Overloaded PCA constructor and ( ) operator to implement Feature#2287 - PCA that retains a specified amount of variance from the data. A sample was added to samples/cpp to demonstrate the new functionality. Docs and Tests were also updated
This commit is contained in:
@@ -2811,6 +2811,11 @@ PCA::PCA(InputArray data, InputArray _mean, int flags, int maxComponents)
|
||||
operator()(data, _mean, flags, maxComponents);
|
||||
}
|
||||
|
||||
PCA::PCA(InputArray data, InputArray _mean, int flags, double retainedVariance)
|
||||
{
|
||||
operator()(data, _mean, flags, retainedVariance);
|
||||
}
|
||||
|
||||
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComponents)
|
||||
{
|
||||
Mat data = _data.getMat(), _mean = __mean.getMat();
|
||||
@@ -2895,6 +2900,109 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComp
|
||||
return *this;
|
||||
}
|
||||
|
||||
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double retainedVariance)
|
||||
{
|
||||
Mat data = _data.getMat(), _mean = __mean.getMat();
|
||||
int covar_flags = CV_COVAR_SCALE;
|
||||
int i, len, in_count;
|
||||
Size mean_sz;
|
||||
|
||||
CV_Assert( data.channels() == 1 );
|
||||
if( flags & CV_PCA_DATA_AS_COL )
|
||||
{
|
||||
len = data.rows;
|
||||
in_count = data.cols;
|
||||
covar_flags |= CV_COVAR_COLS;
|
||||
mean_sz = Size(1, len);
|
||||
}
|
||||
else
|
||||
{
|
||||
len = data.cols;
|
||||
in_count = data.rows;
|
||||
covar_flags |= CV_COVAR_ROWS;
|
||||
mean_sz = Size(len, 1);
|
||||
}
|
||||
|
||||
CV_Assert( retainedVariance > 0 && retainedVariance <= 1 );
|
||||
|
||||
int count = std::min(len, in_count);
|
||||
|
||||
// "scrambled" way to compute PCA (when cols(A)>rows(A)):
|
||||
// B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y
|
||||
if( len <= in_count )
|
||||
covar_flags |= CV_COVAR_NORMAL;
|
||||
|
||||
int ctype = std::max(CV_32F, data.depth());
|
||||
mean.create( mean_sz, ctype );
|
||||
|
||||
Mat covar( count, count, ctype );
|
||||
|
||||
if( _mean.data )
|
||||
{
|
||||
CV_Assert( _mean.size() == mean_sz );
|
||||
_mean.convertTo(mean, ctype);
|
||||
}
|
||||
|
||||
calcCovarMatrix( data, covar, mean, covar_flags, ctype );
|
||||
eigen( covar, eigenvalues, eigenvectors );
|
||||
|
||||
if( !(covar_flags & CV_COVAR_NORMAL) )
|
||||
{
|
||||
// CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A
|
||||
// CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A'
|
||||
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
|
||||
if( data.type() != ctype || tmp_mean.data == mean.data )
|
||||
{
|
||||
data.convertTo( tmp_data, ctype );
|
||||
subtract( tmp_data, tmp_mean, tmp_data );
|
||||
}
|
||||
else
|
||||
{
|
||||
subtract( data, tmp_mean, tmp_mean );
|
||||
tmp_data = tmp_mean;
|
||||
}
|
||||
|
||||
Mat evects1(count, len, ctype);
|
||||
gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1,
|
||||
(flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0);
|
||||
eigenvectors = evects1;
|
||||
|
||||
// normalize all eigenvectors
|
||||
for( i = 0; i < eigenvectors.rows; i++ )
|
||||
{
|
||||
Mat vec = eigenvectors.row(i);
|
||||
normalize(vec, vec);
|
||||
}
|
||||
}
|
||||
|
||||
// compute the cumulative energy content for each eigenvector
|
||||
Mat g(eigenvalues.size(), ctype);
|
||||
|
||||
for(int ig = 0; ig < g.rows; ig++)
|
||||
{
|
||||
g.at<float>(ig,0) = 0;
|
||||
for(int im = 0; im <= ig; im++)
|
||||
{
|
||||
g.at<float>(ig,0) += eigenvalues.at<float>(im,0);
|
||||
}
|
||||
}
|
||||
|
||||
int L;
|
||||
for(L = 0; L < eigenvalues.rows; L++)
|
||||
{
|
||||
double energy = g.at<float>(L, 0) / g.at<float>(g.rows - 1, 0);
|
||||
if(energy > retainedVariance)
|
||||
break;
|
||||
}
|
||||
|
||||
L = std::max(2, L);
|
||||
|
||||
// use clone() to physically copy the data and thus deallocate the original matrices
|
||||
eigenvalues = eigenvalues.rowRange(0,L).clone();
|
||||
eigenvectors = eigenvectors.rowRange(0,L).clone();
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
void PCA::project(InputArray _data, OutputArray result) const
|
||||
{
|
||||
@@ -2965,6 +3073,15 @@ void cv::PCACompute(InputArray data, InputOutputArray mean,
|
||||
pca.eigenvectors.copyTo(eigenvectors);
|
||||
}
|
||||
|
||||
void cv::PCACompute(InputArray data, InputOutputArray mean,
|
||||
OutputArray eigenvectors, double retainedVariance)
|
||||
{
|
||||
PCA pca;
|
||||
pca(data, mean, 0, retainedVariance);
|
||||
pca.mean.copyTo(mean);
|
||||
pca.eigenvectors.copyTo(eigenvectors);
|
||||
}
|
||||
|
||||
void cv::PCAProject(InputArray data, InputArray mean,
|
||||
InputArray eigenvectors, OutputArray result)
|
||||
{
|
||||
|
Reference in New Issue
Block a user