Merge branch '2.4'

This commit is contained in:
Andrey Kamaev
2013-04-17 12:07:17 +04:00
38 changed files with 1462 additions and 1178 deletions

View File

@@ -16,6 +16,7 @@
//
// @Authors
// Nathan, liujun@multicorewareinc.com
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
@@ -60,11 +61,21 @@ namespace cv
}
}
static const int OPT_SIZE = 100;
static const char * T_ARR [] = {
"uchar",
"char",
"ushort",
"short",
"int",
"float -D T_FLOAT",
"double"};
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, int distType)
{
CV_Assert(query.type() == CV_32F);
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
@@ -73,6 +84,11 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat
int m_size = MAX_DESC_LEN;
std::vector< std::pair<size_t, const void *> > args;
char opt [OPT_SIZE] = "";
sprintf(opt,
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d",
T_ARR[query.depth()], distType, block_size, m_size);
if(globalSize[0] != 0)
{
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&query.data ));
@@ -81,18 +97,15 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( std::make_pair( smemSize, (void *)NULL));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&m_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&distType ));
String kernelName = "BruteForceMatch_UnrollMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
}
}
@@ -106,7 +119,6 @@ template < int BLOCK_SIZE/*, typename Mask*/ >
void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, int distType)
{
CV_Assert(query.type() == CV_32F);
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
@@ -114,6 +126,10 @@ void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
int block_size = BLOCK_SIZE;
std::vector< std::pair<size_t, const void *> > args;
char opt [OPT_SIZE] = "";
sprintf(opt,
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d",
T_ARR[query.depth()], distType, block_size);
if(globalSize[0] != 0)
{
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&query.data ));
@@ -122,17 +138,15 @@ void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( std::make_pair( smemSize, (void *)NULL));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&distType ));
String kernelName = "BruteForceMatch_Match";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
}
}
@@ -147,7 +161,6 @@ template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
{
CV_Assert(query.type() == CV_32F);
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
@@ -156,6 +169,11 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDist
int m_size = MAX_DESC_LEN;
std::vector< std::pair<size_t, const void *> > args;
char opt [OPT_SIZE] = "";
sprintf(opt,
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d",
T_ARR[query.depth()], distType, block_size, m_size);
if(globalSize[0] != 0)
{
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&query.data ));
@@ -166,8 +184,6 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDist
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&nMatches.data ));
args.push_back( std::make_pair( smemSize, (void *)NULL));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&m_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.rows ));
@@ -175,11 +191,10 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDist
args.push_back( std::make_pair( sizeof(cl_int), (void *)&trainIdx.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&trainIdx.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&distType ));
String kernelName = "BruteForceMatch_RadiusUnrollMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
}
}
@@ -188,7 +203,6 @@ template < int BLOCK_SIZE/*, typename Mask*/ >
void radius_match(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
{
CV_Assert(query.type() == CV_32F);
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
@@ -196,6 +210,11 @@ void radius_match(const oclMat &query, const oclMat &train, float maxDistance, c
int block_size = BLOCK_SIZE;
std::vector< std::pair<size_t, const void *> > args;
char opt [OPT_SIZE] = "";
sprintf(opt,
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d",
T_ARR[query.depth()], distType, block_size);
if(globalSize[0] != 0)
{
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&query.data ));
@@ -206,7 +225,6 @@ void radius_match(const oclMat &query, const oclMat &train, float maxDistance, c
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&nMatches.data ));
args.push_back( std::make_pair( smemSize, (void *)NULL));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.rows ));
@@ -214,11 +232,10 @@ void radius_match(const oclMat &query, const oclMat &train, float maxDistance, c
args.push_back( std::make_pair( sizeof(cl_int), (void *)&trainIdx.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&trainIdx.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&distType ));
String kernelName = "BruteForceMatch_RadiusMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
}
}
@@ -293,6 +310,11 @@ void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const ocl
int m_size = MAX_DESC_LEN;
std::vector< std::pair<size_t, const void *> > args;
char opt [OPT_SIZE] = "";
sprintf(opt,
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d",
T_ARR[query.depth()], distType, block_size, m_size);
if(globalSize[0] != 0)
{
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&query.data ));
@@ -301,18 +323,15 @@ void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const ocl
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( std::make_pair( smemSize, (void *)NULL));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&m_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&distType ));
String kernelName = "BruteForceMatch_knnUnrollMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
}
}
@@ -327,6 +346,11 @@ void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
int block_size = BLOCK_SIZE;
std::vector< std::pair<size_t, const void *> > args;
char opt [OPT_SIZE] = "";
sprintf(opt,
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d",
T_ARR[query.depth()], distType, block_size);
if(globalSize[0] != 0)
{
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&query.data ));
@@ -335,17 +359,15 @@ void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&trainIdx.data ));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&distance.data ));
args.push_back( std::make_pair( smemSize, (void *)NULL));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&block_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&distType ));
String kernelName = "BruteForceMatch_knnMatch";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
}
}
@@ -360,6 +382,11 @@ void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat
int m_size = MAX_DESC_LEN;
std::vector< std::pair<size_t, const void *> > args;
char opt [OPT_SIZE] = "";
sprintf(opt,
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d",
T_ARR[query.depth()], distType, block_size, m_size);
if(globalSize[0] != 0)
{
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&query.data ));
@@ -374,11 +401,10 @@ void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&distType ));
String kernelName = "BruteForceMatch_calcDistanceUnrolled";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
}
}
@@ -392,6 +418,11 @@ void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask
int block_size = BLOCK_SIZE;
std::vector< std::pair<size_t, const void *> > args;
char opt [OPT_SIZE] = "";
sprintf(opt,
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d",
T_ARR[query.depth()], distType, block_size);
if(globalSize[0] != 0)
{
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&query.data ));
@@ -405,11 +436,10 @@ void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.rows ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&distType ));
String kernelName = "BruteForceMatch_calcDistance";
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth());
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
}
}
@@ -471,7 +501,7 @@ void findKnnMatch(int k, const oclMat &trainIdx, const oclMat &distance, const o
//args.push_back( std::make_pair( sizeof(cl_int), (void *)&train.cols ));
//args.push_back( std::make_pair( sizeof(cl_int), (void *)&query.step ));
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, trainIdx.depth(), -1);
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
}
}
@@ -531,24 +561,15 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchSingle(const oclMat &query, const
if (query.empty() || train.empty())
return;
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
int callType = query.depth();
if (callType != 5)
CV_Error(Error::StsUnsupportedFormat, "BruteForceMatch OpenCL only support float type query!\n");
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|| callType != 2 || callType != 4)))
{
CV_Error(Error::BadDepth, "BruteForceMatch OpenCL only support float type query!\n");
}
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.cols == query.cols && train.type() == query.type());
trainIdx.create(1, query.rows, CV_32S);
distance.create(1, query.rows, CV_32F);
ensureSizeIsEnough(1, query.rows, CV_32S, trainIdx);
ensureSizeIsEnough(1, query.rows, CV_32F, distance);
matchDispatcher(query, train, mask, trainIdx, distance, distType);
return;
}
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &distance, std::vector<DMatch> &matches)
@@ -594,7 +615,7 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat &trainIdx, cons
void cv::ocl::BruteForceMatcher_OCL_base::match(const oclMat &query, const oclMat &train, std::vector<DMatch> &matches, const oclMat &mask)
{
CV_Assert(mask.empty()); // mask is not supported at the moment
assert(mask.empty()); // mask is not supported at the moment
oclMat trainIdx, distance;
matchSingle(query, train, trainIdx, distance, mask);
matchDownload(trainIdx, distance, matches);
@@ -650,24 +671,17 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat &query, c
if (query.empty() || trainCollection.empty())
return;
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
int callType = query.depth();
if (callType != 5)
CV_Error(Error::StsUnsupportedFormat, "BruteForceMatch OpenCL only support float type query!\n");
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|| callType != 2 || callType != 4)))
{
CV_Error(Error::BadDepth, "BruteForceMatch OpenCL only support float type query!\n");
}
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
trainIdx.create(1, query.rows, CV_32S);
imgIdx.create(1, query.rows, CV_32S);
distance.create(1, query.rows, CV_32F);
const int nQuery = query.rows;
ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx);
ensureSizeIsEnough(1, nQuery, CV_32S, imgIdx);
ensureSizeIsEnough(1, nQuery, CV_32F, distance);
matchDispatcher(query, (const oclMat *)trainCollection.ptr(), trainCollection.cols, masks, trainIdx, imgIdx, distance, distType);
return;
}
void cv::ocl::BruteForceMatcher_OCL_base::matchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, std::vector<DMatch> &matches)
@@ -736,36 +750,29 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatchSingle(const oclMat &query, co
if (query.empty() || train.empty())
return;
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
int callType = query.depth();
if (callType != 5)
CV_Error(Error::StsUnsupportedFormat, "BruteForceMatch OpenCL only support float type query!\n");
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|| callType != 2 || callType != 4)))
{
CV_Error(Error::BadDepth, "BruteForceMatch OpenCL only support float type query!\n");
}
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
const int nQuery = query.rows;
const int nTrain = train.rows;
if (k == 2)
{
trainIdx.create(1, query.rows, CV_32SC2);
distance.create(1, query.rows, CV_32FC2);
ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
}
else
{
trainIdx.create(query.rows, k, CV_32S);
distance.create(query.rows, k, CV_32F);
allDist.create(query.rows, train.rows, CV_32FC1);
ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx);
ensureSizeIsEnough(nQuery, k, CV_32F, distance);
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
}
trainIdx.setTo(Scalar::all(-1));
kmatchDispatcher(query, train, k, mask, trainIdx, distance, allDist, distType);
return;
}
void cv::ocl::BruteForceMatcher_OCL_base::knnMatchDownload(const oclMat &trainIdx, const oclMat &distance, std::vector< std::vector<DMatch> > &matches, bool compactResult)
@@ -839,33 +846,14 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Collection(const oclMat &quer
typedef void (*caller_t)(const oclMat & query, const oclMat & trains, const oclMat & masks,
const oclMat & trainIdx, const oclMat & imgIdx, const oclMat & distance);
#if 0
static const caller_t callers[3][6] =
{
{
ocl_match2L1_gpu<unsigned char>, 0/*match2L1_gpu<signed char>*/,
ocl_match2L1_gpu<unsigned short>, ocl_match2L1_gpu<short>,
ocl_match2L1_gpu<int>, ocl_match2L1_gpu<float>
},
{
0/*match2L2_gpu<unsigned char>*/, 0/*match2L2_gpu<signed char>*/,
0/*match2L2_gpu<unsigned short>*/, 0/*match2L2_gpu<short>*/,
0/*match2L2_gpu<int>*/, ocl_match2L2_gpu<float>
},
{
ocl_match2Hamming_gpu<unsigned char>, 0/*match2Hamming_gpu<signed char>*/,
ocl_match2Hamming_gpu<unsigned short>, 0/*match2Hamming_gpu<short>*/,
ocl_match2Hamming_gpu<int>, 0/*match2Hamming_gpu<float>*/
}
};
#endif
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
const int nQuery = query.rows;
trainIdx.create(1, nQuery, CV_32SC2);
imgIdx.create(1, nQuery, CV_32SC2);
distance.create(1, nQuery, CV_32SC2);
ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
ensureSizeIsEnough(1, nQuery, CV_32SC2, imgIdx);
ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
trainIdx.setTo(Scalar::all(-1));
@@ -972,7 +960,7 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat &query, std::vec
temp.reserve(2 * k);
matches.resize(query.rows);
std::for_each(matches.begin(), matches.end(), std::bind2nd(std::mem_fun_ref(&std::vector<DMatch>::reserve), k));
for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&std::vector<DMatch>::reserve), k));
for (size_t imgIdx = 0, size = trainDescCollection.size(); imgIdx < size; ++imgIdx)
{
@@ -996,7 +984,7 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat &query, std::vec
if (compactResult)
{
std::vector< std::vector<DMatch> >::iterator new_end = std::remove_if(matches.begin(), matches.end(), std::mem_fun_ref(&std::vector<DMatch>::empty));
std::vector< std::vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(), mem_fun_ref(&std::vector<DMatch>::empty));
matches.erase(new_end, matches.end());
}
}
@@ -1004,36 +992,30 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatch(const oclMat &query, std::vec
// radiusMatchSingle
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchSingle(const oclMat &query, const oclMat &train,
oclMat &trainIdx, oclMat &distance, oclMat &nMatches, float maxDistance, const oclMat &mask)
oclMat &trainIdx, oclMat &distance, oclMat &nMatches, float maxDistance, const oclMat &mask)
{
if (query.empty() || train.empty())
return;
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
int callType = query.depth();
if (callType != 5)
CV_Error(Error::StsUnsupportedFormat, "BruteForceMatch OpenCL only support float type query!\n");
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|| callType != 2 || callType != 4)))
{
CV_Error(Error::BadDepth, "BruteForceMatch OpenCL only support float type query!\n");
}
const int nQuery = query.rows;
const int nTrain = train.rows;
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
CV_Assert(trainIdx.empty() || (trainIdx.rows == query.rows && trainIdx.size() == distance.size()));
nMatches.create(1, query.rows, CV_32SC1);
ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches);
if (trainIdx.empty())
{
trainIdx.create(query.rows, std::max((train.rows/ 100), 10), CV_32SC1);
distance.create(query.rows, std::max((train.rows/ 100), 10), CV_32FC1);
ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32SC1, trainIdx);
ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32FC1, distance);
}
nMatches.setTo(Scalar::all(0));
matchDispatcher(query, train, maxDistance, mask, trainIdx, distance, nMatches, distType);
return;
}
void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchDownload(const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches,