added new ML models to points_classifier sample
This commit is contained in:
parent
5c9e6b7059
commit
92852ca06e
@ -124,9 +124,9 @@ int main(int argc, char** argv)
|
|||||||
ertrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
|
ertrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
|
||||||
print_result( ertrees.calc_error( &data, CV_TRAIN_ERROR), ertrees.calc_error( &data, CV_TEST_ERROR ), ertrees.get_var_importance() );
|
print_result( ertrees.calc_error( &data, CV_TRAIN_ERROR), ertrees.calc_error( &data, CV_TEST_ERROR ), ertrees.get_var_importance() );
|
||||||
|
|
||||||
printf("======GBTREES=====\n");
|
printf("======GBTREES=====\n");
|
||||||
gbtrees.train( &data, CvGBTreesParams(CvGBTrees::DEVIANCE_LOSS, 100, 0.05f, 0.6f, 10, true));
|
gbtrees.train( &data, CvGBTreesParams(CvGBTrees::DEVIANCE_LOSS, 100, 0.05f, 0.6f, 10, true));
|
||||||
print_result( gbtrees.calc_error( &data, CV_TRAIN_ERROR), gbtrees.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance
|
print_result( gbtrees.calc_error( &data, CV_TRAIN_ERROR), gbtrees.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
printf("File can not be read");
|
printf("File can not be read");
|
||||||
|
@ -12,19 +12,23 @@ const string winName = "points";
|
|||||||
const int testStep = 5;
|
const int testStep = 5;
|
||||||
|
|
||||||
|
|
||||||
Mat img, img_dst;
|
Mat img, imgDst;
|
||||||
RNG rng;
|
RNG rng;
|
||||||
|
|
||||||
vector<Point> trainedPoints;
|
vector<Point> trainedPoints;
|
||||||
vector<int> trainedPointsMarkers;
|
vector<int> trainedPointsMarkers;
|
||||||
vector<Scalar> classColors;
|
vector<Scalar> classColors;
|
||||||
|
|
||||||
#define KNN 0
|
#define NBC 0 // normal Bayessian classifier
|
||||||
#define SVM 0
|
#define KNN 0 // k nearest neighbors classifier
|
||||||
#define DT 1
|
#define SVM 0 // support vectors machine
|
||||||
#define RF 0
|
#define DT 1 // decision tree
|
||||||
#define ANN 0
|
#define BT 0 // ADA Boost
|
||||||
#define GMM 0
|
#define GBT 1 // gradient boosted trees
|
||||||
|
#define RF 0 // random forest
|
||||||
|
#define ERT 0 // extremely randomized trees
|
||||||
|
#define ANN 0 // artificial neural networks
|
||||||
|
#define EM 0 // expectation-maximization
|
||||||
|
|
||||||
void on_mouse( int event, int x, int y, int /*flags*/, void* )
|
void on_mouse( int event, int x, int y, int /*flags*/, void* )
|
||||||
{
|
{
|
||||||
@ -44,8 +48,18 @@ void on_mouse( int event, int x, int y, int /*flags*/, void* )
|
|||||||
}
|
}
|
||||||
else if( event == CV_EVENT_RBUTTONUP )
|
else if( event == CV_EVENT_RBUTTONUP )
|
||||||
{
|
{
|
||||||
classColors.push_back( Scalar((uchar)rng(256), (uchar)rng(256), (uchar)rng(256)) );
|
#if BT
|
||||||
updateFlag = true;
|
if( classColors.size() < 2 )
|
||||||
|
{
|
||||||
|
#endif
|
||||||
|
classColors.push_back( Scalar((uchar)rng(256), (uchar)rng(256), (uchar)rng(256)) );
|
||||||
|
updateFlag = true;
|
||||||
|
#if BT
|
||||||
|
}
|
||||||
|
else
|
||||||
|
cout << "New class can not be added, because CvBoost can only be used for 2-class classification" << endl;
|
||||||
|
#endif
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//draw
|
//draw
|
||||||
@ -84,10 +98,37 @@ void prepare_train_data( Mat& samples, Mat& classes )
|
|||||||
samples.convertTo( samples, CV_32FC1 );
|
samples.convertTo( samples, CV_32FC1 );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if NBC
|
||||||
|
void find_decision_boundary_NBC()
|
||||||
|
{
|
||||||
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
|
Mat trainSamples, trainClasses;
|
||||||
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
|
|
||||||
|
// learn classifier
|
||||||
|
CvNormalBayesClassifier normalBayesClassifier( trainSamples, trainClasses );
|
||||||
|
|
||||||
|
Mat testSample( 1, 2, CV_32FC1 );
|
||||||
|
for( int y = 0; y < img.rows; y += testStep )
|
||||||
|
{
|
||||||
|
for( int x = 0; x < img.cols; x += testStep )
|
||||||
|
{
|
||||||
|
testSample.at<float>(0) = (float)x;
|
||||||
|
testSample.at<float>(1) = (float)y;
|
||||||
|
|
||||||
|
int response = (int)normalBayesClassifier.predict( testSample );
|
||||||
|
circle( imgDst, Point(x,y), 1, classColors[response] );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
#if KNN
|
#if KNN
|
||||||
void find_decision_boundary_KNN( int K )
|
void find_decision_boundary_KNN( int K )
|
||||||
{
|
{
|
||||||
img.copyTo( img_dst );
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
Mat trainSamples, trainClasses;
|
Mat trainSamples, trainClasses;
|
||||||
prepare_train_data( trainSamples, trainClasses );
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
@ -104,7 +145,7 @@ void find_decision_boundary_KNN( int K )
|
|||||||
testSample.at<float>(1) = (float)y;
|
testSample.at<float>(1) = (float)y;
|
||||||
|
|
||||||
int response = (int)knnClassifier.find_nearest( testSample, K );
|
int response = (int)knnClassifier.find_nearest( testSample, K );
|
||||||
circle( img_dst, Point(x,y), 1, classColors[response] );
|
circle( imgDst, Point(x,y), 1, classColors[response] );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -113,7 +154,7 @@ void find_decision_boundary_KNN( int K )
|
|||||||
#if SVM
|
#if SVM
|
||||||
void find_decision_boundary_SVM( CvSVMParams params )
|
void find_decision_boundary_SVM( CvSVMParams params )
|
||||||
{
|
{
|
||||||
img.copyTo( img_dst );
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
Mat trainSamples, trainClasses;
|
Mat trainSamples, trainClasses;
|
||||||
prepare_train_data( trainSamples, trainClasses );
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
@ -130,7 +171,7 @@ void find_decision_boundary_SVM( CvSVMParams params )
|
|||||||
testSample.at<float>(1) = (float)y;
|
testSample.at<float>(1) = (float)y;
|
||||||
|
|
||||||
int response = (int)svmClassifier.predict( testSample );
|
int response = (int)svmClassifier.predict( testSample );
|
||||||
circle( img_dst, Point(x,y), 2, classColors[response], 1 );
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -138,7 +179,7 @@ void find_decision_boundary_SVM( CvSVMParams params )
|
|||||||
for( int i = 0; i < svmClassifier.get_support_vector_count(); i++ )
|
for( int i = 0; i < svmClassifier.get_support_vector_count(); i++ )
|
||||||
{
|
{
|
||||||
const float* supportVector = svmClassifier.get_support_vector(i);
|
const float* supportVector = svmClassifier.get_support_vector(i);
|
||||||
circle( img_dst, Point(supportVector[0],supportVector[1]), 5, CV_RGB(255,255,255), -1 );
|
circle( imgDst, Point(supportVector[0],supportVector[1]), 5, CV_RGB(255,255,255), -1 );
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
@ -147,7 +188,7 @@ void find_decision_boundary_SVM( CvSVMParams params )
|
|||||||
#if DT
|
#if DT
|
||||||
void find_decision_boundary_DT()
|
void find_decision_boundary_DT()
|
||||||
{
|
{
|
||||||
img.copyTo( img_dst );
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
Mat trainSamples, trainClasses;
|
Mat trainSamples, trainClasses;
|
||||||
prepare_train_data( trainSamples, trainClasses );
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
@ -178,16 +219,96 @@ void find_decision_boundary_DT()
|
|||||||
testSample.at<float>(1) = (float)y;
|
testSample.at<float>(1) = (float)y;
|
||||||
|
|
||||||
int response = (int)dtree.predict( testSample )->value;
|
int response = (int)dtree.predict( testSample )->value;
|
||||||
circle( img_dst, Point(x,y), 2, classColors[response], 1 );
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#if BT
|
||||||
|
void find_decision_boundary_BT()
|
||||||
|
{
|
||||||
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
|
Mat trainSamples, trainClasses;
|
||||||
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
|
|
||||||
|
// learn classifier
|
||||||
|
CvBoost boost;
|
||||||
|
|
||||||
|
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
|
||||||
|
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
|
||||||
|
|
||||||
|
CvBoostParams params( CvBoost::DISCRETE, // boost_type
|
||||||
|
100, // weak_count
|
||||||
|
0.95, // weight_trim_rate
|
||||||
|
2, // max_depth
|
||||||
|
false, //use_surrogates
|
||||||
|
0 // priors
|
||||||
|
);
|
||||||
|
|
||||||
|
boost.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
|
||||||
|
|
||||||
|
Mat testSample(1, 2, CV_32FC1 );
|
||||||
|
for( int y = 0; y < img.rows; y += testStep )
|
||||||
|
{
|
||||||
|
for( int x = 0; x < img.cols; x += testStep )
|
||||||
|
{
|
||||||
|
testSample.at<float>(0) = (float)x;
|
||||||
|
testSample.at<float>(1) = (float)y;
|
||||||
|
|
||||||
|
int response = (int)boost.predict( testSample );
|
||||||
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if GBT
|
||||||
|
void find_decision_boundary_GBT()
|
||||||
|
{
|
||||||
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
|
Mat trainSamples, trainClasses;
|
||||||
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
|
|
||||||
|
// learn classifier
|
||||||
|
CvGBTrees gbtrees;
|
||||||
|
|
||||||
|
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
|
||||||
|
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
|
||||||
|
|
||||||
|
CvGBTreesParams params( CvGBTrees::SQUARED_LOSS, // loss_function_type
|
||||||
|
100, // weak_count
|
||||||
|
0.05f, // shrinkage
|
||||||
|
0.6f, // subsample_portion
|
||||||
|
2, // max_depth
|
||||||
|
true // use_surrogates )
|
||||||
|
);
|
||||||
|
|
||||||
|
gbtrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
|
||||||
|
|
||||||
|
Mat testSample(1, 2, CV_32FC1 );
|
||||||
|
for( int y = 0; y < img.rows; y += testStep )
|
||||||
|
{
|
||||||
|
for( int x = 0; x < img.cols; x += testStep )
|
||||||
|
{
|
||||||
|
testSample.at<float>(0) = (float)x;
|
||||||
|
testSample.at<float>(1) = (float)y;
|
||||||
|
|
||||||
|
int response = (int)gbtrees.predict( testSample );
|
||||||
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
#if RF
|
#if RF
|
||||||
void find_decision_boundary_RF()
|
void find_decision_boundary_RF()
|
||||||
{
|
{
|
||||||
img.copyTo( img_dst );
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
Mat trainSamples, trainClasses;
|
Mat trainSamples, trainClasses;
|
||||||
prepare_train_data( trainSamples, trainClasses );
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
@ -222,17 +343,61 @@ void find_decision_boundary_RF()
|
|||||||
testSample.at<float>(1) = (float)y;
|
testSample.at<float>(1) = (float)y;
|
||||||
|
|
||||||
int response = (int)rtrees.predict( testSample );
|
int response = (int)rtrees.predict( testSample );
|
||||||
circle( img_dst, Point(x,y), 2, classColors[response], 1 );
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#if ERT
|
||||||
|
void find_decision_boundary_ERT()
|
||||||
|
{
|
||||||
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
|
Mat trainSamples, trainClasses;
|
||||||
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
|
|
||||||
|
// learn classifier
|
||||||
|
CvERTrees ertrees;
|
||||||
|
|
||||||
|
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
|
||||||
|
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
|
||||||
|
|
||||||
|
CvRTParams params( 4, // max_depth,
|
||||||
|
2, // min_sample_count,
|
||||||
|
0.f, // regression_accuracy,
|
||||||
|
false, // use_surrogates,
|
||||||
|
16, // max_categories,
|
||||||
|
0, // priors,
|
||||||
|
false, // calc_var_importance,
|
||||||
|
1, // nactive_vars,
|
||||||
|
5, // max_num_of_trees_in_the_forest,
|
||||||
|
0, // forest_accuracy,
|
||||||
|
CV_TERMCRIT_ITER // termcrit_type
|
||||||
|
);
|
||||||
|
|
||||||
|
ertrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
|
||||||
|
|
||||||
|
Mat testSample(1, 2, CV_32FC1 );
|
||||||
|
for( int y = 0; y < img.rows; y += testStep )
|
||||||
|
{
|
||||||
|
for( int x = 0; x < img.cols; x += testStep )
|
||||||
|
{
|
||||||
|
testSample.at<float>(0) = (float)x;
|
||||||
|
testSample.at<float>(1) = (float)y;
|
||||||
|
|
||||||
|
int response = (int)ertrees.predict( testSample );
|
||||||
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#if ANN
|
#if ANN
|
||||||
void find_decision_boundary_ANN( const Mat& layer_sizes )
|
void find_decision_boundary_ANN( const Mat& layer_sizes )
|
||||||
{
|
{
|
||||||
img.copyTo( img_dst );
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
Mat trainSamples, trainClasses;
|
Mat trainSamples, trainClasses;
|
||||||
prepare_train_data( trainSamples, trainClasses );
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
@ -268,16 +433,16 @@ void find_decision_boundary_ANN( const Mat& layer_sizes )
|
|||||||
ann.predict( testSample, outputs );
|
ann.predict( testSample, outputs );
|
||||||
Point maxLoc;
|
Point maxLoc;
|
||||||
minMaxLoc( outputs, 0, 0, 0, &maxLoc );
|
minMaxLoc( outputs, 0, 0, 0, &maxLoc );
|
||||||
circle( img_dst, Point(x,y), 2, classColors[maxLoc.x], 1 );
|
circle( imgDst, Point(x,y), 2, classColors[maxLoc.x], 1 );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if GMM
|
#if EM
|
||||||
void find_decision_boundary_GMM()
|
void find_decision_boundary_EM()
|
||||||
{
|
{
|
||||||
img.copyTo( img_dst );
|
img.copyTo( imgDst );
|
||||||
|
|
||||||
Mat trainSamples, trainClasses;
|
Mat trainSamples, trainClasses;
|
||||||
prepare_train_data( trainSamples, trainClasses );
|
prepare_train_data( trainSamples, trainClasses );
|
||||||
@ -308,7 +473,7 @@ void find_decision_boundary_GMM()
|
|||||||
testSample.at<float>(1) = (float)y;
|
testSample.at<float>(1) = (float)y;
|
||||||
|
|
||||||
int response = (int)em.predict( testSample );
|
int response = (int)em.predict( testSample );
|
||||||
circle( img_dst, Point(x,y), 2, classColors[response], 1 );
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -316,9 +481,15 @@ void find_decision_boundary_GMM()
|
|||||||
|
|
||||||
int main()
|
int main()
|
||||||
{
|
{
|
||||||
|
cout << "Use:" << endl
|
||||||
|
<< " right mouse button - to add new class;" << endl
|
||||||
|
<< " left mouse button - to add new point;" << endl
|
||||||
|
<< " key 'r' - to run the ML model;" << endl
|
||||||
|
<< " key 'i' - to init (clear) the data." << endl << endl;
|
||||||
|
|
||||||
cv::namedWindow( "points", 1 );
|
cv::namedWindow( "points", 1 );
|
||||||
img.create( 480, 640, CV_8UC3 );
|
img.create( 480, 640, CV_8UC3 );
|
||||||
img_dst.create( 480, 640, CV_8UC3 );
|
imgDst.create( 480, 640, CV_8UC3 );
|
||||||
|
|
||||||
imshow( "points", img );
|
imshow( "points", img );
|
||||||
cvSetMouseCallback( "points", on_mouse );
|
cvSetMouseCallback( "points", on_mouse );
|
||||||
@ -342,16 +513,21 @@ int main()
|
|||||||
|
|
||||||
if( key == 'r' ) // run
|
if( key == 'r' ) // run
|
||||||
{
|
{
|
||||||
|
#if NBC
|
||||||
|
find_decision_boundary_NBC();
|
||||||
|
cvNamedWindow( "NormalBayesClassifier", WINDOW_AUTOSIZE );
|
||||||
|
imshow( "NormalBayesClassifier", imgDst );
|
||||||
|
#endif
|
||||||
#if KNN
|
#if KNN
|
||||||
int K = 3;
|
int K = 3;
|
||||||
find_decision_boundary_KNN( K );
|
find_decision_boundary_KNN( K );
|
||||||
namedWindow( "kNN", WINDOW_AUTOSIZE );
|
namedWindow( "kNN", WINDOW_AUTOSIZE );
|
||||||
imshow( "kNN", img_dst );
|
imshow( "kNN", imgDst );
|
||||||
|
|
||||||
K = 15;
|
K = 15;
|
||||||
find_decision_boundary_KNN( K );
|
find_decision_boundary_KNN( K );
|
||||||
namedWindow( "kNN2", WINDOW_AUTOSIZE );
|
namedWindow( "kNN2", WINDOW_AUTOSIZE );
|
||||||
imshow( "kNN2", img_dst );
|
imshow( "kNN2", imgDst );
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if SVM
|
#if SVM
|
||||||
@ -369,24 +545,42 @@ int main()
|
|||||||
|
|
||||||
find_decision_boundary_SVM( params );
|
find_decision_boundary_SVM( params );
|
||||||
namedWindow( "classificationSVM1", WINDOW_AUTOSIZE );
|
namedWindow( "classificationSVM1", WINDOW_AUTOSIZE );
|
||||||
imshow( "classificationSVM1", img_dst );
|
imshow( "classificationSVM1", imgDst );
|
||||||
|
|
||||||
params.C = 10;
|
params.C = 10;
|
||||||
find_decision_boundary_SVM( params );
|
find_decision_boundary_SVM( params );
|
||||||
cvNamedWindow( "classificationSVM2", WINDOW_AUTOSIZE );
|
cvNamedWindow( "classificationSVM2", WINDOW_AUTOSIZE );
|
||||||
imshow( "classificationSVM2", img_dst );
|
imshow( "classificationSVM2", imgDst );
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if DT
|
#if DT
|
||||||
find_decision_boundary_DT();
|
find_decision_boundary_DT();
|
||||||
namedWindow( "DT", 1 );
|
namedWindow( "DT", 1 );
|
||||||
imshow( "DT", img_dst );
|
imshow( "DT", imgDst );
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if BT
|
||||||
|
find_decision_boundary_BT();
|
||||||
|
namedWindow( "BT", 1 );
|
||||||
|
imshow( "BT", imgDst);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if GBT
|
||||||
|
find_decision_boundary_GBT();
|
||||||
|
namedWindow( "GBT", 1 );
|
||||||
|
imshow( "GBT", imgDst);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if RF
|
#if RF
|
||||||
find_decision_boundary_RF();
|
find_decision_boundary_RF();
|
||||||
namedWindow( "RF", 1 );
|
namedWindow( "RF", 1 );
|
||||||
imshow( "RF", img_dst);
|
imshow( "RF", imgDst);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if ERT
|
||||||
|
find_decision_boundary_ERT();
|
||||||
|
namedWindow( "ERT", 1 );
|
||||||
|
imshow( "ERT", imgDst);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ANN
|
#if ANN
|
||||||
@ -396,13 +590,13 @@ int main()
|
|||||||
layer_sizes1.at<int>(2) = classColors.size();
|
layer_sizes1.at<int>(2) = classColors.size();
|
||||||
find_decision_boundary_ANN( layer_sizes1 );
|
find_decision_boundary_ANN( layer_sizes1 );
|
||||||
namedWindow( "ANN", WINDOW_AUTOSIZE );
|
namedWindow( "ANN", WINDOW_AUTOSIZE );
|
||||||
imshow( "ANN", img_dst );
|
imshow( "ANN", imgDst );
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if GMM
|
#if EM
|
||||||
find_decision_boundary_GMM();
|
find_decision_boundary_EM();
|
||||||
namedWindow( "GMM", WINDOW_AUTOSIZE );
|
namedWindow( "EM", WINDOW_AUTOSIZE );
|
||||||
imshow( "GMM", img_dst );
|
imshow( "EM", imgDst );
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user