, CV_DXT_FORWARD, isz.height );
cvGetSubRect( dft_templ, dst,
cvRect(0,(templ_cn>1?yofs:0),dftsize.width,dftsize.height) );
dft( dftImg, dftImg, 0, dsz.height );
Mat dftTempl1(dftTempl, Rect(0, tcn > 1 ? k*dftsize.height : 0,
dftsize.width, dftsize.height));
mulSpectrums(dftImg, dftTempl1, dftImg, 0, true);
dft( dftImg, dftImg, DFT_INVERSE + DFT_SCALE, bsz.height );
cvMulSpectrums( _dft_img, dst, _dft_img, CV_DXT_MUL_CONJ );
cvDFT( _dft_img, _dft_img, CV_DXT_INVERSE, csz.height );
src = dftImg(Rect(0, 0, bsz.width, bsz.height));
src = cvGetSubRect( _dft_img, &sstub, cvRect(0,0,csz.width,csz.height) );
dst = cvGetSubRect( corr, &dstub, cvRect(x,y,csz.width,csz.height) );
if( corr_cn > 1 )
if( ccn > 1 )
{
planes[i] = src;
if( corr_depth != max_depth )
if( cdepth != maxDepth )
{
planes[i] = cvInitMatHeader( &temp, csz.height, csz.width,
corr_depth, _buf );
cvConvertScale( src, planes[i], 1, delta );
Mat plane(bsz, cdepth, &buf[0]);
src.convertTo(plane, cdepth, 1, delta);
src = plane;
}
cvMerge( planes[0], planes[1], planes[2], planes[3], dst );
planes[i] = 0;
int pairs[] = {0, k};
mixChannels(&src, 1, &cdst, 1, pairs, 1);
}
else
{
if( i == 0 )
cvConvertScale( src, dst, 1, delta );
if( k == 0 )
src.convertTo(cdst, cdepth, 1, delta);
else
{
if( max_depth > corr_depth )
if( maxDepth != cdepth )
{
cvInitMatHeader( &temp, csz.height, csz.width,
corr_depth, _buf );
cvConvert( src, &temp );
src = &temp;
Mat plane(bsz, cdepth, &buf[0]);
src.convertTo(plane, cdepth);
src = plane;
}
cvAcc( src, dst );
add(src, cdst, cdst);
}
}
}
}
}
void
/*void
cv::crossCorr( const Mat& img, const Mat& templ, Mat& corr,
Point anchor, double delta, int borderType )
{
CvMat _img = img, _templ = templ, _corr = corr;
icvCrossCorr( &_img, &_templ, &_corr, anchor, delta, borderType );
}
}*/
/*****************************************************************************************/
CV_IMPL void
cvMatchTemplate( const CvArr* _img, const CvArr* _templ, CvArr* _result, int method )
void matchTemplate( const Mat& _img, const Mat& _templ, Mat& result, int method )
{
cv::Ptr<CvMat> sum, sqsum;
CV_Assert( CV_TM_SQDIFF <= method && method <= CV_TM_CCOEFF_NORMED );
int coi1 = 0, coi2 = 0;
int depth, cn;
int i, j, k;
CvMat stub, *img = (CvMat*)_img;
CvMat tstub, *templ = (CvMat*)_templ;
CvMat rstub, *result = (CvMat*)_result;
CvScalar templ_mean = cvScalarAll(0);
double templ_norm = 0, templ_sum2 = 0;
int idx = 0, idx2 = 0;
double *p0, *p1, *p2, *p3;
double *q0, *q1, *q2, *q3;
double inv_area;
int sum_step, sqsum_step;
int num_type = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 :
int numType = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 :
method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED ? 1 : 2;
int is_normed = method == CV_TM_CCORR_NORMED ||
bool isNormed = method == CV_TM_CCORR_NORMED ||
method == CV_TM_SQDIFF_NORMED ||
method == CV_TM_CCOEFF_NORMED;
img = cvGetMat( img, &stub, &coi1 );
templ = cvGetMat( templ, &tstub, &coi2 );
result = cvGetMat( result, &rstub );
Mat img = _img, templ = _templ;
if( img.rows < templ.rows || img.cols < templ.cols )
std::swap(img, templ);
if( CV_MAT_DEPTH( img->type ) != CV_8U &&
CV_MAT_DEPTH( img->type ) != CV_32F )
CV_Error( CV_StsUnsupportedFormat,
"The function supports only 8u and 32f data types" );
CV_Assert( (img.depth() == CV_8U || img.depth() == CV_32F) &&
img.type() == templ.type() );
if( !CV_ARE_TYPES_EQ( img, templ ))
CV_Error( CV_StsUnmatchedSizes, "image and template should have the same type" );
if( CV_MAT_TYPE( result->type ) != CV_32FC1 )
CV_Error( CV_StsUnsupportedFormat, "output image should have 32f type" );
if( img->rows < templ->rows || img->cols < templ->cols )
{
CvMat* t;
CV_SWAP( img, templ, t );
}
if( result->rows != img->rows - templ->rows + 1 ||
result->cols != img->cols - templ->cols + 1 )
CV_Error( CV_StsUnmatchedSizes, "output image should be (W - w + 1)x(H - h + 1)" );
if( method < CV_TM_SQDIFF || method > CV_TM_CCOEFF_NORMED )
CV_Error( CV_StsBadArg, "unknown comparison method" );
depth = CV_MAT_DEPTH(img->type);
cn = CV_MAT_CN(img->type);
icvCrossCorr( img, templ, result );
int cn = img.channels();
crossCorr( img, templ, result,
Size(img.cols - templ.cols + 1, img.rows - templ.rows + 1),
CV_32F, Point(0,0), 0, 0);
if( method == CV_TM_CCORR )
return;
inv_area = 1./((double)templ->rows * templ->cols);
double invArea = 1./((double)templ.rows * templ.cols);
Mat sum, sqsum;
Scalar templMean, templSdv;
double *q0 = 0, *q1 = 0, *q2 = 0, *q3 = 0;
double templNorm = 0, templSum2 = 0;
sum = cvCreateMat( img->rows + 1, img->cols + 1, CV_MAKETYPE( CV_64F, cn ));
if( method == CV_TM_CCOEFF )
{
cvIntegral( img, sum, 0, 0 );
templ_mean = cvAvg( templ );
q0 = q1 = q2 = q3 = 0;
integral(img, sum, CV_64F);
templMean = mean(templ);
}
else
{
CvScalar _templ_sdv = cvScalarAll(0);
sqsum = cvCreateMat( img->rows + 1, img->cols + 1, CV_MAKETYPE( CV_64F, cn ));
cvIntegral( img, sum, sqsum, 0 );
cvAvgSdv( templ, &templ_mean, &_templ_sdv );
integral(img, sum, sqsum, CV_64F);
meanStdDev( templ, templMean, templSdv );
templ_norm = CV_SQR(_templ_sdv.val[0]) + CV_SQR(_templ_sdv.val[1]) +
CV_SQR(_templ_sdv.val[2]) + CV_SQR(_templ_sdv.val[3]);
templNorm = CV_SQR(templSdv[0]) + CV_SQR(templSdv[1]) +
CV_SQR(templSdv[2]) + CV_SQR(templSdv[3]);
if( templ_norm < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED )
if( templNorm < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED )
{
cvSet( result, cvScalarAll(1.) );
result = Scalar::all(1);
return;
}
templ_sum2 = templ_norm +
CV_SQR(templ_mean.val[0]) + CV_SQR(templ_mean.val[1]) +
CV_SQR(templ_mean.val[2]) + CV_SQR(templ_mean.val[3]);
templSum2 = templNorm +
CV_SQR(templMean[0]) + CV_SQR(templMean[1]) +
CV_SQR(templMean[2]) + CV_SQR(templMean[3]);
if( num_type != 1 )
if( numType != 1 )
{
templ_mean = cvScalarAll(0);
templ_norm = templ_sum2;
templMean = Scalar::all(0);
templNorm = templSum2;
}
templ_sum2 /= inv_area;
templ_norm = sqrt(templ_norm);
templ_norm /= sqrt(inv_area); // care of accuracy here
templSum2 /= invArea;
templNorm = sqrt(templNorm);
templNorm /= sqrt(invArea); // care of accuracy here
q0 = (double*)sqsum->data.ptr;
q1 = q0 + templ->cols*cn;
q2 = (double*)(sqsum->data.ptr + templ->rows*sqsum->step);
q3 = q2 + templ->cols*cn;
q0 = (double*)sqsum.data;
q1 = q0 + templ.cols*cn;
q2 = (double*)(sqsum.data + templ.rows*sqsum.step);
q3 = q2 + templ.cols*cn;
}
p0 = (double*)sum->data.ptr;
p1 = p0 + templ->cols*cn;
p2 = (double*)(sum->data.ptr + templ->rows*sum->step);
p3 = p2 + templ->cols*cn;
double* p0 = (double*)sum.data;
double* p1 = p0 + templ.cols*cn;
double* p2 = (double*)(sum.data + templ.rows*sum.step);
double* p3 = p2 + templ.cols*cn;
sum_step = sum ? sum->step / sizeof(double) : 0;
sqsum_step = sqsum ? sqsum->step / sizeof(double) : 0;
int sumstep = sum.data ? sum.step / sizeof(double) : 0;
int sqstep = sqsum.data ? sqsum.step / sizeof(double) : 0;
for( i = 0; i < result->rows; i++ )
int i, j, k;
for( i = 0; i < result.rows; i++ )
{
float* rrow = (float*)(result->data.ptr + i*result->step);
idx = i * sum_step;
idx2 = i * sqsum_step;
float* rrow = (float*)(result.data + i*result.step);
int idx = i * sumstep;
int idx2 = i * sqstep;
for( j = 0; j < result->cols; j++, idx += cn, idx2 += cn )
for( j = 0; j < result.cols; j++, idx += cn, idx2 += cn )
{
double num = rrow[j], t;
double wnd_mean2 = 0, wnd_sum2 = 0;
double wndMean2 = 0, wndSum2 = 0;
if( num_type == 1 )
if( numType == 1 )
{
for( k = 0; k < cn; k++ )
{
t = p0[idx+k] - p1[idx+k] - p2[idx+k] + p3[idx+k];
wnd_mean2 += CV_SQR(t);
num -= t*templ_mean.val[k];
wndMean2 += CV_SQR(t);
num -= t*templMean[k];
}
wnd_mean2 *= inv_area;
wndMean2 *= invArea;
}
if( is_normed || num_type == 2 )
if( isNormed || numType == 2 )
{
for( k = 0; k < cn; k++ )
{
t = q0[idx2+k] - q1[idx2+k] - q2[idx2+k] + q3[idx2+k];
wnd_sum2 += t;
wndSum2 += t;
}
if( num_type == 2 )
num = wnd_sum2 - 2*num + templ_sum2;
if( numType == 2 )
num = wndSum2 - 2*num + templSum2;
}
if( is_normed )
if( isNormed )
{
t = sqrt(MAX(wnd_sum2 - wnd_mean2,0))*templ_norm;
t = sqrt(MAX(wndSum2 - wndMean2,0))*templNorm;
if( fabs(num) < t )
num /= t;
else if( fabs(num) < t*1.125 )
@ -477,12 +368,18 @@ cvMatchTemplate( const CvArr* _img, const CvArr* _templ, CvArr* _result, int met
}
}
void cv::matchTemplate( const Mat& image, const Mat& templ, Mat& result, int method )
}
CV_IMPL void
cvMatchTemplate( const CvArr* _img, const CvArr* _templ, CvArr* _result, int method )
{
result.create( std::abs(image.rows - templ.rows) + 1,
std::abs(image.cols - templ.cols) + 1, CV_32F );
CvMat _image = image, _templ = templ, _result = result;
cvMatchTemplate( &_image, &_templ, &_result, method );
cv::Mat img = cv::cvarrToMat(_img), templ = cv::cvarrToMat(_templ),
result = cv::cvarrToMat(_result);
CV_Assert( result.size() == cv::Size(std::abs(img.cols - templ.cols) + 1,
std::abs(img.rows - templ.rows) + 1) &&
result.type() == CV_32F );
matchTemplate(img, templ, result, method);
}
/* End of file. */