added support of 3-channels output to gpu::reprojectImageTo3D

minor refactoring of gpu tests
This commit is contained in:
Vladislav Vinogradov
2012-03-28 12:48:28 +00:00
parent 07ec83cd1f
commit 8e3f1c09d2
8 changed files with 713 additions and 847 deletions

View File

@@ -316,62 +316,51 @@ namespace cv { namespace gpu { namespace device
__constant__ float cq[16];
template <typename T>
__global__ void reprojectImageTo3D(const T* disp, size_t disp_step, float* xyzw, size_t xyzw_step, int rows, int cols)
template <typename T, typename D>
__global__ void reprojectImageTo3D(const DevMem2D_<T> disp, PtrStep<D> xyz)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < rows && x < cols)
{
if (y >= disp.rows || x >= disp.cols)
return;
float qx = cq[1] * y + cq[3], qy = cq[5] * y + cq[7];
float qz = cq[9] * y + cq[11], qw = cq[13] * y + cq[15];
const float qx = x * cq[ 0] + y * cq[ 1] + cq[ 3];
const float qy = x * cq[ 4] + y * cq[ 5] + cq[ 7];
const float qz = x * cq[ 8] + y * cq[ 9] + cq[11];
const float qw = x * cq[12] + y * cq[13] + cq[15];
qx += x * cq[0];
qy += x * cq[4];
qz += x * cq[8];
qw += x * cq[12];
const T d = disp(y, x);
T d = *(disp + disp_step * y + x);
const float iW = 1.f / (qw + cq[14] * d);
float iW = 1.f / (qw + cq[14] * d);
float4 v;
v.x = (qx + cq[2] * d) * iW;
v.y = (qy + cq[6] * d) * iW;
v.z = (qz + cq[10] * d) * iW;
v.w = 1.f;
D v = VecTraits<D>::all(1.0f);
v.x = (qx + cq[2] * d) * iW;
v.y = (qy + cq[6] * d) * iW;
v.z = (qz + cq[10] * d) * iW;
*(float4*)(xyzw + xyzw_step * y + (x * 4)) = v;
}
xyz(y, x) = v;
}
template <typename T>
inline void reprojectImageTo3D_caller(const DevMem2D_<T>& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream)
template <typename T, typename D>
void reprojectImageTo3D_gpu(const DevMem2Db disp, DevMem2Db xyz, const float* q, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(disp.cols, threads.x);
grid.y = divUp(disp.rows, threads.y);
dim3 block(32, 8);
dim3 grid(divUp(disp.cols, block.x), divUp(disp.rows, block.y));
cudaSafeCall( cudaMemcpyToSymbol(cq, q, 16 * sizeof(float)) );
reprojectImageTo3D<<<grid, threads, 0, stream>>>(disp.data, disp.step / sizeof(T), xyzw.data, xyzw.step / sizeof(float), disp.rows, disp.cols);
reprojectImageTo3D<T, D><<<grid, block, 0, stream>>>((DevMem2D_<T>)disp, (DevMem2D_<D>)xyz);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void reprojectImageTo3D_gpu(const DevMem2Db& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream)
{
reprojectImageTo3D_caller(disp, xyzw, q, stream);
}
void reprojectImageTo3D_gpu(const DevMem2D_<short>& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream)
{
reprojectImageTo3D_caller(disp, xyzw, q, stream);
}
template void reprojectImageTo3D_gpu<uchar, float3>(const DevMem2Db disp, DevMem2Db xyz, const float* q, cudaStream_t stream);
template void reprojectImageTo3D_gpu<uchar, float4>(const DevMem2Db disp, DevMem2Db xyz, const float* q, cudaStream_t stream);
template void reprojectImageTo3D_gpu<short, float3>(const DevMem2Db disp, DevMem2Db xyz, const float* q, cudaStream_t stream);
template void reprojectImageTo3D_gpu<short, float4>(const DevMem2Db disp, DevMem2Db xyz, const float* q, cudaStream_t stream);
/////////////////////////////////////////// Corner Harris /////////////////////////////////////////////////

View File

@@ -50,7 +50,7 @@ using namespace cv::gpu;
void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); }
void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); }
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, Stream&) { throw_nogpu(); }
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, int, const Scalar&, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpPlaneMaps(Size, Rect, const Mat&, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpCylindricalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
@@ -213,33 +213,29 @@ namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
void reprojectImageTo3D_gpu(const DevMem2Db& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream);
void reprojectImageTo3D_gpu(const DevMem2D_<short>& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream);
template <typename T, typename D>
void reprojectImageTo3D_gpu(const DevMem2Db disp, DevMem2Db xyz, const float* q, cudaStream_t stream);
}
}}}
namespace
void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyz, const Mat& Q, int dst_cn, Stream& stream)
{
template <typename T>
void reprojectImageTo3D_caller(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const cudaStream_t& stream)
using namespace cv::gpu::device::imgproc;
typedef void (*func_t)(const DevMem2Db disp, DevMem2Db xyz, const float* q, cudaStream_t stream);
static const func_t funcs[2][4] =
{
using namespace ::cv::gpu::device::imgproc;
{reprojectImageTo3D_gpu<uchar, float3>, 0, 0, reprojectImageTo3D_gpu<short, float3>},
{reprojectImageTo3D_gpu<uchar, float4>, 0, 0, reprojectImageTo3D_gpu<short, float4>}
};
xyzw.create(disp.rows, disp.cols, CV_32FC4);
CV_Assert(disp.type() == CV_8U || disp.type() == CV_16S);
CV_Assert(Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4 && Q.isContinuous());
CV_Assert(dst_cn == 3 || dst_cn == 4);
reprojectImageTo3D_gpu((DevMem2D_<T>)disp, xyzw, Q.ptr<float>(), stream);
}
xyz.create(disp.size(), CV_MAKE_TYPE(CV_32F, dst_cn));
typedef void (*reprojectImageTo3D_caller_t)(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const cudaStream_t& stream);
const reprojectImageTo3D_caller_t reprojectImageTo3D_callers[] = {reprojectImageTo3D_caller<unsigned char>, 0, 0, reprojectImageTo3D_caller<short>, 0, 0, 0, 0};
}
void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, Stream& stream)
{
CV_Assert((disp.type() == CV_8U || disp.type() == CV_16S) && Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4);
reprojectImageTo3D_callers[disp.type()](disp, xyzw, Q, StreamAccessor::getStream(stream));
funcs[dst_cn == 4][disp.type()](disp, xyz, Q.ptr<float>(), StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
@@ -1513,9 +1509,11 @@ void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_th
{
using namespace ::cv::gpu::device::canny;
CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS));
CV_Assert(src.type() == CV_8UC1);
if (!TargetArchs::builtWith(SHARED_ATOMICS) || !DeviceInfo().supports(SHARED_ATOMICS))
CV_Error(CV_StsNotImplemented, "The device doesn't support shared atomics");
if( low_thresh > high_thresh )
std::swap( low_thresh, high_thresh);