Doxygen doucmentation: ml module
This commit is contained in:
parent
c5a698fb54
commit
8e9ea0e3d1
File diff suppressed because it is too large
Load Diff
@ -46,15 +46,78 @@
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
|
||||
/**
|
||||
@defgroup objdetect Object Detection
|
||||
|
||||
Haar Feature-based Cascade Classifier for Object Detection
|
||||
----------------------------------------------------------
|
||||
|
||||
The object detector described below has been initially proposed by Paul Viola @cite Viola01 and
|
||||
improved by Rainer Lienhart @cite Lienhart02.
|
||||
|
||||
First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is
|
||||
trained with a few hundred sample views of a particular object (i.e., a face or a car), called
|
||||
positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary
|
||||
images of the same size.
|
||||
|
||||
After a classifier is trained, it can be applied to a region of interest (of the same size as used
|
||||
during the training) in an input image. The classifier outputs a "1" if the region is likely to show
|
||||
the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can
|
||||
move the search window across the image and check every location using the classifier. The
|
||||
classifier is designed so that it can be easily "resized" in order to be able to find the objects of
|
||||
interest at different sizes, which is more efficient than resizing the image itself. So, to find an
|
||||
object of an unknown size in the image the scan procedure should be done several times at different
|
||||
scales.
|
||||
|
||||
The word "cascade" in the classifier name means that the resultant classifier consists of several
|
||||
simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some
|
||||
stage the candidate is rejected or all the stages are passed. The word "boosted" means that the
|
||||
classifiers at every stage of the cascade are complex themselves and they are built out of basic
|
||||
classifiers using one of four different boosting techniques (weighted voting). Currently Discrete
|
||||
Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are
|
||||
decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic
|
||||
classifiers, and are calculated as described below. The current algorithm uses the following
|
||||
Haar-like features:
|
||||
|
||||

|
||||
|
||||
The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within
|
||||
the region of interest and the scale (this scale is not the same as the scale used at the detection
|
||||
stage, though these two scales are multiplied). For example, in the case of the third line feature
|
||||
(2c) the response is calculated as the difference between the sum of image pixels under the
|
||||
rectangle covering the whole feature (including the two white stripes and the black stripe in the
|
||||
middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to
|
||||
compensate for the differences in the size of areas. The sums of pixel values over a rectangular
|
||||
regions are calculated rapidly using integral images (see below and the integral description).
|
||||
|
||||
To see the object detector at work, have a look at the facedetect demo:
|
||||
<https://github.com/Itseez/opencv/tree/master/samples/cpp/dbt_face_detection.cpp>
|
||||
|
||||
The following reference is for the detection part only. There is a separate application called
|
||||
opencv\_traincascade that can train a cascade of boosted classifiers from a set of samples.
|
||||
|
||||
@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
|
||||
addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
|
||||
using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
|
||||
<http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf>
|
||||
|
||||
@{
|
||||
@defgroup objdetect_c C API
|
||||
@}
|
||||
*/
|
||||
|
||||
typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup objdetect
|
||||
//! @{
|
||||
|
||||
///////////////////////////// Object Detection ////////////////////////////
|
||||
|
||||
// class for grouping object candidates, detected by Cascade Classifier, HOG etc.
|
||||
// instance of the class is to be passed to cv::partition (see cxoperations.hpp)
|
||||
//! class for grouping object candidates, detected by Cascade Classifier, HOG etc.
|
||||
//! instance of the class is to be passed to cv::partition (see cxoperations.hpp)
|
||||
class CV_EXPORTS SimilarRects
|
||||
{
|
||||
public:
|
||||
@ -70,13 +133,32 @@ public:
|
||||
double eps;
|
||||
};
|
||||
|
||||
/** @brief Groups the object candidate rectangles.
|
||||
|
||||
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped
|
||||
rectangles. (The Python list is not modified in place.)
|
||||
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
|
||||
group of rectangles to retain it.
|
||||
@param eps Relative difference between sides of the rectangles to merge them into a group.
|
||||
|
||||
The function is a wrapper for the generic function partition . It clusters all the input rectangles
|
||||
using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
|
||||
locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
|
||||
\f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small
|
||||
clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
|
||||
cluster, the average rectangle is computed and put into the output rectangle list.
|
||||
*/
|
||||
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
|
||||
/** @overload */
|
||||
CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights,
|
||||
int groupThreshold, double eps = 0.2);
|
||||
/** @overload */
|
||||
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold,
|
||||
double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
|
||||
/** @overload */
|
||||
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
|
||||
std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
|
||||
/** @overload */
|
||||
CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
|
||||
std::vector<double>& foundScales,
|
||||
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
|
||||
@ -133,15 +215,54 @@ public:
|
||||
virtual Ptr<MaskGenerator> getMaskGenerator() = 0;
|
||||
};
|
||||
|
||||
/** @brief Cascade classifier class for object detection.
|
||||
*/
|
||||
class CV_EXPORTS_W CascadeClassifier
|
||||
{
|
||||
public:
|
||||
CV_WRAP CascadeClassifier();
|
||||
/** @brief Loads a classifier from a file.
|
||||
|
||||
@param filename Name of the file from which the classifier is loaded.
|
||||
*/
|
||||
CV_WRAP CascadeClassifier(const String& filename);
|
||||
~CascadeClassifier();
|
||||
/** @brief Checks whether the classifier has been loaded.
|
||||
*/
|
||||
CV_WRAP bool empty() const;
|
||||
/** @brief Loads a classifier from a file.
|
||||
|
||||
@param filename Name of the file from which the classifier is loaded. The file may contain an old
|
||||
HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
|
||||
traincascade application.
|
||||
*/
|
||||
CV_WRAP bool load( const String& filename );
|
||||
/** @brief Reads a classifier from a FileStorage node.
|
||||
|
||||
@note The file may contain a new cascade classifier (trained traincascade application) only.
|
||||
*/
|
||||
CV_WRAP bool read( const FileNode& node );
|
||||
|
||||
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
|
||||
of rectangles.
|
||||
|
||||
@param image Matrix of the type CV\_8U containing an image where objects are detected.
|
||||
@param objects Vector of rectangles where each rectangle contains the detected object, the
|
||||
rectangles may be partially outside the original image.
|
||||
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
|
||||
@param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
|
||||
to retain it.
|
||||
@param flags Parameter with the same meaning for an old cascade as in the function
|
||||
cvHaarDetectObjects. It is not used for a new cascade.
|
||||
@param minSize Minimum possible object size. Objects smaller than that are ignored.
|
||||
@param maxSize Maximum possible object size. Objects larger than that are ignored.
|
||||
|
||||
The function is parallelized with the TBB library.
|
||||
|
||||
@note
|
||||
- (Python) A face detection example using cascade classifiers can be found at
|
||||
opencv\_source\_code/samples/python2/facedetect.py
|
||||
*/
|
||||
CV_WRAP void detectMultiScale( InputArray image,
|
||||
CV_OUT std::vector<Rect>& objects,
|
||||
double scaleFactor = 1.1,
|
||||
@ -149,6 +270,21 @@ public:
|
||||
Size minSize = Size(),
|
||||
Size maxSize = Size() );
|
||||
|
||||
/** @overload
|
||||
@param image Matrix of the type CV\_8U containing an image where objects are detected.
|
||||
@param objects Vector of rectangles where each rectangle contains the detected object, the
|
||||
rectangles may be partially outside the original image.
|
||||
@param numDetections Vector of detection numbers for the corresponding objects. An object's number
|
||||
of detections is the number of neighboring positively classified rectangles that were joined
|
||||
together to form the object.
|
||||
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
|
||||
@param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
|
||||
to retain it.
|
||||
@param flags Parameter with the same meaning for an old cascade as in the function
|
||||
cvHaarDetectObjects. It is not used for a new cascade.
|
||||
@param minSize Minimum possible object size. Objects smaller than that are ignored.
|
||||
@param maxSize Maximum possible object size. Objects larger than that are ignored.
|
||||
*/
|
||||
CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image,
|
||||
CV_OUT std::vector<Rect>& objects,
|
||||
CV_OUT std::vector<int>& numDetections,
|
||||
@ -157,6 +293,9 @@ public:
|
||||
Size minSize=Size(),
|
||||
Size maxSize=Size() );
|
||||
|
||||
/** @overload
|
||||
if `outputRejectLevels` is `true` returns `rejectLevels` and `levelWeights`
|
||||
*/
|
||||
CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image,
|
||||
CV_OUT std::vector<Rect>& objects,
|
||||
CV_OUT std::vector<int>& rejectLevels,
|
||||
@ -184,14 +323,14 @@ CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGene
|
||||
|
||||
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
||||
|
||||
// struct for detection region of interest (ROI)
|
||||
//! struct for detection region of interest (ROI)
|
||||
struct DetectionROI
|
||||
{
|
||||
// scale(size) of the bounding box
|
||||
//! scale(size) of the bounding box
|
||||
double scale;
|
||||
// set of requrested locations to be evaluated
|
||||
//! set of requrested locations to be evaluated
|
||||
std::vector<cv::Point> locations;
|
||||
// vector that will contain confidence values for each location
|
||||
//! vector that will contain confidence values for each location
|
||||
std::vector<double> confidences;
|
||||
};
|
||||
|
||||
@ -250,24 +389,24 @@ public:
|
||||
Size winStride = Size(), Size padding = Size(),
|
||||
const std::vector<Point>& locations = std::vector<Point>()) const;
|
||||
|
||||
//with found weights output
|
||||
//! with found weights output
|
||||
CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
|
||||
CV_OUT std::vector<double>& weights,
|
||||
double hitThreshold = 0, Size winStride = Size(),
|
||||
Size padding = Size(),
|
||||
const std::vector<Point>& searchLocations = std::vector<Point>()) const;
|
||||
//without found weights output
|
||||
//! without found weights output
|
||||
virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
|
||||
double hitThreshold = 0, Size winStride = Size(),
|
||||
Size padding = Size(),
|
||||
const std::vector<Point>& searchLocations=std::vector<Point>()) const;
|
||||
|
||||
//with result weights output
|
||||
//! with result weights output
|
||||
CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
|
||||
CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
|
||||
Size winStride = Size(), Size padding = Size(), double scale = 1.05,
|
||||
double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
|
||||
//without found weights output
|
||||
//! without found weights output
|
||||
virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
|
||||
double hitThreshold = 0, Size winStride = Size(),
|
||||
Size padding = Size(), double scale = 1.05,
|
||||
@ -295,24 +434,26 @@ public:
|
||||
CV_PROP int nlevels;
|
||||
|
||||
|
||||
// evaluate specified ROI and return confidence value for each location
|
||||
//! evaluate specified ROI and return confidence value for each location
|
||||
virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
|
||||
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
|
||||
double hitThreshold = 0, cv::Size winStride = Size(),
|
||||
cv::Size padding = Size()) const;
|
||||
|
||||
// evaluate specified ROI and return confidence value for each location in multiple scales
|
||||
//! evaluate specified ROI and return confidence value for each location in multiple scales
|
||||
virtual void detectMultiScaleROI(const cv::Mat& img,
|
||||
CV_OUT std::vector<cv::Rect>& foundLocations,
|
||||
std::vector<DetectionROI>& locations,
|
||||
double hitThreshold = 0,
|
||||
int groupThreshold = 0) const;
|
||||
|
||||
// read/parse Dalal's alt model file
|
||||
//! read/parse Dalal's alt model file
|
||||
void readALTModel(String modelfile);
|
||||
void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
|
||||
};
|
||||
|
||||
//! @} objdetect
|
||||
|
||||
}
|
||||
|
||||
#include "opencv2/objdetect/detection_based_tracker.hpp"
|
||||
|
@ -51,6 +51,10 @@
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup objdetect
|
||||
//! @{
|
||||
|
||||
class CV_EXPORTS DetectionBasedTracker
|
||||
{
|
||||
public:
|
||||
@ -211,6 +215,9 @@ class CV_EXPORTS DetectionBasedTracker
|
||||
cv::Rect calcTrackedObjectPositionToShow(int i, ObjectStatus& status) const;
|
||||
void detectInRegion(const cv::Mat& img, const cv::Rect& r, std::vector<cv::Rect>& detectedObjectsInRegions);
|
||||
};
|
||||
|
||||
//! @} objdetect
|
||||
|
||||
} //end of cv namespace
|
||||
#endif
|
||||
|
||||
|
@ -53,6 +53,10 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/** @addtogroup objdetect_c
|
||||
@{
|
||||
*/
|
||||
|
||||
/****************************************************************************************\
|
||||
* Haar-like Object Detection functions *
|
||||
\****************************************************************************************/
|
||||
@ -143,6 +147,7 @@ CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascad
|
||||
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
|
||||
CvPoint pt, int start_stage CV_DEFAULT(0));
|
||||
|
||||
/** @} objdetect_c */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user