Merge pull request #2673 from BloodAxe:kaze
This commit is contained in:
commit
8bd1efa523
@ -249,3 +249,54 @@ We notice that for keypoint matching applications, image content has little effe
|
||||
:param keypoints: Set of detected keypoints
|
||||
:param corrThresh: Correlation threshold.
|
||||
:param verbose: Prints pair selection informations.
|
||||
|
||||
KAZE
|
||||
----
|
||||
.. ocv:class:: KAZE : public Feature2D
|
||||
|
||||
Class implementing the KAZE keypoint detector and descriptor extractor, described in [ABD12]_.
|
||||
|
||||
.. [ABD12] KAZE Features. Pablo F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision (ECCV), Fiorenze, Italy, October 2012.
|
||||
|
||||
KAZE::KAZE
|
||||
----------
|
||||
The KAZE constructor
|
||||
|
||||
.. ocv:function:: KAZE::KAZE(bool extended, bool upright)
|
||||
|
||||
:param extended: Set to enable extraction of extended (128-byte) descriptor.
|
||||
:param upright: Set to enable use of upright descriptors (non rotation-invariant).
|
||||
|
||||
|
||||
|
||||
AKAZE
|
||||
-----
|
||||
.. ocv:class:: AKAZE : public Feature2D
|
||||
|
||||
Class implementing the AKAZE keypoint detector and descriptor extractor, described in [ANB13]_. ::
|
||||
|
||||
class CV_EXPORTS_W AKAZE : public Feature2D
|
||||
{
|
||||
public:
|
||||
/// AKAZE Descriptor Type
|
||||
enum DESCRIPTOR_TYPE {
|
||||
DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_KAZE = 3,
|
||||
DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_MLDB = 5
|
||||
};
|
||||
CV_WRAP AKAZE();
|
||||
explicit AKAZE(DESCRIPTOR_TYPE descriptor_type, int descriptor_size = 0, int descriptor_channels = 3);
|
||||
};
|
||||
|
||||
.. [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
|
||||
|
||||
AKAZE::AKAZE
|
||||
------------
|
||||
The AKAZE constructor
|
||||
|
||||
.. ocv:function:: AKAZE::AKAZE(DESCRIPTOR_TYPE descriptor_type, int descriptor_size = 0, int descriptor_channels = 3)
|
||||
|
||||
:param descriptor_type: Type of the extracted descriptor.
|
||||
:param descriptor_size: Size of the descriptor in bits. 0 -> Full size
|
||||
:param descriptor_channels: Number of channels in the descriptor (1, 2, 3).
|
||||
|
@ -895,7 +895,87 @@ protected:
|
||||
PixelTestFn test_fn_;
|
||||
};
|
||||
|
||||
/*!
|
||||
KAZE implementation
|
||||
*/
|
||||
class CV_EXPORTS_W KAZE : public Feature2D
|
||||
{
|
||||
public:
|
||||
CV_WRAP KAZE();
|
||||
CV_WRAP explicit KAZE(bool extended, bool upright);
|
||||
|
||||
virtual ~KAZE();
|
||||
|
||||
// returns the descriptor size in bytes
|
||||
int descriptorSize() const;
|
||||
// returns the descriptor type
|
||||
int descriptorType() const;
|
||||
// returns the default norm type
|
||||
int defaultNorm() const;
|
||||
|
||||
AlgorithmInfo* info() const;
|
||||
|
||||
// Compute the KAZE features on an image
|
||||
void operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const;
|
||||
|
||||
// Compute the KAZE features and descriptors on an image
|
||||
void operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors, bool useProvidedKeypoints = false) const;
|
||||
|
||||
protected:
|
||||
void detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const;
|
||||
void computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const;
|
||||
|
||||
CV_PROP int descriptor;
|
||||
CV_PROP bool extended;
|
||||
CV_PROP bool upright;
|
||||
};
|
||||
|
||||
/*!
|
||||
AKAZE implementation
|
||||
*/
|
||||
class CV_EXPORTS_W AKAZE : public Feature2D
|
||||
{
|
||||
public:
|
||||
/// AKAZE Descriptor Type
|
||||
enum DESCRIPTOR_TYPE {
|
||||
DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_KAZE = 3,
|
||||
DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
|
||||
DESCRIPTOR_MLDB = 5
|
||||
};
|
||||
|
||||
CV_WRAP AKAZE();
|
||||
explicit AKAZE(DESCRIPTOR_TYPE descriptor_type, int descriptor_size = 0, int descriptor_channels = 3);
|
||||
|
||||
virtual ~AKAZE();
|
||||
|
||||
// returns the descriptor size in bytes
|
||||
int descriptorSize() const;
|
||||
// returns the descriptor type
|
||||
int descriptorType() const;
|
||||
// returns the default norm type
|
||||
int defaultNorm() const;
|
||||
|
||||
// Compute the AKAZE features on an image
|
||||
void operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const;
|
||||
|
||||
// Compute the AKAZE features and descriptors on an image
|
||||
void operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors, bool useProvidedKeypoints = false) const;
|
||||
|
||||
AlgorithmInfo* info() const;
|
||||
|
||||
protected:
|
||||
|
||||
void computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const;
|
||||
void detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray()) const;
|
||||
|
||||
CV_PROP int descriptor;
|
||||
CV_PROP int descriptor_channels;
|
||||
CV_PROP int descriptor_size;
|
||||
|
||||
};
|
||||
/****************************************************************************************\
|
||||
* Distance *
|
||||
\****************************************************************************************/
|
||||
|
232
modules/features2d/src/akaze.cpp
Normal file
232
modules/features2d/src/akaze.cpp
Normal file
@ -0,0 +1,232 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/*
|
||||
OpenCV wrapper of reference implementation of
|
||||
[1] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces.
|
||||
Pablo F. Alcantarilla, J. Nuevo and Adrien Bartoli.
|
||||
In British Machine Vision Conference (BMVC), Bristol, UK, September 2013
|
||||
http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pdf
|
||||
@author Eugene Khvedchenya <ekhvedchenya@gmail.com>
|
||||
*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "akaze/AKAZEFeatures.h"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
AKAZE::AKAZE()
|
||||
: descriptor(DESCRIPTOR_MLDB)
|
||||
, descriptor_channels(3)
|
||||
, descriptor_size(0)
|
||||
{
|
||||
}
|
||||
|
||||
AKAZE::AKAZE(DESCRIPTOR_TYPE _descriptor_type, int _descriptor_size, int _descriptor_channels)
|
||||
: descriptor(_descriptor_type)
|
||||
, descriptor_channels(_descriptor_channels)
|
||||
, descriptor_size(_descriptor_size)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
AKAZE::~AKAZE()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
// returns the descriptor size in bytes
|
||||
int AKAZE::descriptorSize() const
|
||||
{
|
||||
switch (descriptor)
|
||||
{
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE:
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT:
|
||||
return 64;
|
||||
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB:
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB_UPRIGHT:
|
||||
// We use the full length binary descriptor -> 486 bits
|
||||
if (descriptor_size == 0)
|
||||
{
|
||||
int t = (6 + 36 + 120) * descriptor_channels;
|
||||
return (int)ceil(t / 8.);
|
||||
}
|
||||
else
|
||||
{
|
||||
// We use the random bit selection length binary descriptor
|
||||
return (int)ceil(descriptor_size / 8.);
|
||||
}
|
||||
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// returns the descriptor type
|
||||
int AKAZE::descriptorType() const
|
||||
{
|
||||
switch (descriptor)
|
||||
{
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE:
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT:
|
||||
return CV_32F;
|
||||
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB:
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB_UPRIGHT:
|
||||
return CV_8U;
|
||||
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// returns the default norm type
|
||||
int AKAZE::defaultNorm() const
|
||||
{
|
||||
switch (descriptor)
|
||||
{
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE:
|
||||
case cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT:
|
||||
return cv::NORM_L2;
|
||||
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB:
|
||||
case cv::AKAZE::DESCRIPTOR_MLDB_UPRIGHT:
|
||||
return cv::NORM_HAMMING;
|
||||
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void AKAZE::operator()(InputArray image, InputArray mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors,
|
||||
bool useProvidedKeypoints) const
|
||||
{
|
||||
cv::Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
cv::Mat& desc = descriptors.getMatRef();
|
||||
|
||||
AKAZEOptions options;
|
||||
options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor);
|
||||
options.descriptor_channels = descriptor_channels;
|
||||
options.descriptor_size = descriptor_size;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
|
||||
AKAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
|
||||
if (!useProvidedKeypoints)
|
||||
{
|
||||
impl.Feature_Detection(keypoints);
|
||||
}
|
||||
|
||||
if (!mask.empty())
|
||||
{
|
||||
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
||||
}
|
||||
|
||||
impl.Compute_Descriptors(keypoints, desc);
|
||||
|
||||
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
||||
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
||||
}
|
||||
|
||||
void AKAZE::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
{
|
||||
cv::Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
AKAZEOptions options;
|
||||
options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor);
|
||||
options.descriptor_channels = descriptor_channels;
|
||||
options.descriptor_size = descriptor_size;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
|
||||
AKAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
impl.Feature_Detection(keypoints);
|
||||
|
||||
if (!mask.empty())
|
||||
{
|
||||
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
||||
}
|
||||
}
|
||||
|
||||
void AKAZE::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
|
||||
{
|
||||
cv::Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
cv::Mat& desc = descriptors.getMatRef();
|
||||
|
||||
AKAZEOptions options;
|
||||
options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor);
|
||||
options.descriptor_channels = descriptor_channels;
|
||||
options.descriptor_size = descriptor_size;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
|
||||
AKAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
impl.Compute_Descriptors(keypoints, desc);
|
||||
|
||||
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
||||
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
||||
}
|
||||
}
|
109
modules/features2d/src/akaze/AKAZEConfig.h
Normal file
109
modules/features2d/src/akaze/AKAZEConfig.h
Normal file
@ -0,0 +1,109 @@
|
||||
/**
|
||||
* @file AKAZEConfig.h
|
||||
* @brief AKAZE configuration file
|
||||
* @date Feb 23, 2014
|
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
/* ************************************************************************* */
|
||||
// OpenCV
|
||||
#include "precomp.hpp"
|
||||
#include <opencv2/features2d.hpp>
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right
|
||||
const float gauss25[7][7] = {
|
||||
{ 0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f },
|
||||
{ 0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f },
|
||||
{ 0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f },
|
||||
{ 0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, 0.00167749f, 0.00069579f },
|
||||
{ 0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, 0.00095820f, 0.00039744f },
|
||||
{ 0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, 0.00046640f, 0.00019346f },
|
||||
{ 0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, 0.00019346f, 0.00008024f }
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// AKAZE configuration options structure
|
||||
struct AKAZEOptions {
|
||||
|
||||
/// AKAZE Diffusivities
|
||||
enum DIFFUSIVITY_TYPE {
|
||||
PM_G1 = 0,
|
||||
PM_G2 = 1,
|
||||
WEICKERT = 2,
|
||||
CHARBONNIER = 3
|
||||
};
|
||||
|
||||
AKAZEOptions()
|
||||
: omax(4)
|
||||
, nsublevels(4)
|
||||
, img_width(0)
|
||||
, img_height(0)
|
||||
, soffset(1.6f)
|
||||
, derivative_factor(1.5f)
|
||||
, sderivatives(1.0)
|
||||
, diffusivity(PM_G2)
|
||||
|
||||
, dthreshold(0.001f)
|
||||
, min_dthreshold(0.00001f)
|
||||
|
||||
, descriptor(cv::AKAZE::DESCRIPTOR_MLDB)
|
||||
, descriptor_size(0)
|
||||
, descriptor_channels(3)
|
||||
, descriptor_pattern_size(10)
|
||||
|
||||
, kcontrast(0.001f)
|
||||
, kcontrast_percentile(0.7f)
|
||||
, kcontrast_nbins(300)
|
||||
{
|
||||
}
|
||||
|
||||
int omax; ///< Maximum octave evolution of the image 2^sigma (coarsest scale sigma units)
|
||||
int nsublevels; ///< Default number of sublevels per scale level
|
||||
int img_width; ///< Width of the input image
|
||||
int img_height; ///< Height of the input image
|
||||
float soffset; ///< Base scale offset (sigma units)
|
||||
float derivative_factor; ///< Factor for the multiscale derivatives
|
||||
float sderivatives; ///< Smoothing factor for the derivatives
|
||||
DIFFUSIVITY_TYPE diffusivity; ///< Diffusivity type
|
||||
|
||||
float dthreshold; ///< Detector response threshold to accept point
|
||||
float min_dthreshold; ///< Minimum detector threshold to accept a point
|
||||
|
||||
cv::AKAZE::DESCRIPTOR_TYPE descriptor; ///< Type of descriptor
|
||||
int descriptor_size; ///< Size of the descriptor in bits. 0->Full size
|
||||
int descriptor_channels; ///< Number of channels in the descriptor (1, 2, 3)
|
||||
int descriptor_pattern_size; ///< Actual patch size is 2*pattern_size*point.scale
|
||||
|
||||
float kcontrast; ///< The contrast factor parameter
|
||||
float kcontrast_percentile; ///< Percentile level for the contrast factor
|
||||
int kcontrast_nbins; ///< Number of bins for the contrast factor histogram
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// AKAZE nonlinear diffusion filtering evolution
|
||||
struct TEvolution {
|
||||
|
||||
TEvolution() {
|
||||
etime = 0.0f;
|
||||
esigma = 0.0f;
|
||||
octave = 0;
|
||||
sublevel = 0;
|
||||
sigma_size = 0;
|
||||
}
|
||||
|
||||
cv::Mat Lx, Ly; // First order spatial derivatives
|
||||
cv::Mat Lxx, Lxy, Lyy; // Second order spatial derivatives
|
||||
cv::Mat Lflow; // Diffusivity image
|
||||
cv::Mat Lt; // Evolution image
|
||||
cv::Mat Lsmooth; // Smoothed image
|
||||
cv::Mat Lstep; // Evolution step update
|
||||
cv::Mat Ldet; // Detector response
|
||||
float etime; // Evolution time
|
||||
float esigma; // Evolution sigma. For linear diffusion t = sigma^2 / 2
|
||||
size_t octave; // Image octave
|
||||
size_t sublevel; // Image sublevel in each octave
|
||||
size_t sigma_size; // Integer sigma. For computing the feature detector responses
|
||||
};
|
1941
modules/features2d/src/akaze/AKAZEFeatures.cpp
Normal file
1941
modules/features2d/src/akaze/AKAZEFeatures.cpp
Normal file
File diff suppressed because it is too large
Load Diff
65
modules/features2d/src/akaze/AKAZEFeatures.h
Normal file
65
modules/features2d/src/akaze/AKAZEFeatures.h
Normal file
@ -0,0 +1,65 @@
|
||||
/**
|
||||
* @file AKAZE.h
|
||||
* @brief Main class for detecting and computing binary descriptors in an
|
||||
* accelerated nonlinear scale space
|
||||
* @date Mar 27, 2013
|
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Includes
|
||||
#include "precomp.hpp"
|
||||
#include "AKAZEConfig.h"
|
||||
|
||||
/* ************************************************************************* */
|
||||
// AKAZE Class Declaration
|
||||
class AKAZEFeatures {
|
||||
|
||||
private:
|
||||
|
||||
AKAZEOptions options_; ///< Configuration options for AKAZE
|
||||
std::vector<TEvolution> evolution_; ///< Vector of nonlinear diffusion evolution
|
||||
|
||||
/// FED parameters
|
||||
int ncycles_; ///< Number of cycles
|
||||
bool reordering_; ///< Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; ///< Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; ///< Vector of number of steps per cycle
|
||||
|
||||
/// Matrices for the M-LDB descriptor computation
|
||||
cv::Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
|
||||
cv::Mat descriptorBits_;
|
||||
cv::Mat bitMask_;
|
||||
|
||||
public:
|
||||
|
||||
/// Constructor with input arguments
|
||||
AKAZEFeatures(const AKAZEOptions& options);
|
||||
|
||||
/// Scale Space methods
|
||||
void Allocate_Memory_Evolution();
|
||||
int Create_Nonlinear_Scale_Space(const cv::Mat& img);
|
||||
void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
|
||||
void Compute_Determinant_Hessian_Response(void);
|
||||
void Compute_Multiscale_Derivatives(void);
|
||||
void Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts);
|
||||
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts);
|
||||
|
||||
// Feature description methods
|
||||
void Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc);
|
||||
|
||||
static void Compute_Main_Orientation(cv::KeyPoint& kpt, const std::vector<TEvolution>& evolution_);
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Inline functions
|
||||
|
||||
// Inline functions
|
||||
void generateDescriptorSubsample(cv::Mat& sampleList, cv::Mat& comparisons,
|
||||
int nbits, int pattern_size, int nchannels);
|
||||
float get_angle(float x, float y);
|
||||
float gaussian(float x, float y, float sigma);
|
||||
void check_descriptor_limits(int& x, int& y, int width, int height);
|
||||
int fRound(float flt);
|
@ -125,6 +125,21 @@ CV_INIT_ALGORITHM(GFTTDetector, "Feature2D.GFTT",
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_INIT_ALGORITHM(KAZE, "Feature2D.KAZE",
|
||||
obj.info()->addParam(obj, "upright", obj.upright);
|
||||
obj.info()->addParam(obj, "extended", obj.extended))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_INIT_ALGORITHM(AKAZE, "Feature2D.AKAZE",
|
||||
obj.info()->addParam(obj, "descriptor_channels", obj.descriptor_channels);
|
||||
obj.info()->addParam(obj, "descriptor", obj.descriptor);
|
||||
obj.info()->addParam(obj, "descriptor_size", obj.descriptor_size))
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
|
||||
CV_INIT_ALGORITHM(SimpleBlobDetector, "Feature2D.SimpleBlob",
|
||||
obj.info()->addParam(obj, "thresholdStep", obj.params.thresholdStep);
|
||||
obj.info()->addParam(obj, "minThreshold", obj.params.minThreshold);
|
||||
@ -202,11 +217,13 @@ bool cv::initModule_features2d(void)
|
||||
all &= !FREAK_info_auto.name().empty();
|
||||
all &= !ORB_info_auto.name().empty();
|
||||
all &= !GFTTDetector_info_auto.name().empty();
|
||||
all &= !HarrisDetector_info_auto.name().empty();
|
||||
all &= !KAZE_info_auto.name().empty();
|
||||
all &= !AKAZE_info_auto.name().empty();
|
||||
all &= !HarrisDetector_info_auto.name().empty();
|
||||
all &= !DenseFeatureDetector_info_auto.name().empty();
|
||||
all &= !GridAdaptedFeatureDetector_info_auto.name().empty();
|
||||
all &= !BFMatcher_info_auto.name().empty();
|
||||
all &= !FlannBasedMatcher_info_auto.name().empty();
|
||||
|
||||
return all;
|
||||
}
|
||||
}
|
183
modules/features2d/src/kaze.cpp
Normal file
183
modules/features2d/src/kaze.cpp
Normal file
@ -0,0 +1,183 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/*
|
||||
OpenCV wrapper of reference implementation of
|
||||
[1] KAZE Features. Pablo F. Alcantarilla, Adrien Bartoli and Andrew J. Davison.
|
||||
In European Conference on Computer Vision (ECCV), Fiorenze, Italy, October 2012
|
||||
http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla12eccv.pdf
|
||||
@author Eugene Khvedchenya <ekhvedchenya@gmail.com>
|
||||
*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "kaze/KAZEFeatures.h"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
KAZE::KAZE()
|
||||
: extended(false)
|
||||
, upright(false)
|
||||
{
|
||||
}
|
||||
|
||||
KAZE::KAZE(bool _extended, bool _upright)
|
||||
: extended(_extended)
|
||||
, upright(_upright)
|
||||
{
|
||||
|
||||
}
|
||||
KAZE::~KAZE()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
// returns the descriptor size in bytes
|
||||
int KAZE::descriptorSize() const
|
||||
{
|
||||
return extended ? 128 : 64;
|
||||
}
|
||||
|
||||
// returns the descriptor type
|
||||
int KAZE::descriptorType() const
|
||||
{
|
||||
return CV_32F;
|
||||
}
|
||||
|
||||
// returns the default norm type
|
||||
int KAZE::defaultNorm() const
|
||||
{
|
||||
return NORM_L2;
|
||||
}
|
||||
|
||||
void KAZE::operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const
|
||||
{
|
||||
detectImpl(image, keypoints, mask);
|
||||
}
|
||||
|
||||
void KAZE::operator()(InputArray image, InputArray mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors,
|
||||
bool useProvidedKeypoints) const
|
||||
{
|
||||
cv::Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
cv::Mat& desc = descriptors.getMatRef();
|
||||
|
||||
KAZEOptions options;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
options.extended = extended;
|
||||
options.upright = upright;
|
||||
|
||||
KAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
|
||||
if (!useProvidedKeypoints)
|
||||
{
|
||||
impl.Feature_Detection(keypoints);
|
||||
}
|
||||
|
||||
if (!mask.empty())
|
||||
{
|
||||
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
||||
}
|
||||
|
||||
impl.Feature_Description(keypoints, desc);
|
||||
|
||||
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
||||
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
||||
}
|
||||
|
||||
void KAZE::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
{
|
||||
Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
KAZEOptions options;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
options.extended = extended;
|
||||
options.upright = upright;
|
||||
|
||||
KAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
impl.Feature_Detection(keypoints);
|
||||
|
||||
if (!mask.empty())
|
||||
{
|
||||
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
||||
}
|
||||
}
|
||||
|
||||
void KAZE::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
|
||||
{
|
||||
cv::Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
cv::Mat& desc = descriptors.getMatRef();
|
||||
|
||||
KAZEOptions options;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
options.extended = extended;
|
||||
options.upright = upright;
|
||||
|
||||
KAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
impl.Feature_Description(keypoints, desc);
|
||||
|
||||
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
||||
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
||||
}
|
||||
}
|
83
modules/features2d/src/kaze/KAZEConfig.h
Normal file
83
modules/features2d/src/kaze/KAZEConfig.h
Normal file
@ -0,0 +1,83 @@
|
||||
/**
|
||||
* @file KAZEConfig.h
|
||||
* @brief Configuration file
|
||||
* @date Dec 27, 2011
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
// OpenCV Includes
|
||||
#include "precomp.hpp"
|
||||
#include <opencv2/features2d.hpp>
|
||||
|
||||
//*************************************************************************************
|
||||
|
||||
struct KAZEOptions {
|
||||
|
||||
enum DIFFUSIVITY_TYPE {
|
||||
PM_G1 = 0,
|
||||
PM_G2 = 1,
|
||||
WEICKERT = 2
|
||||
};
|
||||
|
||||
KAZEOptions()
|
||||
: diffusivity(PM_G2)
|
||||
|
||||
, soffset(1.60f)
|
||||
, omax(4)
|
||||
, nsublevels(4)
|
||||
, img_width(0)
|
||||
, img_height(0)
|
||||
, sderivatives(1.0f)
|
||||
, dthreshold(0.001f)
|
||||
, kcontrast(0.01f)
|
||||
, kcontrast_percentille(0.7f)
|
||||
, kcontrast_bins(300)
|
||||
|
||||
, use_fed(true)
|
||||
, upright(false)
|
||||
, extended(false)
|
||||
|
||||
, use_clipping_normalilzation(false)
|
||||
, clipping_normalization_ratio(1.6f)
|
||||
, clipping_normalization_niter(5)
|
||||
{
|
||||
}
|
||||
|
||||
DIFFUSIVITY_TYPE diffusivity;
|
||||
|
||||
float soffset;
|
||||
int omax;
|
||||
int nsublevels;
|
||||
int img_width;
|
||||
int img_height;
|
||||
float sderivatives;
|
||||
float dthreshold;
|
||||
float kcontrast;
|
||||
float kcontrast_percentille;
|
||||
int kcontrast_bins;
|
||||
|
||||
bool use_fed;
|
||||
bool upright;
|
||||
bool extended;
|
||||
|
||||
bool use_clipping_normalilzation;
|
||||
float clipping_normalization_ratio;
|
||||
int clipping_normalization_niter;
|
||||
};
|
||||
|
||||
struct TEvolution {
|
||||
cv::Mat Lx, Ly; // First order spatial derivatives
|
||||
cv::Mat Lxx, Lxy, Lyy; // Second order spatial derivatives
|
||||
cv::Mat Lflow; // Diffusivity image
|
||||
cv::Mat Lt; // Evolution image
|
||||
cv::Mat Lsmooth; // Smoothed image
|
||||
cv::Mat Lstep; // Evolution step update
|
||||
cv::Mat Ldet; // Detector response
|
||||
float etime; // Evolution time
|
||||
float esigma; // Evolution sigma. For linear diffusion t = sigma^2 / 2
|
||||
float octave; // Image octave
|
||||
float sublevel; // Image sublevel in each octave
|
||||
int sigma_size; // Integer esigma. For computing the feature detector responses
|
||||
};
|
1532
modules/features2d/src/kaze/KAZEFeatures.cpp
Normal file
1532
modules/features2d/src/kaze/KAZEFeatures.cpp
Normal file
File diff suppressed because it is too large
Load Diff
90
modules/features2d/src/kaze/KAZEFeatures.h
Normal file
90
modules/features2d/src/kaze/KAZEFeatures.h
Normal file
@ -0,0 +1,90 @@
|
||||
|
||||
/**
|
||||
* @file KAZE.h
|
||||
* @brief Main program for detecting and computing descriptors in a nonlinear
|
||||
* scale space
|
||||
* @date Jan 21, 2012
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#ifndef KAZE_H_
|
||||
#define KAZE_H_
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Includes
|
||||
#include "KAZEConfig.h"
|
||||
#include "nldiffusion_functions.h"
|
||||
#include "fed.h"
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// KAZE Class Declaration
|
||||
class KAZEFeatures {
|
||||
|
||||
private:
|
||||
|
||||
KAZEOptions options;
|
||||
|
||||
// Parameters of the Nonlinear diffusion class
|
||||
std::vector<TEvolution> evolution_; // Vector of nonlinear diffusion evolution
|
||||
|
||||
// Vector of keypoint vectors for finding extrema in multiple threads
|
||||
std::vector<std::vector<cv::KeyPoint> > kpts_par_;
|
||||
|
||||
// FED parameters
|
||||
int ncycles_; // Number of cycles
|
||||
bool reordering_; // Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; // Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; // Vector of number of steps per cycle
|
||||
|
||||
// Some auxiliary variables used in the AOS step
|
||||
cv::Mat Ltx_, Lty_, px_, py_, ax_, ay_, bx_, by_, qr_, qc_;
|
||||
|
||||
public:
|
||||
|
||||
// Constructor
|
||||
KAZEFeatures(KAZEOptions& options);
|
||||
|
||||
// Public methods for KAZE interface
|
||||
void Allocate_Memory_Evolution(void);
|
||||
int Create_Nonlinear_Scale_Space(const cv::Mat& img);
|
||||
void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
|
||||
void Feature_Description(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc);
|
||||
|
||||
static void Compute_Main_Orientation(cv::KeyPoint& kpt, const std::vector<TEvolution>& evolution_, const KAZEOptions& options);
|
||||
|
||||
private:
|
||||
|
||||
// Feature Detection Methods
|
||||
void Compute_KContrast(const cv::Mat& img, const float& kper);
|
||||
void Compute_Multiscale_Derivatives(void);
|
||||
void Compute_Detector_Response(void);
|
||||
void Determinant_Hessian_Parallel(std::vector<cv::KeyPoint>& kpts);
|
||||
void Find_Extremum_Threading(const int& level);
|
||||
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts);
|
||||
|
||||
// AOS Methods
|
||||
void AOS_Step_Scalar(cv::Mat &Ld, const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize);
|
||||
void AOS_Rows(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize);
|
||||
void AOS_Columns(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize);
|
||||
void Thomas(const cv::Mat &a, const cv::Mat &b, const cv::Mat &Ld, cv::Mat &x);
|
||||
|
||||
};
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Inline functions
|
||||
float getAngle(const float& x, const float& y);
|
||||
float gaussian(const float& x, const float& y, const float& sig);
|
||||
void checkDescriptorLimits(int &x, int &y, const int& width, const int& height);
|
||||
void clippingDescriptor(float *desc, const int& dsize, const int& niter, const float& ratio);
|
||||
int fRound(const float& flt);
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif // KAZE_H_
|
192
modules/features2d/src/kaze/fed.cpp
Normal file
192
modules/features2d/src/kaze/fed.cpp
Normal file
@ -0,0 +1,192 @@
|
||||
//=============================================================================
|
||||
//
|
||||
// fed.cpp
|
||||
// Authors: Pablo F. Alcantarilla (1), Jesus Nuevo (2)
|
||||
// Institutions: Georgia Institute of Technology (1)
|
||||
// TrueVision Solutions (2)
|
||||
// Date: 15/09/2013
|
||||
// Email: pablofdezalc@gmail.com
|
||||
//
|
||||
// AKAZE Features Copyright 2013, Pablo F. Alcantarilla, Jesus Nuevo
|
||||
// All Rights Reserved
|
||||
// See LICENSE for the license information
|
||||
//=============================================================================
|
||||
|
||||
/**
|
||||
* @file fed.cpp
|
||||
* @brief Functions for performing Fast Explicit Diffusion and building the
|
||||
* nonlinear scale space
|
||||
* @date Sep 15, 2013
|
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
||||
* @note This code is derived from FED/FJ library from Grewenig et al.,
|
||||
* The FED/FJ library allows solving more advanced problems
|
||||
* Please look at the following papers for more information about FED:
|
||||
* [1] S. Grewenig, J. Weickert, C. Schroers, A. Bruhn. Cyclic Schemes for
|
||||
* PDE-Based Image Analysis. Technical Report No. 327, Department of Mathematics,
|
||||
* Saarland University, Saarbrücken, Germany, March 2013
|
||||
* [2] S. Grewenig, J. Weickert, A. Bruhn. From box filtering to fast explicit diffusion.
|
||||
* DAGM, 2010
|
||||
*
|
||||
*/
|
||||
#include "precomp.hpp"
|
||||
#include "fed.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function allocates an array of the least number of time steps such
|
||||
* that a certain stopping time for the whole process can be obtained and fills
|
||||
* it with the respective FED time step sizes for one cycle
|
||||
* The function returns the number of time steps per cycle or 0 on failure
|
||||
* @param T Desired process stopping time
|
||||
* @param M Desired number of cycles
|
||||
* @param tau_max Stability limit for the explicit scheme
|
||||
* @param reordering Reordering flag
|
||||
* @param tau The vector with the dynamic step sizes
|
||||
*/
|
||||
int fed_tau_by_process_time(const float& T, const int& M, const float& tau_max,
|
||||
const bool& reordering, std::vector<float>& tau) {
|
||||
// All cycles have the same fraction of the stopping time
|
||||
return fed_tau_by_cycle_time(T/(float)M,tau_max,reordering,tau);
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function allocates an array of the least number of time steps such
|
||||
* that a certain stopping time for the whole process can be obtained and fills it
|
||||
* it with the respective FED time step sizes for one cycle
|
||||
* The function returns the number of time steps per cycle or 0 on failure
|
||||
* @param t Desired cycle stopping time
|
||||
* @param tau_max Stability limit for the explicit scheme
|
||||
* @param reordering Reordering flag
|
||||
* @param tau The vector with the dynamic step sizes
|
||||
*/
|
||||
int fed_tau_by_cycle_time(const float& t, const float& tau_max,
|
||||
const bool& reordering, std::vector<float> &tau) {
|
||||
int n = 0; // Number of time steps
|
||||
float scale = 0.0; // Ratio of t we search to maximal t
|
||||
|
||||
// Compute necessary number of time steps
|
||||
n = (int)(ceilf(sqrtf(3.0f*t/tau_max+0.25f)-0.5f-1.0e-8f)+ 0.5f);
|
||||
scale = 3.0f*t/(tau_max*(float)(n*(n+1)));
|
||||
|
||||
// Call internal FED time step creation routine
|
||||
return fed_tau_internal(n,scale,tau_max,reordering,tau);
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function allocates an array of time steps and fills it with FED
|
||||
* time step sizes
|
||||
* The function returns the number of time steps per cycle or 0 on failure
|
||||
* @param n Number of internal steps
|
||||
* @param scale Ratio of t we search to maximal t
|
||||
* @param tau_max Stability limit for the explicit scheme
|
||||
* @param reordering Reordering flag
|
||||
* @param tau The vector with the dynamic step sizes
|
||||
*/
|
||||
int fed_tau_internal(const int& n, const float& scale, const float& tau_max,
|
||||
const bool& reordering, std::vector<float> &tau) {
|
||||
float c = 0.0, d = 0.0; // Time savers
|
||||
vector<float> tauh; // Helper vector for unsorted taus
|
||||
|
||||
if (n <= 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Allocate memory for the time step size
|
||||
tau = vector<float>(n);
|
||||
|
||||
if (reordering) {
|
||||
tauh = vector<float>(n);
|
||||
}
|
||||
|
||||
// Compute time saver
|
||||
c = 1.0f / (4.0f * (float)n + 2.0f);
|
||||
d = scale * tau_max / 2.0f;
|
||||
|
||||
// Set up originally ordered tau vector
|
||||
for (int k = 0; k < n; ++k) {
|
||||
float h = cosf((float)CV_PI * (2.0f * (float)k + 1.0f) * c);
|
||||
|
||||
if (reordering) {
|
||||
tauh[k] = d / (h * h);
|
||||
}
|
||||
else {
|
||||
tau[k] = d / (h * h);
|
||||
}
|
||||
}
|
||||
|
||||
// Permute list of time steps according to chosen reordering function
|
||||
int kappa = 0, prime = 0;
|
||||
|
||||
if (reordering == true) {
|
||||
// Choose kappa cycle with k = n/2
|
||||
// This is a heuristic. We can use Leja ordering instead!!
|
||||
kappa = n / 2;
|
||||
|
||||
// Get modulus for permutation
|
||||
prime = n + 1;
|
||||
|
||||
while (!fed_is_prime_internal(prime)) {
|
||||
prime++;
|
||||
}
|
||||
|
||||
// Perform permutation
|
||||
for (int k = 0, l = 0; l < n; ++k, ++l) {
|
||||
int index = 0;
|
||||
while ((index = ((k+1)*kappa) % prime - 1) >= n) {
|
||||
k++;
|
||||
}
|
||||
|
||||
tau[l] = tauh[index];
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function checks if a number is prime or not
|
||||
* @param number Number to check if it is prime or not
|
||||
* @return true if the number is prime
|
||||
*/
|
||||
bool fed_is_prime_internal(const int& number) {
|
||||
bool is_prime = false;
|
||||
|
||||
if (number <= 1) {
|
||||
return false;
|
||||
}
|
||||
else if (number == 1 || number == 2 || number == 3 || number == 5 || number == 7) {
|
||||
return true;
|
||||
}
|
||||
else if ((number % 2) == 0 || (number % 3) == 0 || (number % 5) == 0 || (number % 7) == 0) {
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
is_prime = true;
|
||||
int upperLimit = (int)sqrt(1.0f + number);
|
||||
int divisor = 11;
|
||||
|
||||
while (divisor <= upperLimit ) {
|
||||
if (number % divisor == 0)
|
||||
{
|
||||
is_prime = false;
|
||||
}
|
||||
|
||||
divisor +=2;
|
||||
}
|
||||
|
||||
return is_prime;
|
||||
}
|
||||
}
|
25
modules/features2d/src/kaze/fed.h
Normal file
25
modules/features2d/src/kaze/fed.h
Normal file
@ -0,0 +1,25 @@
|
||||
#ifndef FED_H
|
||||
#define FED_H
|
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// Includes
|
||||
#include <vector>
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Declaration of functions
|
||||
int fed_tau_by_process_time(const float& T, const int& M, const float& tau_max,
|
||||
const bool& reordering, std::vector<float>& tau);
|
||||
int fed_tau_by_cycle_time(const float& t, const float& tau_max,
|
||||
const bool& reordering, std::vector<float> &tau) ;
|
||||
int fed_tau_internal(const int& n, const float& scale, const float& tau_max,
|
||||
const bool& reordering, std::vector<float> &tau);
|
||||
bool fed_is_prime_internal(const int& number);
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif // FED_H
|
437
modules/features2d/src/kaze/nldiffusion_functions.cpp
Normal file
437
modules/features2d/src/kaze/nldiffusion_functions.cpp
Normal file
@ -0,0 +1,437 @@
|
||||
//=============================================================================
|
||||
//
|
||||
// nldiffusion_functions.cpp
|
||||
// Author: Pablo F. Alcantarilla
|
||||
// Institution: University d'Auvergne
|
||||
// Address: Clermont Ferrand, France
|
||||
// Date: 27/12/2011
|
||||
// Email: pablofdezalc@gmail.com
|
||||
//
|
||||
// KAZE Features Copyright 2012, Pablo F. Alcantarilla
|
||||
// All Rights Reserved
|
||||
// See LICENSE for the license information
|
||||
//=============================================================================
|
||||
|
||||
/**
|
||||
* @file nldiffusion_functions.cpp
|
||||
* @brief Functions for non-linear diffusion applications:
|
||||
* 2D Gaussian Derivatives
|
||||
* Perona and Malik conductivity equations
|
||||
* Perona and Malik evolution
|
||||
* @date Dec 27, 2011
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#include "nldiffusion_functions.h"
|
||||
|
||||
// Namespaces
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
namespace cv {
|
||||
namespace details {
|
||||
namespace kaze {
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function smoothes an image with a Gaussian kernel
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param ksize_x Kernel size in X-direction (horizontal)
|
||||
* @param ksize_y Kernel size in Y-direction (vertical)
|
||||
* @param sigma Kernel standard deviation
|
||||
*/
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma) {
|
||||
|
||||
int ksize_x_ = 0, ksize_y_ = 0;
|
||||
|
||||
// Compute an appropriate kernel size according to the specified sigma
|
||||
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) {
|
||||
ksize_x_ = (int)ceil(2.0f*(1.0f + (sigma - 0.8f) / (0.3f)));
|
||||
ksize_y_ = ksize_x_;
|
||||
}
|
||||
|
||||
// The kernel size must be and odd number
|
||||
if ((ksize_x_ % 2) == 0) {
|
||||
ksize_x_ += 1;
|
||||
}
|
||||
|
||||
if ((ksize_y_ % 2) == 0) {
|
||||
ksize_y_ += 1;
|
||||
}
|
||||
|
||||
// Perform the Gaussian Smoothing with border replication
|
||||
GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, BORDER_REPLICATE);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes image derivatives with Scharr kernel
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param xorder Derivative order in X-direction (horizontal)
|
||||
* @param yorder Derivative order in Y-direction (vertical)
|
||||
* @note Scharr operator approximates better rotation invariance than
|
||||
* other stencils such as Sobel. See Weickert and Scharr,
|
||||
* A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance,
|
||||
* Journal of Visual Communication and Image Representation 2002
|
||||
*/
|
||||
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder) {
|
||||
Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g1
|
||||
* g1 = exp(-|dL|^2/k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
cv::exp(-(Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), dst);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g2
|
||||
* g2 = 1 / (1 + dL^2 / k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g2(const cv::Mat &Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
dst = 1.0f / (1.0f + (Lx.mul(Lx) + Ly.mul(Ly)) / (k*k));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes Weickert conductivity coefficient gw
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
* @note For more information check the following paper: J. Weickert
|
||||
* Applications of nonlinear diffusion in image processing and computer vision,
|
||||
* Proceedings of Algorithmy 2000
|
||||
*/
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
Mat modg;
|
||||
cv::pow((Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), 4, modg);
|
||||
cv::exp(-3.315f / modg, dst);
|
||||
dst = 1.0f - dst;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes Charbonnier conductivity coefficient gc
|
||||
* gc = 1 / sqrt(1 + dL^2 / k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
* @note For more information check the following paper: J. Weickert
|
||||
* Applications of nonlinear diffusion in image processing and computer vision,
|
||||
* Proceedings of Algorithmy 2000
|
||||
*/
|
||||
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
Mat den;
|
||||
cv::sqrt(1.0f + (Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), den);
|
||||
dst = 1.0f / den;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes a good empirical value for the k contrast factor
|
||||
* given an input image, the percentile (0-1), the gradient scale and the number of
|
||||
* bins in the histogram
|
||||
* @param img Input image
|
||||
* @param perc Percentile of the image gradient histogram (0-1)
|
||||
* @param gscale Scale for computing the image gradient histogram
|
||||
* @param nbins Number of histogram bins
|
||||
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel
|
||||
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel
|
||||
* @return k contrast factor
|
||||
*/
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y) {
|
||||
|
||||
int nbin = 0, nelements = 0, nthreshold = 0, k = 0;
|
||||
float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0;
|
||||
float npoints = 0.0;
|
||||
float hmax = 0.0;
|
||||
|
||||
// Create the array for the histogram
|
||||
std::vector<int> hist(nbins, 0);
|
||||
|
||||
// Create the matrices
|
||||
Mat gaussian = Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
Mat Lx = Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
Mat Ly = Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
|
||||
// Perform the Gaussian convolution
|
||||
gaussian_2D_convolution(img, gaussian, ksize_x, ksize_y, gscale);
|
||||
|
||||
// Compute the Gaussian derivatives Lx and Ly
|
||||
Scharr(gaussian, Lx, CV_32F, 1, 0, 1, 0, cv::BORDER_DEFAULT);
|
||||
Scharr(gaussian, Ly, CV_32F, 0, 1, 1, 0, cv::BORDER_DEFAULT);
|
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows - 1; i++) {
|
||||
for (int j = 1; j < gaussian.cols - 1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
|
||||
// Get the maximum
|
||||
if (modg > hmax) {
|
||||
hmax = modg;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows - 1; i++) {
|
||||
for (int j = 1; j < gaussian.cols - 1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
|
||||
// Find the correspondent bin
|
||||
if (modg != 0.0) {
|
||||
nbin = (int)floor(nbins*(modg / hmax));
|
||||
|
||||
if (nbin == nbins) {
|
||||
nbin--;
|
||||
}
|
||||
|
||||
hist[nbin]++;
|
||||
npoints++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now find the perc of the histogram percentile
|
||||
nthreshold = (int)(npoints*perc);
|
||||
|
||||
for (k = 0; nelements < nthreshold && k < nbins; k++) {
|
||||
nelements = nelements + hist[k];
|
||||
}
|
||||
|
||||
if (nelements < nthreshold) {
|
||||
kperc = 0.03f;
|
||||
}
|
||||
else {
|
||||
kperc = hmax*((float)(k) / (float)nbins);
|
||||
}
|
||||
|
||||
return kperc;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes Scharr image derivatives
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param xorder Derivative order in X-direction (horizontal)
|
||||
* @param yorder Derivative order in Y-direction (vertical)
|
||||
* @param scale Scale factor for the derivative size
|
||||
*/
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) {
|
||||
Mat kx, ky;
|
||||
compute_derivative_kernels(kx, ky, xorder, yorder, scale);
|
||||
sepFilter2D(src, dst, CV_32F, kx, ky);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Compute derivative kernels for sizes different than 3
|
||||
* @param _kx Horizontal kernel values
|
||||
* @param _ky Vertical kernel values
|
||||
* @param dx Derivative order in X-direction (horizontal)
|
||||
* @param dy Derivative order in Y-direction (vertical)
|
||||
* @param scale_ Scale factor or derivative size
|
||||
*/
|
||||
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, int dx, int dy, int scale) {
|
||||
|
||||
int ksize = 3 + 2 * (scale - 1);
|
||||
|
||||
// The standard Scharr kernel
|
||||
if (scale == 1) {
|
||||
getDerivKernels(_kx, _ky, dx, dy, 0, true, CV_32F);
|
||||
return;
|
||||
}
|
||||
|
||||
_kx.create(ksize, 1, CV_32F, -1, true);
|
||||
_ky.create(ksize, 1, CV_32F, -1, true);
|
||||
Mat kx = _kx.getMat();
|
||||
Mat ky = _ky.getMat();
|
||||
|
||||
float w = 10.0f / 3.0f;
|
||||
float norm = 1.0f / (2.0f*scale*(w + 2.0f));
|
||||
|
||||
for (int k = 0; k < 2; k++) {
|
||||
Mat* kernel = k == 0 ? &kx : &ky;
|
||||
int order = k == 0 ? dx : dy;
|
||||
std::vector<float> kerI(ksize, 0.0f);
|
||||
|
||||
if (order == 0) {
|
||||
kerI[0] = norm, kerI[ksize / 2] = w*norm, kerI[ksize - 1] = norm;
|
||||
}
|
||||
else if (order == 1) {
|
||||
kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1;
|
||||
}
|
||||
|
||||
Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]);
|
||||
temp.copyTo(*kernel);
|
||||
}
|
||||
}
|
||||
|
||||
class Nld_Step_Scalar_Invoker : public cv::ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
Nld_Step_Scalar_Invoker(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float _stepsize)
|
||||
: _Ld(&Ld)
|
||||
, _c(&c)
|
||||
, _Lstep(&Lstep)
|
||||
, stepsize(_stepsize)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~Nld_Step_Scalar_Invoker()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
void operator()(const cv::Range& range) const
|
||||
{
|
||||
cv::Mat& Ld = *_Ld;
|
||||
const cv::Mat& c = *_c;
|
||||
cv::Mat& Lstep = *_Lstep;
|
||||
|
||||
for (int i = range.start; i < range.end; i++)
|
||||
{
|
||||
for (int j = 1; j < Lstep.cols - 1; j++)
|
||||
{
|
||||
float xpos = ((*(c.ptr<float>(i)+j)) + (*(c.ptr<float>(i)+j + 1)))*((*(Ld.ptr<float>(i)+j + 1)) - (*(Ld.ptr<float>(i)+j)));
|
||||
float xneg = ((*(c.ptr<float>(i)+j - 1)) + (*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j)) - (*(Ld.ptr<float>(i)+j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(i)+j)) + (*(c.ptr<float>(i + 1) + j)))*((*(Ld.ptr<float>(i + 1) + j)) - (*(Ld.ptr<float>(i)+j)));
|
||||
float yneg = ((*(c.ptr<float>(i - 1) + j)) + (*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j)) - (*(Ld.ptr<float>(i - 1) + j)));
|
||||
*(Lstep.ptr<float>(i)+j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
cv::Mat * _Ld;
|
||||
const cv::Mat * _c;
|
||||
cv::Mat * _Lstep;
|
||||
float stepsize;
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function performs a scalar non-linear diffusion step
|
||||
* @param Ld2 Output image in the evolution
|
||||
* @param c Conductivity image
|
||||
* @param Lstep Previous image in the evolution
|
||||
* @param stepsize The step size in time units
|
||||
* @note Forward Euler Scheme 3x3 stencil
|
||||
* The function c is a scalar value that depends on the gradient norm
|
||||
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy
|
||||
*/
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize) {
|
||||
|
||||
cv::parallel_for_(cv::Range(1, Lstep.rows - 1), Nld_Step_Scalar_Invoker(Ld, c, Lstep, stepsize));
|
||||
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(0) + j)) + (*(c.ptr<float>(0) + j + 1)))*((*(Ld.ptr<float>(0) + j + 1)) - (*(Ld.ptr<float>(0) + j)));
|
||||
float xneg = ((*(c.ptr<float>(0) + j - 1)) + (*(c.ptr<float>(0) + j)))*((*(Ld.ptr<float>(0) + j)) - (*(Ld.ptr<float>(0) + j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(0) + j)) + (*(c.ptr<float>(1) + j)))*((*(Ld.ptr<float>(1) + j)) - (*(Ld.ptr<float>(0) + j)));
|
||||
*(Lstep.ptr<float>(0) + j) = 0.5f*stepsize*(xpos - xneg + ypos);
|
||||
}
|
||||
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(Lstep.rows - 1) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j + 1)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j + 1)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j)));
|
||||
float xneg = ((*(c.ptr<float>(Lstep.rows - 1) + j - 1)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(Lstep.rows - 1) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j)));
|
||||
float yneg = ((*(c.ptr<float>(Lstep.rows - 2) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 2) + j)));
|
||||
*(Lstep.ptr<float>(Lstep.rows - 1) + j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
float xpos = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i)+1)))*((*(Ld.ptr<float>(i)+1)) - (*(Ld.ptr<float>(i))));
|
||||
float xneg = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i))) - (*(Ld.ptr<float>(i))));
|
||||
float ypos = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i + 1))))*((*(Ld.ptr<float>(i + 1))) - (*(Ld.ptr<float>(i))));
|
||||
float yneg = ((*(c.ptr<float>(i - 1))) + (*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i))) - (*(Ld.ptr<float>(i - 1))));
|
||||
*(Lstep.ptr<float>(i)) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
float xneg = ((*(c.ptr<float>(i)+Lstep.cols - 2)) + (*(c.ptr<float>(i)+Lstep.cols - 1)))*((*(Ld.ptr<float>(i)+Lstep.cols - 1)) - (*(Ld.ptr<float>(i)+Lstep.cols - 2)));
|
||||
float ypos = ((*(c.ptr<float>(i)+Lstep.cols - 1)) + (*(c.ptr<float>(i + 1) + Lstep.cols - 1)))*((*(Ld.ptr<float>(i + 1) + Lstep.cols - 1)) - (*(Ld.ptr<float>(i)+Lstep.cols - 1)));
|
||||
float yneg = ((*(c.ptr<float>(i - 1) + Lstep.cols - 1)) + (*(c.ptr<float>(i)+Lstep.cols - 1)))*((*(Ld.ptr<float>(i)+Lstep.cols - 1)) - (*(Ld.ptr<float>(i - 1) + Lstep.cols - 1)));
|
||||
*(Lstep.ptr<float>(i)+Lstep.cols - 1) = 0.5f*stepsize*(-xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
Ld = Ld + Lstep;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function downsamples the input image using OpenCV resize
|
||||
* @param img Input image to be downsampled
|
||||
* @param dst Output image with half of the resolution of the input image
|
||||
*/
|
||||
void halfsample_image(const cv::Mat& src, cv::Mat& dst) {
|
||||
|
||||
// Make sure the destination image is of the right size
|
||||
CV_Assert(src.cols / 2 == dst.cols);
|
||||
CV_Assert(src.rows / 2 == dst.rows);
|
||||
resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function checks if a given pixel is a maximum in a local neighbourhood
|
||||
* @param img Input image where we will perform the maximum search
|
||||
* @param dsize Half size of the neighbourhood
|
||||
* @param value Response value at (x,y) position
|
||||
* @param row Image row coordinate
|
||||
* @param col Image column coordinate
|
||||
* @param same_img Flag to indicate if the image value at (x,y) is in the input image
|
||||
* @return 1->is maximum, 0->otherwise
|
||||
*/
|
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img) {
|
||||
|
||||
bool response = true;
|
||||
|
||||
for (int i = row - dsize; i <= row + dsize; i++) {
|
||||
for (int j = col - dsize; j <= col + dsize; j++) {
|
||||
if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) {
|
||||
if (same_img == true) {
|
||||
if (i != row || j != col) {
|
||||
if ((*(img.ptr<float>(i)+j)) > value) {
|
||||
response = false;
|
||||
return response;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
if ((*(img.ptr<float>(i)+j)) > value) {
|
||||
response = false;
|
||||
return response;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return response;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
53
modules/features2d/src/kaze/nldiffusion_functions.h
Normal file
53
modules/features2d/src/kaze/nldiffusion_functions.h
Normal file
@ -0,0 +1,53 @@
|
||||
/**
|
||||
* @file nldiffusion_functions.h
|
||||
* @brief Functions for non-linear diffusion applications:
|
||||
* 2D Gaussian Derivatives
|
||||
* Perona and Malik conductivity equations
|
||||
* Perona and Malik evolution
|
||||
* @date Dec 27, 2011
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#ifndef KAZE_NLDIFFUSION_FUNCTIONS_H
|
||||
#define KAZE_NLDIFFUSION_FUNCTIONS_H
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Includes
|
||||
#include "precomp.hpp"
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Declaration of functions
|
||||
|
||||
namespace cv {
|
||||
namespace details {
|
||||
namespace kaze {
|
||||
|
||||
// Gaussian 2D convolution
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma);
|
||||
|
||||
// Diffusivity functions
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y);
|
||||
|
||||
// Image derivatives
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale);
|
||||
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, int dx, int dy, int scale);
|
||||
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder);
|
||||
|
||||
// Nonlinear diffusion filtering scalar step
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize);
|
||||
|
||||
// For non-maxima suppresion
|
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img);
|
||||
|
||||
// Image downsampling
|
||||
void halfsample_image(const cv::Mat& src, cv::Mat& dst);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -166,3 +166,18 @@ TEST(Features2d_Detector_Keypoints_Dense, validation)
|
||||
CV_FeatureDetectorKeypointsTest test(Algorithm::create<FeatureDetector>("Feature2D.Dense"));
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST(Features2d_Detector_Keypoints_KAZE, validation)
|
||||
{
|
||||
CV_FeatureDetectorKeypointsTest test(Algorithm::create<FeatureDetector>("Feature2D.KAZE"));
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST(Features2d_Detector_Keypoints_AKAZE, validation)
|
||||
{
|
||||
CV_FeatureDetectorKeypointsTest test_kaze(cv::Ptr<FeatureDetector>(new cv::AKAZE(cv::AKAZE::DESCRIPTOR_KAZE)));
|
||||
test_kaze.safe_run();
|
||||
|
||||
CV_FeatureDetectorKeypointsTest test_mldb(cv::Ptr<FeatureDetector>(new cv::AKAZE(cv::AKAZE::DESCRIPTOR_MLDB)));
|
||||
test_mldb.safe_run();
|
||||
}
|
||||
|
@ -652,6 +652,21 @@ TEST(Features2d_ScaleInvariance_Detector_BRISK, regression)
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST(Features2d_ScaleInvariance_Detector_KAZE, regression)
|
||||
{
|
||||
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.KAZE"),
|
||||
0.08f,
|
||||
0.49f);
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST(Features2d_ScaleInvariance_Detector_AKAZE, regression)
|
||||
{
|
||||
DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.AKAZE"),
|
||||
0.08f,
|
||||
0.49f);
|
||||
test.safe_run();
|
||||
}
|
||||
//TEST(Features2d_ScaleInvariance_Detector_ORB, regression)
|
||||
//{
|
||||
// DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
|
||||
|
Loading…
x
Reference in New Issue
Block a user