Fixed #1996
This commit is contained in:
parent
1a572c8e89
commit
9399394e6c
@ -16,8 +16,8 @@ are met:
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
*Neither the name of the University of Cambridge nor the names of
|
||||
its contributors may be used to endorse or promote products derived
|
||||
*Neither the name of the University of Cambridge nor the names of
|
||||
its contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
@ -35,7 +35,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
/*
|
||||
The references are:
|
||||
* Machine learning for high-speed corner detection,
|
||||
* Machine learning for high-speed corner detection,
|
||||
E. Rosten and T. Drummond, ECCV 2006
|
||||
* Faster and better: A machine learning approach to corner detection
|
||||
E. Rosten, R. Porter and T. Drummond, PAMI, 2009
|
||||
@ -64,7 +64,7 @@ static void makeOffsets(int pixel[], int row_stride)
|
||||
pixel[13] = -3 + row_stride * 1;
|
||||
pixel[14] = -2 + row_stride * 2;
|
||||
pixel[15] = -1 + row_stride * 3;
|
||||
}
|
||||
}
|
||||
|
||||
static int cornerScore(const uchar* ptr, const int pixel[], int threshold)
|
||||
{
|
||||
@ -73,7 +73,7 @@ static int cornerScore(const uchar* ptr, const int pixel[], int threshold)
|
||||
short d[N];
|
||||
for( k = 0; k < N; k++ )
|
||||
d[k] = (short)(v - ptr[pixel[k]]);
|
||||
|
||||
|
||||
#if CV_SSE2
|
||||
__m128i q0 = _mm_set1_epi16(-1000), q1 = _mm_set1_epi16(1000);
|
||||
for( k = 0; k < 16; k += 8 )
|
||||
@ -128,7 +128,7 @@ static int cornerScore(const uchar* ptr, const int pixel[], int threshold)
|
||||
a0 = std::max(a0, std::min(a, (int)d[k]));
|
||||
a0 = std::max(a0, std::min(a, (int)d[k+9]));
|
||||
}
|
||||
|
||||
|
||||
int b0 = -a0;
|
||||
for( k = 0; k < 16; k += 2 )
|
||||
{
|
||||
@ -141,14 +141,14 @@ static int cornerScore(const uchar* ptr, const int pixel[], int threshold)
|
||||
b = std::max(b, (int)d[k+6]);
|
||||
b = std::max(b, (int)d[k+7]);
|
||||
b = std::max(b, (int)d[k+8]);
|
||||
|
||||
|
||||
b0 = std::min(b0, std::max(b, (int)d[k]));
|
||||
b0 = std::min(b0, std::max(b, (int)d[k+9]));
|
||||
}
|
||||
|
||||
|
||||
threshold = -b0-1;
|
||||
#endif
|
||||
|
||||
|
||||
#if 0
|
||||
// check that with the computed "threshold" the pixel is still a corner
|
||||
// and that with the increased-by-1 "threshold" the pixel is not a corner anymore
|
||||
@ -157,7 +157,7 @@ static int cornerScore(const uchar* ptr, const int pixel[], int threshold)
|
||||
int v0 = std::min(ptr[0] + threshold + delta, 255);
|
||||
int v1 = std::max(ptr[0] - threshold - delta, 0);
|
||||
int c0 = 0, c1 = 0;
|
||||
|
||||
|
||||
for( int k = 0; k < N; k++ )
|
||||
{
|
||||
int x = ptr[pixel[k]];
|
||||
@ -184,7 +184,7 @@ static int cornerScore(const uchar* ptr, const int pixel[], int threshold)
|
||||
#endif
|
||||
return threshold;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression)
|
||||
{
|
||||
@ -214,7 +214,7 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
cpbuf[1] = cpbuf[0] + img.cols + 1;
|
||||
cpbuf[2] = cpbuf[1] + img.cols + 1;
|
||||
memset(buf[0], 0, img.cols*3);
|
||||
|
||||
|
||||
for(i = 3; i < img.rows-2; i++)
|
||||
{
|
||||
const uchar* ptr = img.ptr<uchar>(i) + 3;
|
||||
@ -222,7 +222,7 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
int* cornerpos = cpbuf[(i - 3)%3];
|
||||
memset(curr, 0, img.cols);
|
||||
int ncorners = 0;
|
||||
|
||||
|
||||
if( i < img.rows - 3 )
|
||||
{
|
||||
j = 3;
|
||||
@ -233,7 +233,7 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
__m128i v0 = _mm_loadu_si128((const __m128i*)ptr);
|
||||
__m128i v1 = _mm_xor_si128(_mm_subs_epu8(v0, t), delta);
|
||||
v0 = _mm_xor_si128(_mm_adds_epu8(v0, t), delta);
|
||||
|
||||
|
||||
__m128i x0 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[0])), delta);
|
||||
__m128i x1 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[4])), delta);
|
||||
__m128i x2 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[8])), delta);
|
||||
@ -256,24 +256,24 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
ptr -= 8;
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
__m128i c0 = _mm_setzero_si128(), c1 = c0, max0 = c0, max1 = c0;
|
||||
for( k = 0; k < N; k++ )
|
||||
{
|
||||
__m128i x = _mm_xor_si128(_mm_loadu_si128((const __m128i*)(ptr + pixel[k])), delta);
|
||||
m0 = _mm_cmpgt_epi8(x, v0);
|
||||
m1 = _mm_cmpgt_epi8(v1, x);
|
||||
|
||||
|
||||
c0 = _mm_and_si128(_mm_sub_epi8(c0, m0), m0);
|
||||
c1 = _mm_and_si128(_mm_sub_epi8(c1, m1), m1);
|
||||
|
||||
|
||||
max0 = _mm_max_epu8(max0, c0);
|
||||
max1 = _mm_max_epu8(max1, c1);
|
||||
}
|
||||
|
||||
|
||||
max0 = _mm_max_epu8(max0, max1);
|
||||
int m = _mm_movemask_epi8(_mm_cmpgt_epi8(max0, K16));
|
||||
|
||||
|
||||
for( k = 0; m > 0 && k < 16; k++, m >>= 1 )
|
||||
if(m & 1)
|
||||
{
|
||||
@ -288,26 +288,26 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
int v = ptr[0];
|
||||
const uchar* tab = &threshold_tab[0] - v + 255;
|
||||
int d = tab[ptr[pixel[0]]] | tab[ptr[pixel[8]]];
|
||||
|
||||
|
||||
if( d == 0 )
|
||||
continue;
|
||||
|
||||
|
||||
d &= tab[ptr[pixel[2]]] | tab[ptr[pixel[10]]];
|
||||
d &= tab[ptr[pixel[4]]] | tab[ptr[pixel[12]]];
|
||||
d &= tab[ptr[pixel[6]]] | tab[ptr[pixel[14]]];
|
||||
|
||||
|
||||
if( d == 0 )
|
||||
continue;
|
||||
|
||||
|
||||
d &= tab[ptr[pixel[1]]] | tab[ptr[pixel[9]]];
|
||||
d &= tab[ptr[pixel[3]]] | tab[ptr[pixel[11]]];
|
||||
d &= tab[ptr[pixel[5]]] | tab[ptr[pixel[13]]];
|
||||
d &= tab[ptr[pixel[7]]] | tab[ptr[pixel[15]]];
|
||||
|
||||
|
||||
if( d & 1 )
|
||||
{
|
||||
int vt = v - threshold, count = 0;
|
||||
|
||||
|
||||
for( k = 0; k < N; k++ )
|
||||
{
|
||||
int x = ptr[pixel[k]];
|
||||
@ -325,11 +325,11 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( d & 2 )
|
||||
{
|
||||
int vt = v + threshold, count = 0;
|
||||
|
||||
|
||||
for( k = 0; k < N; k++ )
|
||||
{
|
||||
int x = ptr[pixel[k]];
|
||||
@ -349,17 +349,17 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
cornerpos[-1] = ncorners;
|
||||
|
||||
|
||||
if( i == 3 )
|
||||
continue;
|
||||
|
||||
|
||||
const uchar* prev = buf[(i - 4 + 3)%3];
|
||||
const uchar* pprev = buf[(i - 5 + 3)%3];
|
||||
cornerpos = cpbuf[(i - 4 + 3)%3];
|
||||
ncorners = cornerpos[-1];
|
||||
|
||||
|
||||
for( k = 0; k < ncorners; k++ )
|
||||
{
|
||||
j = cornerpos[k];
|
||||
@ -375,7 +375,7 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* FastFeatureDetector
|
||||
*/
|
||||
|
@ -53,31 +53,31 @@ static void
|
||||
HarrisResponses(const Mat& img, vector<KeyPoint>& pts, int blockSize, float harris_k)
|
||||
{
|
||||
CV_Assert( img.type() == CV_8UC1 && blockSize*blockSize <= 2048 );
|
||||
|
||||
|
||||
size_t ptidx, ptsize = pts.size();
|
||||
|
||||
|
||||
const uchar* ptr00 = img.ptr<uchar>();
|
||||
int step = (int)(img.step/img.elemSize1());
|
||||
int r = blockSize/2;
|
||||
|
||||
|
||||
float scale = (1 << 2) * blockSize * 255.0f;
|
||||
scale = 1.0f / scale;
|
||||
float scale_sq_sq = scale * scale * scale * scale;
|
||||
|
||||
|
||||
AutoBuffer<int> ofsbuf(blockSize*blockSize);
|
||||
int* ofs = ofsbuf;
|
||||
for( int i = 0; i < blockSize; i++ )
|
||||
for( int j = 0; j < blockSize; j++ )
|
||||
ofs[i*blockSize + j] = (int)(i*step + j);
|
||||
|
||||
|
||||
for( ptidx = 0; ptidx < ptsize; ptidx++ )
|
||||
{
|
||||
int x0 = cvRound(pts[ptidx].pt.x - r);
|
||||
int y0 = cvRound(pts[ptidx].pt.y - r);
|
||||
|
||||
|
||||
const uchar* ptr0 = ptr00 + y0*step + x0;
|
||||
int a = 0, b = 0, c = 0;
|
||||
|
||||
|
||||
for( int k = 0; k < blockSize*blockSize; k++ )
|
||||
{
|
||||
const uchar* ptr = ptr0 + ofs[k];
|
||||
@ -98,13 +98,13 @@ static float IC_Angle(const Mat& image, const int half_k, Point2f pt,
|
||||
const vector<int> & u_max)
|
||||
{
|
||||
int m_01 = 0, m_10 = 0;
|
||||
|
||||
|
||||
const uchar* center = &image.at<uchar> (cvRound(pt.y), cvRound(pt.x));
|
||||
|
||||
|
||||
// Treat the center line differently, v=0
|
||||
for (int u = -half_k; u <= half_k; ++u)
|
||||
m_10 += u * center[u];
|
||||
|
||||
|
||||
// Go line by line in the circular patch
|
||||
int step = (int)image.step1();
|
||||
for (int v = 1; v <= half_k; ++v)
|
||||
@ -120,7 +120,7 @@ static float IC_Angle(const Mat& image, const int half_k, Point2f pt,
|
||||
}
|
||||
m_01 += v * v_sum;
|
||||
}
|
||||
|
||||
|
||||
return fastAtan2((float)m_01, (float)m_10);
|
||||
}
|
||||
|
||||
@ -134,10 +134,10 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
//angle = cvFloor(angle/12)*12.f;
|
||||
angle *= (float)(CV_PI/180.f);
|
||||
float a = (float)cos(angle), b = (float)sin(angle);
|
||||
|
||||
|
||||
const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
|
||||
int step = (int)img.step;
|
||||
|
||||
|
||||
#if 1
|
||||
#define GET_VALUE(idx) \
|
||||
center[cvRound(pattern[idx].x*b + pattern[idx].y*a)*step + \
|
||||
@ -153,7 +153,7 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \
|
||||
center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y))
|
||||
#endif
|
||||
|
||||
|
||||
if( WTA_K == 2 )
|
||||
{
|
||||
for (int i = 0; i < dsize; ++i, pattern += 16)
|
||||
@ -175,7 +175,7 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
val |= (t0 < t1) << 6;
|
||||
t0 = GET_VALUE(14); t1 = GET_VALUE(15);
|
||||
val |= (t0 < t1) << 7;
|
||||
|
||||
|
||||
desc[i] = (uchar)val;
|
||||
}
|
||||
}
|
||||
@ -186,16 +186,16 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
int t0, t1, t2, val;
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
|
||||
val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);
|
||||
|
||||
|
||||
t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;
|
||||
|
||||
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;
|
||||
|
||||
|
||||
t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
|
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;
|
||||
|
||||
|
||||
desc[i] = (uchar)val;
|
||||
}
|
||||
}
|
||||
@ -211,7 +211,7 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val = k;
|
||||
|
||||
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5);
|
||||
t2 = GET_VALUE(6); t3 = GET_VALUE(7);
|
||||
u = 0, v = 2;
|
||||
@ -219,7 +219,7 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val |= k << 2;
|
||||
|
||||
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9);
|
||||
t2 = GET_VALUE(10); t3 = GET_VALUE(11);
|
||||
u = 0, v = 2;
|
||||
@ -227,7 +227,7 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val |= k << 4;
|
||||
|
||||
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13);
|
||||
t2 = GET_VALUE(14); t3 = GET_VALUE(15);
|
||||
u = 0, v = 2;
|
||||
@ -235,23 +235,23 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
if( t3 > t2 ) t2 = t3, v = 3;
|
||||
k = t0 > t2 ? u : v;
|
||||
val |= k << 6;
|
||||
|
||||
|
||||
desc[i] = (uchar)val;
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." );
|
||||
|
||||
|
||||
#undef GET_VALUE
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
static void initializeOrbPattern( const Point* pattern0, vector<Point>& pattern, int ntuples, int tupleSize, int poolSize )
|
||||
{
|
||||
RNG rng(0x12345678);
|
||||
int i, k, k1;
|
||||
pattern.resize(ntuples*tupleSize);
|
||||
|
||||
|
||||
for( i = 0; i < ntuples; i++ )
|
||||
{
|
||||
for( k = 0; k < tupleSize; k++ )
|
||||
@ -545,7 +545,7 @@ static void makeRandomPattern(int patchSize, Point* pattern, int npoints)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
static inline float getScale(int level, int firstLevel, double scaleFactor)
|
||||
{
|
||||
return (float)std::pow(scaleFactor, (double)(level - firstLevel));
|
||||
@ -570,8 +570,8 @@ int ORB::descriptorSize() const
|
||||
int ORB::descriptorType() const
|
||||
{
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** Compute the ORB features and descriptors on an image
|
||||
* @param img the image to compute the features and descriptors on
|
||||
* @param mask the mask to apply
|
||||
@ -599,7 +599,7 @@ static void computeOrientation(const Mat& image, vector<KeyPoint>& keypoints,
|
||||
keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Compute the ORB keypoints on an image
|
||||
* @param image_pyramid the image pyramid to compute the features and descriptors on
|
||||
@ -614,11 +614,11 @@ static void computeKeyPoints(const vector<Mat>& imagePyramid,
|
||||
{
|
||||
int nlevels = (int)imagePyramid.size();
|
||||
vector<int> nfeaturesPerLevel(nlevels);
|
||||
|
||||
|
||||
// fill the extractors and descriptors for the corresponding scales
|
||||
float factor = (float)(1.0 / scaleFactor);
|
||||
float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));
|
||||
|
||||
|
||||
int sumFeatures = 0;
|
||||
for( int level = 0; level < nlevels-1; level++ )
|
||||
{
|
||||
@ -627,19 +627,19 @@ static void computeKeyPoints(const vector<Mat>& imagePyramid,
|
||||
ndesiredFeaturesPerScale *= factor;
|
||||
}
|
||||
nfeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);
|
||||
|
||||
|
||||
// Make sure we forget about what is too close to the boundary
|
||||
//edge_threshold_ = std::max(edge_threshold_, patch_size_/2 + kKernelWidth / 2 + 2);
|
||||
|
||||
|
||||
// pre-compute the end of a row in a circular patch
|
||||
int halfPatchSize = patchSize / 2;
|
||||
vector<int> umax(halfPatchSize + 1);
|
||||
|
||||
|
||||
int v, v0, vmax = cvFloor(halfPatchSize * sqrt(2.f) / 2 + 1);
|
||||
int vmin = cvCeil(halfPatchSize * sqrt(2.f) / 2);
|
||||
for (v = 0; v <= vmax; ++v)
|
||||
umax[v] = cvRound(sqrt((double)halfPatchSize * halfPatchSize - v * v));
|
||||
|
||||
|
||||
// Make sure we are symmetric
|
||||
for (v = halfPatchSize, v0 = 0; v >= vmin; --v)
|
||||
{
|
||||
@ -648,37 +648,37 @@ static void computeKeyPoints(const vector<Mat>& imagePyramid,
|
||||
umax[v] = v0;
|
||||
++v0;
|
||||
}
|
||||
|
||||
|
||||
allKeypoints.resize(nlevels);
|
||||
|
||||
|
||||
for (int level = 0; level < nlevels; ++level)
|
||||
{
|
||||
int nfeatures = nfeaturesPerLevel[level];
|
||||
allKeypoints[level].reserve(nfeatures*2);
|
||||
|
||||
|
||||
vector<KeyPoint> & keypoints = allKeypoints[level];
|
||||
|
||||
|
||||
// Detect FAST features, 20 is a good threshold
|
||||
FastFeatureDetector fd(20, true);
|
||||
fd.detect(imagePyramid[level], keypoints, maskPyramid[level]);
|
||||
|
||||
|
||||
// Remove keypoints very close to the border
|
||||
KeyPointsFilter::runByImageBorder(keypoints, imagePyramid[level].size(), edgeThreshold);
|
||||
|
||||
|
||||
if( scoreType == ORB::HARRIS_SCORE )
|
||||
{
|
||||
// Keep more points than necessary as FAST does not give amazing corners
|
||||
KeyPointsFilter::retainBest(keypoints, 2 * nfeatures);
|
||||
|
||||
|
||||
// Compute the Harris cornerness (better scoring than FAST)
|
||||
HarrisResponses(imagePyramid[level], keypoints, 7, HARRIS_K);
|
||||
}
|
||||
|
||||
|
||||
//cull to the final desired level, using the new Harris scores or the original FAST scores.
|
||||
KeyPointsFilter::retainBest(keypoints, nfeatures);
|
||||
|
||||
KeyPointsFilter::retainBest(keypoints, nfeatures);
|
||||
|
||||
float sf = getScale(level, firstLevel, scaleFactor);
|
||||
|
||||
|
||||
// Set the level of the coordinates
|
||||
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
|
||||
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
|
||||
@ -686,12 +686,12 @@ static void computeKeyPoints(const vector<Mat>& imagePyramid,
|
||||
keypoint->octave = level;
|
||||
keypoint->size = patchSize*sf;
|
||||
}
|
||||
|
||||
|
||||
computeOrientation(imagePyramid[level], keypoints, halfPatchSize, umax);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Compute the ORB decriptors
|
||||
* @param image the image to compute the features and descriptors on
|
||||
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
|
||||
@ -706,12 +706,12 @@ static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Ma
|
||||
CV_Assert(image.type() == CV_8UC1);
|
||||
//create the descriptor mat, keypoints.size() rows, BYTES cols
|
||||
descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1);
|
||||
|
||||
|
||||
for (size_t i = 0; i < keypoints.size(); i++)
|
||||
computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, WTA_K);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/** Compute the ORB features and descriptors on an image
|
||||
* @param img the image to compute the features and descriptors on
|
||||
* @param mask the mask to apply
|
||||
@ -725,21 +725,21 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
{
|
||||
bool do_keypoints = !useProvidedKeypoints;
|
||||
bool do_descriptors = _descriptors.needed();
|
||||
|
||||
|
||||
if( (!do_keypoints && !do_descriptors) || _image.empty() )
|
||||
return;
|
||||
|
||||
|
||||
//ROI handling
|
||||
const int HARRIS_BLOCK_SIZE = 9;
|
||||
int halfPatchSize = patchSize / 2;
|
||||
int border = std::max(edgeThreshold, std::max(halfPatchSize, HARRIS_BLOCK_SIZE/2))+1;
|
||||
|
||||
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
if( image.type() != CV_8UC1 )
|
||||
cvtColor(_image, image, CV_BGR2GRAY);
|
||||
|
||||
|
||||
int nlevels = this->nlevels;
|
||||
|
||||
|
||||
if( !do_keypoints )
|
||||
{
|
||||
// if we have pre-computed keypoints, they may use more levels than it is set in parameters
|
||||
@ -756,7 +756,7 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
nlevels = std::max(nlevels, std::max(_keypoints[i].octave, 0));
|
||||
nlevels++;
|
||||
}
|
||||
|
||||
|
||||
// Pre-compute the scale pyramids
|
||||
vector<Mat> imagePyramid(nlevels), maskPyramid(nlevels);
|
||||
for (int level = 0; level < nlevels; ++level)
|
||||
@ -766,49 +766,48 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
Size wholeSize(sz.width + border*2, sz.height + border*2);
|
||||
Mat temp(wholeSize, image.type()), masktemp;
|
||||
imagePyramid[level] = temp(Rect(border, border, sz.width, sz.height));
|
||||
|
||||
|
||||
if( !mask.empty() )
|
||||
{
|
||||
masktemp = Mat(wholeSize, mask.type());
|
||||
maskPyramid[level] = masktemp(Rect(border, border, sz.width, sz.height));
|
||||
}
|
||||
|
||||
|
||||
// Compute the resized image
|
||||
if( level != firstLevel )
|
||||
{
|
||||
if( level < firstLevel )
|
||||
{
|
||||
resize(image, imagePyramid[level], sz, scale, scale, INTER_LINEAR);
|
||||
resize(image, imagePyramid[level], sz, 0, 0, INTER_LINEAR);
|
||||
if (!mask.empty())
|
||||
resize(mask, maskPyramid[level], sz, scale, scale, INTER_LINEAR);
|
||||
copyMakeBorder(imagePyramid[level], temp, border, border, border, border,
|
||||
BORDER_REFLECT_101+BORDER_ISOLATED);
|
||||
resize(mask, maskPyramid[level], sz, 0, 0, INTER_LINEAR);
|
||||
}
|
||||
else
|
||||
{
|
||||
resize(imagePyramid[level-1], imagePyramid[level], sz,
|
||||
1./scaleFactor, 1./scaleFactor, INTER_LINEAR);
|
||||
resize(imagePyramid[level-1], imagePyramid[level], sz, 0, 0, INTER_LINEAR);
|
||||
if (!mask.empty())
|
||||
resize(maskPyramid[level-1], maskPyramid[level], sz,
|
||||
1./scaleFactor, 1./scaleFactor, INTER_LINEAR);
|
||||
copyMakeBorder(imagePyramid[level], temp, border, border, border, border,
|
||||
BORDER_REFLECT_101+BORDER_ISOLATED);
|
||||
{
|
||||
resize(maskPyramid[level-1], maskPyramid[level], sz, 0, 0, INTER_LINEAR);
|
||||
threshold(maskPyramid[level], maskPyramid[level], 254, 0, THRESH_TOZERO);
|
||||
}
|
||||
}
|
||||
|
||||
copyMakeBorder(imagePyramid[level], temp, border, border, border, border,
|
||||
BORDER_REFLECT_101+BORDER_ISOLATED);
|
||||
if (!mask.empty())
|
||||
copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border,
|
||||
BORDER_CONSTANT+BORDER_ISOLATED);
|
||||
}
|
||||
else
|
||||
{
|
||||
copyMakeBorder(image, temp, border, border, border, border,
|
||||
BORDER_REFLECT_101);
|
||||
image.copyTo(imagePyramid[level]);
|
||||
if( !mask.empty() )
|
||||
mask.copyTo(maskPyramid[level]);
|
||||
copyMakeBorder(mask, masktemp, border, border, border, border,
|
||||
BORDER_CONSTANT+BORDER_ISOLATED);
|
||||
}
|
||||
|
||||
if( !mask.empty() )
|
||||
copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border,
|
||||
BORDER_CONSTANT+BORDER_ISOLATED);
|
||||
}
|
||||
|
||||
|
||||
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
|
||||
vector < vector<KeyPoint> > allKeypoints;
|
||||
if( do_keypoints )
|
||||
@ -817,19 +816,19 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
computeKeyPoints(imagePyramid, maskPyramid, allKeypoints,
|
||||
nfeatures, firstLevel, scaleFactor,
|
||||
edgeThreshold, patchSize, scoreType);
|
||||
|
||||
|
||||
// make sure we have the right number of keypoints keypoints
|
||||
/*vector<KeyPoint> temp;
|
||||
|
||||
|
||||
for (int level = 0; level < n_levels; ++level)
|
||||
{
|
||||
vector<KeyPoint>& keypoints = all_keypoints[level];
|
||||
temp.insert(temp.end(), keypoints.begin(), keypoints.end());
|
||||
keypoints.clear();
|
||||
}
|
||||
|
||||
|
||||
KeyPoint::retainBest(temp, n_features_);
|
||||
|
||||
|
||||
for (vector<KeyPoint>::iterator keypoint = temp.begin(),
|
||||
keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint)
|
||||
all_keypoints[keypoint->octave].push_back(*keypoint);*/
|
||||
@ -838,19 +837,19 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
{
|
||||
// Remove keypoints very close to the border
|
||||
KeyPointsFilter::runByImageBorder(_keypoints, image.size(), edgeThreshold);
|
||||
|
||||
|
||||
// Cluster the input keypoints depending on the level they were computed at
|
||||
allKeypoints.resize(nlevels);
|
||||
for (vector<KeyPoint>::iterator keypoint = _keypoints.begin(),
|
||||
keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint)
|
||||
allKeypoints[keypoint->octave].push_back(*keypoint);
|
||||
|
||||
|
||||
// Make sure we rescale the coordinates
|
||||
for (int level = 0; level < nlevels; ++level)
|
||||
{
|
||||
if (level == firstLevel)
|
||||
continue;
|
||||
|
||||
|
||||
vector<KeyPoint> & keypoints = allKeypoints[level];
|
||||
float scale = 1/getScale(level, firstLevel, scaleFactor);
|
||||
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
|
||||
@ -858,10 +857,10 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
keypoint->pt *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Mat descriptors;
|
||||
vector<Point> pattern;
|
||||
|
||||
|
||||
if( do_descriptors )
|
||||
{
|
||||
int nkeypoints = 0;
|
||||
@ -874,19 +873,19 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
_descriptors.create(nkeypoints, descriptorSize(), CV_8U);
|
||||
descriptors = _descriptors.getMat();
|
||||
}
|
||||
|
||||
|
||||
const int npoints = 512;
|
||||
Point patternbuf[npoints];
|
||||
const Point* pattern0 = (const Point*)bit_pattern_31_;
|
||||
|
||||
|
||||
if( patchSize != 31 )
|
||||
{
|
||||
pattern0 = patternbuf;
|
||||
makeRandomPattern(patchSize, patternbuf, npoints);
|
||||
}
|
||||
|
||||
|
||||
CV_Assert( WTA_K == 2 || WTA_K == 3 || WTA_K == 4 );
|
||||
|
||||
|
||||
if( WTA_K == 2 )
|
||||
std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));
|
||||
else
|
||||
@ -895,7 +894,7 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
_keypoints.clear();
|
||||
int offset = 0;
|
||||
for (int level = 0; level < nlevels; ++level)
|
||||
@ -903,15 +902,15 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
// Get the features and compute their orientation
|
||||
vector<KeyPoint>& keypoints = allKeypoints[level];
|
||||
int nkeypoints = (int)keypoints.size();
|
||||
|
||||
|
||||
// Compute the descriptors
|
||||
if (do_descriptors)
|
||||
{
|
||||
Mat desc;
|
||||
if (!descriptors.empty())
|
||||
if (!descriptors.empty())
|
||||
{
|
||||
desc = descriptors.rowRange(offset, offset + nkeypoints);
|
||||
}
|
||||
}
|
||||
|
||||
offset += nkeypoints;
|
||||
// preprocess the resized image
|
||||
@ -920,7 +919,7 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
|
||||
computeDescriptors(workingMat, keypoints, desc, pattern, descriptorSize(), WTA_K);
|
||||
}
|
||||
|
||||
|
||||
// Copy to the output data
|
||||
if (level != firstLevel)
|
||||
{
|
||||
@ -933,11 +932,11 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
|
||||
_keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ORB::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
|
||||
{
|
||||
(*this)(image, mask, keypoints, noArray(), false);
|
||||
}
|
||||
}
|
||||
|
||||
void ORB::computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const
|
||||
{
|
||||
|
@ -1091,3 +1091,51 @@ TEST( Features2d_DescriptorMatcher_FlannBased, regression )
|
||||
CV_DescriptorMatcherTest test( "descriptor-matcher-flann-based", new FlannBasedMatcher, 0.04f );
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
|
||||
TEST(Features2D_ORB, _1996)
|
||||
{
|
||||
cv::Ptr<cv::FeatureDetector> fd = cv::FeatureDetector::create("ORB");
|
||||
cv::Ptr<cv::DescriptorExtractor> de = cv::DescriptorExtractor::create("ORB");
|
||||
|
||||
Mat image = cv::imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/lena.jpg");
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
Mat roi(image.size(), CV_8UC1, Scalar(0));
|
||||
|
||||
Point poly[] = {Point(100, 20), Point(300, 50), Point(400, 200), Point(10, 500)};
|
||||
fillConvexPoly(roi, poly, int(sizeof(poly) / sizeof(poly[0])), Scalar(255));
|
||||
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
fd->detect(image, keypoints, roi);
|
||||
cv::Mat descriptors;
|
||||
de->compute(image, keypoints, descriptors);
|
||||
|
||||
//image.setTo(Scalar(255,255,255), roi);
|
||||
|
||||
int roiViolations = 0;
|
||||
for(std::vector<cv::KeyPoint>::const_iterator kp = keypoints.begin(); kp != keypoints.end(); ++kp)
|
||||
{
|
||||
int x = cvRound(kp->pt.x);
|
||||
int y = cvRound(kp->pt.y);
|
||||
|
||||
ASSERT_LE(0, x);
|
||||
ASSERT_LE(0, y);
|
||||
ASSERT_GT(image.cols, x);
|
||||
ASSERT_GT(image.rows, y);
|
||||
|
||||
// if (!roi.at<uchar>(y,x))
|
||||
// {
|
||||
// roiViolations++;
|
||||
// circle(image, kp->pt, 3, Scalar(0,0,255));
|
||||
// }
|
||||
}
|
||||
|
||||
// if(roiViolations)
|
||||
// {
|
||||
// imshow("img", image);
|
||||
// waitKey();
|
||||
// }
|
||||
|
||||
ASSERT_EQ(0, roiViolations);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user