added registerPageLocked/unregisterPageLocked functions
added convert functions to BruteForceMatcher_GPU other minor fixes
This commit is contained in:
parent
24279c2c11
commit
8bb9e4302e
@ -149,6 +149,11 @@ namespace cv
|
||||
// It is convertable to cv::Mat header without reference counting
|
||||
// so you can use it with other opencv functions.
|
||||
|
||||
// Page-locks the matrix m memory and maps it for the device(s)
|
||||
CV_EXPORTS void registerPageLocked(Mat& m);
|
||||
// Unmaps the memory of matrix m, and makes it pageable again.
|
||||
CV_EXPORTS void unregisterPageLocked(Mat& m);
|
||||
|
||||
class CV_EXPORTS CudaMem
|
||||
{
|
||||
public:
|
||||
@ -1254,8 +1259,10 @@ namespace cv
|
||||
GpuMat& trainIdx, GpuMat& distance,
|
||||
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
||||
|
||||
// Download trainIdx and distance to CPU vector with DMatch
|
||||
// Download trainIdx and distance and convert it to CPU vector with DMatch
|
||||
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
|
||||
// Convert trainIdx and distance to vector with DMatch
|
||||
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);
|
||||
|
||||
// Find one best match for each query descriptor.
|
||||
void match(const GpuMat& queryDescs, const GpuMat& trainDescs, std::vector<DMatch>& matches,
|
||||
@ -1273,13 +1280,13 @@ namespace cv
|
||||
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
|
||||
const GpuMat& maskCollection, Stream& stream = Stream::Null());
|
||||
|
||||
// Download trainIdx, imgIdx and distance to CPU vector with DMatch
|
||||
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
|
||||
std::vector<DMatch>& matches);
|
||||
// Download trainIdx, imgIdx and distance and convert it to vector with DMatch
|
||||
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches);
|
||||
// Convert trainIdx, imgIdx and distance to vector with DMatch
|
||||
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);
|
||||
|
||||
// Find one best match from train collection for each query descriptor.
|
||||
void match(const GpuMat& queryDescs, std::vector<DMatch>& matches,
|
||||
const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
||||
void match(const GpuMat& queryDescs, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
||||
|
||||
// Find k best matches for each query descriptor (in increasing order of distances).
|
||||
// trainIdx.at<int>(queryIdx, i) will contain index of i'th best trains (i < k).
|
||||
@ -1291,12 +1298,15 @@ namespace cv
|
||||
void knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
||||
|
||||
// Download trainIdx and distance to CPU vector with DMatch
|
||||
// Download trainIdx and distance and convert it to vector with DMatch
|
||||
// compactResult is used when mask is not empty. If compactResult is false matches
|
||||
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
||||
// matches vector will not contain matches for fully masked out query descriptors.
|
||||
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
||||
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
||||
// Convert trainIdx and distance to vector with DMatch
|
||||
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
|
||||
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
||||
|
||||
// Find k best matches for each query descriptor (in increasing order of distances).
|
||||
// compactResult is used when mask is not empty. If compactResult is false matches
|
||||
@ -1326,13 +1336,16 @@ namespace cv
|
||||
GpuMat& trainIdx, GpuMat& nMatches, GpuMat& distance, float maxDistance,
|
||||
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
||||
|
||||
// Download trainIdx, nMatches and distance to CPU vector with DMatch.
|
||||
// Download trainIdx, nMatches and distance and convert it to vector with DMatch.
|
||||
// matches will be sorted in increasing order of distances.
|
||||
// compactResult is used when mask is not empty. If compactResult is false matches
|
||||
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
||||
// matches vector will not contain matches for fully masked out query descriptors.
|
||||
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& nMatches, const GpuMat& distance,
|
||||
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
||||
// Convert trainIdx, nMatches and distance to vector with DMatch.
|
||||
static void radiusMatchConvert(const Mat& trainIdx, const Mat& nMatches, const Mat& distance,
|
||||
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
||||
|
||||
// Find best matches for each query descriptor which have distance less than maxDistance
|
||||
// in increasing order of distances).
|
||||
|
@ -56,17 +56,21 @@ bool cv::gpu::BruteForceMatcher_GPU_base::empty() const { throw_nogpu(); return
|
||||
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const { throw_nogpu(); return true; }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, vector<DMatch>&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat&, const Mat&, std::vector<DMatch>&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, const GpuMat&, vector<DMatch>&, const GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat&, GpuMat&, const vector<GpuMat>&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector<DMatch>&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat&, const Mat&, const Mat&, std::vector<DMatch>&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, std::vector<DMatch>&, const std::vector<GpuMat>&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, const GpuMat&, Stream&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchConvert(const Mat&, const Mat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, int, const GpuMat&, bool) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, int, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const GpuMat&, Stream&) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat&, const Mat&, const Mat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, float, const GpuMat&, bool) { throw_nogpu(); }
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, float, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
|
||||
|
||||
@ -216,8 +220,18 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat& queryDescs,
|
||||
func(queryDescs, trainDescs, mask, trainIdx, trainIdx, distance, cc_12, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
||||
vector<DMatch>& matches)
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& distance, vector<DMatch>& matches)
|
||||
{
|
||||
if (trainIdx.empty() || distance.empty())
|
||||
return;
|
||||
|
||||
Mat trainIdxCPU = trainIdx;
|
||||
Mat distanceCPU = distance;
|
||||
|
||||
matchConvert(trainIdxCPU, distanceCPU, matches);
|
||||
}
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches)
|
||||
{
|
||||
if (trainIdx.empty() || distance.empty())
|
||||
return;
|
||||
@ -227,14 +241,11 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx,
|
||||
|
||||
const int nQuery = trainIdx.cols;
|
||||
|
||||
Mat trainIdxCPU = trainIdx;
|
||||
Mat distanceCPU = distance;
|
||||
|
||||
matches.clear();
|
||||
matches.reserve(nQuery);
|
||||
|
||||
const int* trainIdx_ptr = trainIdxCPU.ptr<int>();
|
||||
const float* distance_ptr = distanceCPU.ptr<float>();
|
||||
const int* trainIdx_ptr = trainIdx.ptr<int>();
|
||||
const float* distance_ptr = distance.ptr<float>();
|
||||
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr)
|
||||
{
|
||||
int trainIdx = *trainIdx_ptr;
|
||||
@ -347,8 +358,19 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat& queryDes
|
||||
func(queryDescs, trainCollection, maskCollection, trainIdx, imgIdx, distance, cc_12, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx,
|
||||
const GpuMat& distance, vector<DMatch>& matches)
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, vector<DMatch>& matches)
|
||||
{
|
||||
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
|
||||
return;
|
||||
|
||||
Mat trainIdxCPU = trainIdx;
|
||||
Mat imgIdxCPU = imgIdx;
|
||||
Mat distanceCPU = distance;
|
||||
|
||||
matchConvert(trainIdxCPU, imgIdxCPU, distanceCPU, matches);
|
||||
}
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches)
|
||||
{
|
||||
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
|
||||
return;
|
||||
@ -359,16 +381,12 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx,
|
||||
|
||||
const int nQuery = trainIdx.cols;
|
||||
|
||||
Mat trainIdxCPU = trainIdx;
|
||||
Mat imgIdxCPU = imgIdx;
|
||||
Mat distanceCPU = distance;
|
||||
|
||||
matches.clear();
|
||||
matches.reserve(nQuery);
|
||||
|
||||
const int* trainIdx_ptr = trainIdxCPU.ptr<int>();
|
||||
const int* imgIdx_ptr = imgIdxCPU.ptr<int>();
|
||||
const float* distance_ptr = distanceCPU.ptr<float>();
|
||||
const int* trainIdx_ptr = trainIdx.ptr<int>();
|
||||
const int* imgIdx_ptr = imgIdx.ptr<int>();
|
||||
const float* distance_ptr = distance.ptr<float>();
|
||||
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
|
||||
{
|
||||
int trainIdx = *trainIdx_ptr;
|
||||
@ -385,8 +403,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx,
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, vector<DMatch>& matches,
|
||||
const vector<GpuMat>& masks)
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, vector<DMatch>& matches, const vector<GpuMat>& masks)
|
||||
{
|
||||
GpuMat trainCollection;
|
||||
GpuMat maskCollection;
|
||||
@ -462,15 +479,24 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainId
|
||||
if (trainIdx.empty() || distance.empty())
|
||||
return;
|
||||
|
||||
Mat trainIdxCPU = trainIdx;
|
||||
Mat distanceCPU = distance;
|
||||
|
||||
knnMatchConvert(trainIdxCPU, distanceCPU, matches, compactResult);
|
||||
}
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchConvert(const Mat& trainIdx, const Mat& distance,
|
||||
std::vector< std::vector<DMatch> >& matches, bool compactResult)
|
||||
{
|
||||
if (trainIdx.empty() || distance.empty())
|
||||
return;
|
||||
|
||||
CV_Assert(trainIdx.type() == CV_32SC1);
|
||||
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
|
||||
|
||||
const int nQuery = distance.rows;
|
||||
const int k = trainIdx.cols;
|
||||
|
||||
Mat trainIdxCPU = trainIdx;
|
||||
Mat distanceCPU = distance;
|
||||
|
||||
matches.clear();
|
||||
matches.reserve(nQuery);
|
||||
|
||||
@ -480,8 +506,8 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainId
|
||||
vector<DMatch>& curMatches = matches.back();
|
||||
curMatches.reserve(k);
|
||||
|
||||
int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx);
|
||||
float* distance_ptr = distanceCPU.ptr<float>(queryIdx);
|
||||
const int* trainIdx_ptr = trainIdx.ptr<int>(queryIdx);
|
||||
const float* distance_ptr = distance.ptr<float>(queryIdx);
|
||||
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr)
|
||||
{
|
||||
int trainIdx = *trainIdx_ptr;
|
||||
@ -614,24 +640,33 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trai
|
||||
if (trainIdx.empty() || nMatches.empty() || distance.empty())
|
||||
return;
|
||||
|
||||
Mat trainIdxCPU = trainIdx;
|
||||
Mat nMatchesCPU = nMatches;
|
||||
Mat distanceCPU = distance;
|
||||
|
||||
radiusMatchConvert(trainIdxCPU, nMatchesCPU, distanceCPU, matches, compactResult);
|
||||
}
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx, const Mat& nMatches, const Mat& distance,
|
||||
std::vector< std::vector<DMatch> >& matches, bool compactResult)
|
||||
{
|
||||
if (trainIdx.empty() || nMatches.empty() || distance.empty())
|
||||
return;
|
||||
|
||||
CV_Assert(trainIdx.type() == CV_32SC1);
|
||||
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.isContinuous() && nMatches.cols >= trainIdx.rows);
|
||||
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
|
||||
|
||||
const int nQuery = trainIdx.rows;
|
||||
|
||||
Mat trainIdxCPU = trainIdx;
|
||||
Mat nMatchesCPU = nMatches;
|
||||
Mat distanceCPU = distance;
|
||||
|
||||
matches.clear();
|
||||
matches.reserve(nQuery);
|
||||
|
||||
const unsigned int* nMatches_ptr = nMatchesCPU.ptr<unsigned int>();
|
||||
const unsigned int* nMatches_ptr = nMatches.ptr<unsigned int>();
|
||||
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
|
||||
{
|
||||
const int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx);
|
||||
const float* distance_ptr = distanceCPU.ptr<float>(queryIdx);
|
||||
const int* trainIdx_ptr = trainIdx.ptr<int>(queryIdx);
|
||||
const float* distance_ptr = distance.ptr<float>(queryIdx);
|
||||
|
||||
const int nMatches = std::min(static_cast<int>(nMatches_ptr[queryIdx]), trainIdx.cols);
|
||||
|
||||
|
@ -56,9 +56,8 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Mask strategy
|
||||
|
||||
class SingleMask
|
||||
struct SingleMask
|
||||
{
|
||||
public:
|
||||
explicit SingleMask(const PtrStep& mask_) : mask(mask_) {}
|
||||
|
||||
__device__ __forceinline__ bool operator()(int queryIdx, int trainIdx) const
|
||||
@ -66,13 +65,11 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
return mask.ptr(queryIdx)[trainIdx] != 0;
|
||||
}
|
||||
|
||||
private:
|
||||
PtrStep mask;
|
||||
const PtrStep mask;
|
||||
};
|
||||
|
||||
class MaskCollection
|
||||
struct MaskCollection
|
||||
{
|
||||
public:
|
||||
explicit MaskCollection(PtrStep* maskCollection_) : maskCollection(maskCollection_) {}
|
||||
|
||||
__device__ __forceinline__ void nextMask()
|
||||
@ -86,15 +83,14 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
return curMask.data == 0 || (ForceGlob<uchar>::Load(curMask.ptr(queryIdx), trainIdx, val), (val != 0));
|
||||
}
|
||||
|
||||
private:
|
||||
PtrStep* maskCollection;
|
||||
const PtrStep* maskCollection;
|
||||
PtrStep curMask;
|
||||
};
|
||||
|
||||
class WithOutMask
|
||||
{
|
||||
public:
|
||||
__device__ __forceinline__ void nextMask()
|
||||
__device__ __forceinline__ void nextMask() const
|
||||
{
|
||||
}
|
||||
__device__ __forceinline__ bool operator()(int queryIdx, int trainIdx) const
|
||||
@ -128,9 +124,8 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Distance
|
||||
|
||||
template <typename T> class L1Dist
|
||||
template <typename T> struct L1Dist
|
||||
{
|
||||
public:
|
||||
typedef int ResultType;
|
||||
typedef int ValueType;
|
||||
|
||||
@ -151,12 +146,10 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
return mySum;
|
||||
}
|
||||
|
||||
private:
|
||||
int mySum;
|
||||
};
|
||||
template <> class L1Dist<float>
|
||||
template <> struct L1Dist<float>
|
||||
{
|
||||
public:
|
||||
typedef float ResultType;
|
||||
typedef float ValueType;
|
||||
|
||||
@ -177,13 +170,11 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
return mySum;
|
||||
}
|
||||
|
||||
private:
|
||||
float mySum;
|
||||
};
|
||||
|
||||
class L2Dist
|
||||
struct L2Dist
|
||||
{
|
||||
public:
|
||||
typedef float ResultType;
|
||||
typedef float ValueType;
|
||||
|
||||
@ -205,13 +196,11 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
return sqrtf(mySum);
|
||||
}
|
||||
|
||||
private:
|
||||
float mySum;
|
||||
};
|
||||
|
||||
class HammingDist
|
||||
struct HammingDist
|
||||
{
|
||||
public:
|
||||
typedef int ResultType;
|
||||
typedef int ValueType;
|
||||
|
||||
@ -232,7 +221,6 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
return mySum;
|
||||
}
|
||||
|
||||
private:
|
||||
int mySum;
|
||||
};
|
||||
|
||||
@ -425,10 +413,8 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// ReduceDescCalculator
|
||||
|
||||
template <int BLOCK_DIM_X, typename T>
|
||||
class ReduceDescCalculatorSimple
|
||||
template <int BLOCK_DIM_X, typename T> struct ReduceDescCalculatorSimple
|
||||
{
|
||||
public:
|
||||
__device__ __forceinline__ void prepare(const T* queryDescs_, int, void*)
|
||||
{
|
||||
queryDescs = queryDescs_;
|
||||
@ -440,14 +426,12 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, desc_len, dist, sdiff_row);
|
||||
}
|
||||
|
||||
private:
|
||||
const T* queryDescs;
|
||||
};
|
||||
|
||||
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN, typename T, typename U>
|
||||
class ReduceDescCalculatorCached
|
||||
struct ReduceDescCalculatorCached
|
||||
{
|
||||
public:
|
||||
__device__ __forceinline__ void prepare(const T* queryDescs, int desc_len, U* smem)
|
||||
{
|
||||
loadDescsVals<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN>(queryDescs, desc_len, queryVals, smem);
|
||||
@ -459,7 +443,6 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
reduceDescDiffCached<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN>(queryVals, trainDescs, desc_len, dist, sdiff_row);
|
||||
}
|
||||
|
||||
private:
|
||||
U queryVals[MAX_DESCRIPTORS_LEN / BLOCK_DIM_X];
|
||||
};
|
||||
|
||||
@ -497,10 +480,8 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Train collection loop strategy
|
||||
|
||||
template <typename T>
|
||||
class SingleTrain
|
||||
template <typename T> struct SingleTrain
|
||||
{
|
||||
public:
|
||||
explicit SingleTrain(const DevMem2D_<T>& trainDescs_) : trainDescs(trainDescs_)
|
||||
{
|
||||
}
|
||||
@ -517,14 +498,11 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
return trainDescs.cols;
|
||||
}
|
||||
|
||||
private:
|
||||
DevMem2D_<T> trainDescs;
|
||||
const DevMem2D_<T> trainDescs;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class TrainCollection
|
||||
template <typename T> struct TrainCollection
|
||||
{
|
||||
public:
|
||||
TrainCollection(const DevMem2D_<T>* trainCollection_, int nImg_, int desclen_) :
|
||||
trainCollection(trainCollection_), nImg(nImg_), desclen(desclen_)
|
||||
{
|
||||
@ -536,7 +514,7 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
{
|
||||
for (int imgIdx = 0; imgIdx < nImg; ++imgIdx)
|
||||
{
|
||||
DevMem2D_<T> trainDescs = trainCollection[imgIdx];
|
||||
const DevMem2D_<T> trainDescs = trainCollection[imgIdx];
|
||||
m.nextMask();
|
||||
matchDescs<Dist>(queryIdx, imgIdx, trainDescs, m, reduceDescCalc, myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
|
||||
}
|
||||
@ -547,7 +525,6 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
return desclen;
|
||||
}
|
||||
|
||||
private:
|
||||
const DevMem2D_<T>* trainCollection;
|
||||
int nImg;
|
||||
int desclen;
|
||||
@ -806,7 +783,7 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
// Calc distance kernel
|
||||
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
|
||||
__global__ void calcDistance(PtrStep_<T> queryDescs_, DevMem2D_<T> trainDescs_, Mask mask, PtrStepf distance)
|
||||
__global__ void calcDistance(const PtrStep_<T> queryDescs_, const DevMem2D_<T> trainDescs_, const Mask mask, PtrStepf distance)
|
||||
{
|
||||
__shared__ typename Dist::ResultType sdiff[BLOCK_DIM_X * BLOCK_DIM_Y];
|
||||
|
||||
@ -989,8 +966,7 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// find knn match kernel
|
||||
|
||||
template <int BLOCK_SIZE>
|
||||
__global__ void findBestMatch(DevMem2Df allDist_, int i, PtrStepi trainIdx_, PtrStepf distance_)
|
||||
template <int BLOCK_SIZE> __global__ void findBestMatch(DevMem2Df allDist_, int i, PtrStepi trainIdx_, PtrStepf distance_)
|
||||
{
|
||||
const int SMEM_SIZE = BLOCK_SIZE > 64 ? BLOCK_SIZE : 64;
|
||||
__shared__ float sdist[SMEM_SIZE];
|
||||
@ -1130,8 +1106,8 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
// Radius Match kernel
|
||||
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
|
||||
__global__ void radiusMatch(PtrStep_<T> queryDescs_, DevMem2D_<T> trainDescs_,
|
||||
float maxDistance, Mask mask, DevMem2Di trainIdx_, unsigned int* nMatches, PtrStepf distance)
|
||||
__global__ void radiusMatch(const PtrStep_<T> queryDescs_, const DevMem2D_<T> trainDescs_,
|
||||
float maxDistance, const Mask mask, DevMem2Di trainIdx_, unsigned int* nMatches, PtrStepf distance)
|
||||
{
|
||||
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
|
||||
|
@ -42,6 +42,7 @@
|
||||
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/transform.hpp"
|
||||
#include "opencv2/gpu/device/functional.hpp"
|
||||
|
||||
#define SOLVE_PNP_RANSAC_MAX_NUM_ITERS 200
|
||||
|
||||
@ -56,9 +57,9 @@ namespace cv { namespace gpu
|
||||
__constant__ float3 crot2;
|
||||
__constant__ float3 ctransl;
|
||||
|
||||
struct TransformOp
|
||||
struct TransformOp : unary_function<float3, float3>
|
||||
{
|
||||
__device__ __forceinline__ float3 operator()(float3 p) const
|
||||
__device__ __forceinline__ float3 operator()(const float3& p) const
|
||||
{
|
||||
return make_float3(
|
||||
crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x,
|
||||
@ -89,9 +90,9 @@ namespace cv { namespace gpu
|
||||
__constant__ float3 cproj0;
|
||||
__constant__ float3 cproj1;
|
||||
|
||||
struct ProjectOp
|
||||
struct ProjectOp : unary_function<float3, float3>
|
||||
{
|
||||
__device__ __forceinline__ float2 operator()(float3 p) const
|
||||
__device__ __forceinline__ float2 operator()(const float3& p) const
|
||||
{
|
||||
// Rotate and translate in 3D
|
||||
float3 t = make_float3(
|
||||
|
@ -49,7 +49,7 @@ using namespace cv::gpu::device;
|
||||
|
||||
namespace cv { namespace gpu { namespace canny
|
||||
{
|
||||
__global__ void calcSobelRowPass(PtrStep src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
|
||||
__global__ void calcSobelRowPass(const PtrStep src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
|
||||
{
|
||||
__shared__ int smem[16][18];
|
||||
|
||||
@ -100,7 +100,8 @@ namespace cv { namespace gpu { namespace canny
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Norm> __global__ void calcMagnitude(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
|
||||
template <typename Norm> __global__ void calcMagnitude(const PtrStepi dx_buf, const PtrStepi dy_buf,
|
||||
PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
|
||||
{
|
||||
__shared__ int sdx[18][16];
|
||||
__shared__ int sdy[18][16];
|
||||
@ -179,7 +180,7 @@ namespace cv { namespace gpu { namespace canny
|
||||
#define CANNY_SHIFT 15
|
||||
#define TG22 (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5)
|
||||
|
||||
__global__ void calcMap(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
|
||||
__global__ void calcMap(const PtrStepi dx, const PtrStepi dy, const PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
|
||||
{
|
||||
__shared__ float smem[18][18];
|
||||
|
||||
|
@ -56,10 +56,9 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Compare
|
||||
|
||||
template <typename T1, typename T2>
|
||||
struct NotEqual
|
||||
template <typename T1, typename T2> struct NotEqual : binary_function<T1, T2, uchar>
|
||||
{
|
||||
__device__ __forceinline__ uchar operator()(const T1& src1, const T2& src2)
|
||||
__device__ __forceinline__ uchar operator()(const T1& src1, const T2& src2) const
|
||||
{
|
||||
return static_cast<uchar>(static_cast<int>(src1 != src2) * 255);
|
||||
}
|
||||
@ -467,8 +466,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// pow
|
||||
|
||||
template<typename T, bool Signed = device::numeric_limits<T>::is_signed>
|
||||
struct PowOp
|
||||
template<typename T, bool Signed = device::numeric_limits<T>::is_signed> struct PowOp : unary_function<T, T>
|
||||
{
|
||||
float power;
|
||||
PowOp(float power_) : power(power_) {}
|
||||
@ -479,13 +477,12 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct PowOp<T, true>
|
||||
template<typename T> struct PowOp<T, true> : unary_function<T, T>
|
||||
{
|
||||
float power;
|
||||
PowOp(float power_) : power(power_) {}
|
||||
|
||||
__device__ __forceinline__ float operator()(const T& e)
|
||||
__device__ __forceinline__ float operator()(const T& e) const
|
||||
{
|
||||
T res = saturate_cast<T>(__powf((float)e, power));
|
||||
|
||||
@ -495,13 +492,12 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct PowOp<float>
|
||||
template<> struct PowOp<float> : unary_function<float, float>
|
||||
{
|
||||
float power;
|
||||
PowOp(float power_) : power(power_) {}
|
||||
|
||||
__device__ __forceinline__ float operator()(const float& e)
|
||||
__device__ __forceinline__ float operator()(const float& e) const
|
||||
{
|
||||
return __powf(fabs(e), power);
|
||||
}
|
||||
|
@ -105,7 +105,7 @@ namespace cv { namespace gpu { namespace histograms
|
||||
if (x + 3 < cols) addByte(s_WarpHist, (data >> 24) & 0xFFU, tag);
|
||||
}
|
||||
|
||||
__global__ void histogram256(PtrStep_<uint> d_Data, uint* d_PartialHistograms, uint dataCount, uint cols)
|
||||
__global__ void histogram256(const PtrStep_<uint> d_Data, uint* d_PartialHistograms, uint dataCount, uint cols)
|
||||
{
|
||||
//Per-warp subhistogram storage
|
||||
__shared__ uint s_Hist[HISTOGRAM256_THREADBLOCK_MEMORY];
|
||||
@ -189,21 +189,18 @@ namespace cv { namespace gpu { namespace histograms
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
__global__ void equalizeHist(DevMem2D src, PtrStep dst, const int* lut)
|
||||
__constant__ int c_lut[256];
|
||||
|
||||
__global__ void equalizeHist(const DevMem2D src, PtrStep dst)
|
||||
{
|
||||
__shared__ int s_lut[256];
|
||||
|
||||
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
s_lut[tid] = lut[tid];
|
||||
__syncthreads();
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < src.cols && y < src.rows)
|
||||
{
|
||||
dst.ptr(y)[x] = __float2int_rn(255.0f * s_lut[src.ptr(y)[x]] / (src.cols * src.rows));
|
||||
const uchar val = src.ptr(y)[x];
|
||||
const int lut = c_lut[val];
|
||||
dst.ptr(y)[x] = __float2int_rn(255.0f / (src.cols * src.rows) * lut);
|
||||
}
|
||||
}
|
||||
|
||||
@ -212,7 +209,9 @@ namespace cv { namespace gpu { namespace histograms
|
||||
dim3 block(16, 16);
|
||||
dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
|
||||
|
||||
equalizeHist<<<grid, block, 0, stream>>>(src, dst, lut);
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cv::gpu::histograms::c_lut, lut, 256 * sizeof(int), 0, cudaMemcpyDeviceToDevice) );
|
||||
|
||||
equalizeHist<<<grid, block, 0, stream>>>(src, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
|
@ -49,7 +49,7 @@ using namespace cv::gpu::device;
|
||||
/////////////////////////////////// Remap ///////////////////////////////////////////////
|
||||
namespace cv { namespace gpu { namespace imgproc
|
||||
{
|
||||
texture<unsigned char, 2, cudaReadModeNormalizedFloat> tex_remap;
|
||||
texture<unsigned char, 2, cudaReadModeNormalizedFloat> tex_remap(0, cudaFilterModeLinear, cudaAddressModeWrap);
|
||||
|
||||
__global__ void remap_1c(const float* mapx, const float* mapy, size_t map_step, uchar* out, size_t out_step, int width, int height)
|
||||
{
|
||||
@ -131,16 +131,12 @@ namespace cv { namespace gpu { namespace imgproc
|
||||
grid.x = divUp(dst.cols, threads.x);
|
||||
grid.y = divUp(dst.rows, threads.y);
|
||||
|
||||
tex_remap.filterMode = cudaFilterModeLinear;
|
||||
tex_remap.addressMode[0] = tex_remap.addressMode[1] = cudaAddressModeWrap;
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
|
||||
cudaSafeCall( cudaBindTexture2D(0, tex_remap, src.data, desc, src.cols, src.rows, src.step) );
|
||||
TextureBinder tex_remap(&tex_remap, src);
|
||||
|
||||
remap_1c<<<grid, threads>>>(xmap.data, ymap.data, xmap.step, dst.data, dst.step, dst.cols, dst.rows);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
cudaSafeCall( cudaUnbindTexture(tex_remap) );
|
||||
}
|
||||
|
||||
void remap_gpu_3c(const DevMem2D& src, const DevMem2Df& xmap, const DevMem2Df& ymap, DevMem2D dst)
|
||||
@ -151,8 +147,8 @@ namespace cv { namespace gpu { namespace imgproc
|
||||
grid.y = divUp(dst.rows, threads.y);
|
||||
|
||||
remap_3c<<<grid, threads>>>(src.data, src.step, xmap.data, ymap.data, xmap.step, dst.data, dst.step, dst.cols, dst.rows);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
|
@ -77,7 +77,6 @@ namespace cv
|
||||
// Returns true if the GPU analogue exists, false otherwise.
|
||||
bool tryConvertToGpuBorderType(int cpuBorderType, int& gpuBorderType);
|
||||
|
||||
|
||||
static inline int divUp(int total, int grain) { return (total + grain - 1) / grain; }
|
||||
|
||||
template<class T> static inline void uploadConstant(const char* name, const T& value)
|
||||
@ -117,6 +116,49 @@ namespace cv
|
||||
cudaSafeCall( cudaUnbindTexture(tex) );
|
||||
}
|
||||
|
||||
class TextureBinder
|
||||
{
|
||||
public:
|
||||
TextureBinder() : tex_(0) {}
|
||||
template <typename T> TextureBinder(const textureReference* tex, const DevMem2D_<T>& img) : tex_(0)
|
||||
{
|
||||
bind(tex, img);
|
||||
}
|
||||
template <typename T> TextureBinder(const char* tex_name, const DevMem2D_<T>& img) : tex_(0)
|
||||
{
|
||||
bind(tex_name, img);
|
||||
}
|
||||
~TextureBinder() { unbind(); }
|
||||
|
||||
template <typename T> void bind(const textureReference* tex, const DevMem2D_<T>& img)
|
||||
{
|
||||
unbind();
|
||||
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
|
||||
cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
|
||||
|
||||
tex_ = tex;
|
||||
}
|
||||
template <typename T> void bind(const char* tex_name, const DevMem2D_<T>& img)
|
||||
{
|
||||
const textureReference* tex;
|
||||
cudaSafeCall( cudaGetTextureReference(&tex, tex_name) );
|
||||
bind(tex, img);
|
||||
}
|
||||
|
||||
void unbind()
|
||||
{
|
||||
if (tex_)
|
||||
{
|
||||
cudaUnbindTexture(tex_);
|
||||
tex_ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
const textureReference* tex_;
|
||||
};
|
||||
|
||||
class NppStreamHandler
|
||||
{
|
||||
public:
|
||||
|
@ -43,6 +43,7 @@
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
#include "opencv2/gpu/device/transform.hpp"
|
||||
#include "opencv2/gpu/device/functional.hpp"
|
||||
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
@ -62,7 +63,7 @@ namespace cv { namespace gpu { namespace matrix_operations {
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename T>
|
||||
__global__ void copy_to_with_mask(T * mat_src, T * mat_dst, const unsigned char * mask, int cols, int rows, size_t step_mat, size_t step_mask, int channels)
|
||||
__global__ void copy_to_with_mask(const T* mat_src, T* mat_dst, const uchar* mask, int cols, int rows, size_t step_mat, size_t step_mask, int channels)
|
||||
{
|
||||
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
@ -162,7 +163,7 @@ namespace cv { namespace gpu { namespace matrix_operations {
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__global__ void set_to_without_mask(T * mat, int cols, int rows, size_t step, int channels)
|
||||
__global__ void set_to_without_mask(T* mat, int cols, int rows, size_t step, int channels)
|
||||
{
|
||||
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
@ -175,7 +176,7 @@ namespace cv { namespace gpu { namespace matrix_operations {
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__global__ void set_to_with_mask(T * mat, const unsigned char * mask, int cols, int rows, size_t step, int channels, size_t step_mask)
|
||||
__global__ void set_to_with_mask(T* mat, const uchar* mask, int cols, int rows, size_t step, int channels, size_t step_mask)
|
||||
{
|
||||
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
@ -237,19 +238,16 @@ namespace cv { namespace gpu { namespace matrix_operations {
|
||||
//////////////////////////////// ConvertTo ////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename T, typename D>
|
||||
class Convertor
|
||||
template <typename T, typename D> struct Convertor : unary_function<T, D>
|
||||
{
|
||||
public:
|
||||
Convertor(double alpha_, double beta_) : alpha(alpha_), beta(beta_) {}
|
||||
|
||||
__device__ __forceinline__ D operator()(const T& src)
|
||||
__device__ __forceinline__ D operator()(const T& src) const
|
||||
{
|
||||
return saturate_cast<D>(alpha * src + beta);
|
||||
}
|
||||
|
||||
private:
|
||||
double alpha, beta;
|
||||
const double alpha, beta;
|
||||
};
|
||||
|
||||
template<typename T, typename D>
|
||||
|
@ -225,7 +225,7 @@ namespace cv { namespace gpu { namespace surf
|
||||
};
|
||||
|
||||
template <typename Mask>
|
||||
__global__ void icvFindMaximaInLayer(PtrStepf det, PtrStepf trace, int4* maxPosBuffer, unsigned int* maxCounter)
|
||||
__global__ void icvFindMaximaInLayer(const PtrStepf det, const PtrStepf trace, int4* maxPosBuffer, unsigned int* maxCounter)
|
||||
{
|
||||
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
|
||||
@ -346,7 +346,7 @@ namespace cv { namespace gpu { namespace surf
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// INTERPOLATION
|
||||
|
||||
__global__ void icvInterpolateKeypoint(PtrStepf det, const int4* maxPosBuffer,
|
||||
__global__ void icvInterpolateKeypoint(const PtrStepf det, const int4* maxPosBuffer,
|
||||
float* featureX, float* featureY, int* featureLaplacian, float* featureSize, float* featureHessian,
|
||||
unsigned int* featureCounter)
|
||||
{
|
||||
|
@ -45,13 +45,10 @@
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// GpuMat ////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
void cv::gpu::registerPageLocked(Mat&) { throw_nogpu(); }
|
||||
void cv::gpu::unregisterPageLocked(Mat&) { throw_nogpu(); }
|
||||
void cv::gpu::CudaMem::create(int /*_rows*/, int /*_cols*/, int /*_type*/, int /*type_alloc*/) { throw_nogpu(); }
|
||||
bool cv::gpu::CudaMem::canMapHostMemory() { throw_nogpu(); return false; }
|
||||
void cv::gpu::CudaMem::release() { throw_nogpu(); }
|
||||
@ -59,9 +56,15 @@ GpuMat cv::gpu::CudaMem::createGpuMatHeader () const { throw_nogpu(); return Gpu
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// CudaMem //////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
void registerPageLocked(Mat& m)
|
||||
{
|
||||
cudaSafeCall( cudaHostRegister(m.ptr(), m.step * m.rows, cudaHostRegisterPortable) );
|
||||
}
|
||||
|
||||
void unregisterPageLocked(Mat& m)
|
||||
{
|
||||
cudaSafeCall( cudaHostUnregister(m.ptr()) );
|
||||
}
|
||||
|
||||
bool cv::gpu::CudaMem::canMapHostMemory()
|
||||
{
|
||||
|
@ -52,15 +52,13 @@ namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
//! Mask accessor
|
||||
|
||||
class MaskReader
|
||||
struct MaskReader
|
||||
{
|
||||
public:
|
||||
explicit MaskReader(const PtrStep& mask_): mask(mask_) {}
|
||||
|
||||
__device__ __forceinline__ bool operator()(int y, int x) const { return mask.ptr(y)[x]; }
|
||||
|
||||
private:
|
||||
PtrStep mask;
|
||||
const PtrStep mask;
|
||||
};
|
||||
|
||||
struct NoMask
|
||||
@ -159,7 +157,7 @@ namespace cv { namespace gpu { namespace device
|
||||
template <> struct OpUnroller<3>
|
||||
{
|
||||
template <typename T, typename D, typename UnOp, typename Mask>
|
||||
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
|
||||
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
|
||||
{
|
||||
if (mask(y, x_shifted))
|
||||
dst.x = op(src.x);
|
||||
@ -170,7 +168,7 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
|
||||
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
|
||||
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
|
||||
{
|
||||
if (mask(y, x_shifted))
|
||||
dst.x = op(src1.x, src2.x);
|
||||
@ -183,7 +181,7 @@ namespace cv { namespace gpu { namespace device
|
||||
template <> struct OpUnroller<4>
|
||||
{
|
||||
template <typename T, typename D, typename UnOp, typename Mask>
|
||||
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
|
||||
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
|
||||
{
|
||||
if (mask(y, x_shifted))
|
||||
dst.x = op(src.x);
|
||||
@ -196,7 +194,7 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
|
||||
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
|
||||
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
|
||||
{
|
||||
if (mask(y, x_shifted))
|
||||
dst.x = op(src1.x, src2.x);
|
||||
@ -210,7 +208,7 @@ namespace cv { namespace gpu { namespace device
|
||||
};
|
||||
|
||||
template <typename T, typename D, typename UnOp, typename Mask>
|
||||
__global__ static void transformSmart(const DevMem2D_<T> src_, PtrStep_<D> dst_, const Mask mask, UnOp op)
|
||||
__global__ static void transformSmart(const DevMem2D_<T> src_, PtrStep_<D> dst_, const Mask mask, const UnOp op)
|
||||
{
|
||||
typedef typename UnReadWriteTraits<T, D>::read_type read_type;
|
||||
typedef typename UnReadWriteTraits<T, D>::write_type write_type;
|
||||
@ -227,7 +225,7 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
if (x_shifted + shift - 1 < src_.cols)
|
||||
{
|
||||
read_type src_n_el = ((const read_type*)src)[x];
|
||||
const read_type src_n_el = ((const read_type*)src)[x];
|
||||
write_type dst_n_el;
|
||||
|
||||
OpUnroller<shift>::unroll(src_n_el, dst_n_el, mask, op, x_shifted, y);
|
||||
@ -246,7 +244,7 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
template <typename T, typename D, typename UnOp, typename Mask>
|
||||
static __global__ void transformSimple(const DevMem2D_<T> src, PtrStep_<D> dst, const Mask mask, UnOp op)
|
||||
static __global__ void transformSimple(const DevMem2D_<T> src, PtrStep_<D> dst, const Mask mask, const UnOp op)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
@ -259,7 +257,7 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
|
||||
__global__ static void transformSmart(const DevMem2D_<T1> src1_, const PtrStep_<T2> src2_, PtrStep_<D> dst_,
|
||||
const Mask mask, BinOp op)
|
||||
const Mask mask, const BinOp op)
|
||||
{
|
||||
typedef typename BinReadWriteTraits<T1, T2, D>::read_type1 read_type1;
|
||||
typedef typename BinReadWriteTraits<T1, T2, D>::read_type2 read_type2;
|
||||
@ -278,8 +276,8 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
if (x_shifted + shift - 1 < src1_.cols)
|
||||
{
|
||||
read_type1 src1_n_el = ((const read_type1*)src1)[x];
|
||||
read_type2 src2_n_el = ((const read_type2*)src2)[x];
|
||||
const read_type1 src1_n_el = ((const read_type1*)src1)[x];
|
||||
const read_type2 src2_n_el = ((const read_type2*)src2)[x];
|
||||
write_type dst_n_el;
|
||||
|
||||
OpUnroller<shift>::unroll(src1_n_el, src2_n_el, dst_n_el, mask, op, x_shifted, y);
|
||||
@ -299,15 +297,15 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
|
||||
static __global__ void transformSimple(const DevMem2D_<T1> src1, const PtrStep_<T2> src2, PtrStep_<D> dst,
|
||||
const Mask mask, BinOp op)
|
||||
const Mask mask, const BinOp op)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
if (x < src1.cols && y < src1.rows && mask(y, x))
|
||||
{
|
||||
T1 src1_data = src1.ptr(y)[x];
|
||||
T2 src2_data = src2.ptr(y)[x];
|
||||
const T1 src1_data = src1.ptr(y)[x];
|
||||
const T2 src2_data = src2.ptr(y)[x];
|
||||
dst.ptr(y)[x] = op(src1_data, src2_data);
|
||||
}
|
||||
}
|
||||
@ -316,7 +314,7 @@ namespace cv { namespace gpu { namespace device
|
||||
template<> struct TransformDispatcher<false>
|
||||
{
|
||||
template <typename T, typename D, typename UnOp, typename Mask>
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, const Mask& mask, cudaStream_t stream)
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, const UnOp& op, const Mask& mask, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(16, 16, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
@ -332,7 +330,7 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
|
||||
static void call(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst, BinOp op, const Mask& mask, cudaStream_t stream)
|
||||
static void call(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst, const BinOp& op, const Mask& mask, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(16, 16, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
@ -350,7 +348,7 @@ namespace cv { namespace gpu { namespace device
|
||||
template<> struct TransformDispatcher<true>
|
||||
{
|
||||
template <typename T, typename D, typename UnOp, typename Mask>
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, const Mask& mask, cudaStream_t stream)
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, const UnOp& op, const Mask& mask, cudaStream_t stream)
|
||||
{
|
||||
const int shift = UnReadWriteTraits<T, D>::shift;
|
||||
|
||||
@ -368,7 +366,7 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
|
||||
static void call(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst, BinOp op, const Mask& mask, cudaStream_t stream)
|
||||
static void call(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst, const BinOp& op, const Mask& mask, cudaStream_t stream)
|
||||
{
|
||||
const int shift = BinReadWriteTraits<T1, T2, D>::shift;
|
||||
|
||||
@ -413,13 +411,13 @@ namespace cv { namespace gpu { namespace device
|
||||
};
|
||||
|
||||
template <typename T, typename D, typename UnOp, typename Mask>
|
||||
static void transform_caller(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, const Mask& mask, cudaStream_t stream)
|
||||
static void transform_caller(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, const UnOp& op, const Mask& mask, cudaStream_t stream)
|
||||
{
|
||||
TransformDispatcher< UseSmartUn<T, D>::value >::call(src, dst, op, mask, stream);
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
|
||||
static void transform_caller(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst, BinOp op, const Mask& mask, cudaStream_t stream)
|
||||
static void transform_caller(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst, const BinOp& op, const Mask& mask, cudaStream_t stream)
|
||||
{
|
||||
TransformDispatcher< UseSmartBin<T1, T2, D>::value >::call(src1, src2, dst, op, mask, stream);
|
||||
}
|
||||
|
@ -73,7 +73,7 @@ namespace cv { namespace gpu { namespace device
|
||||
using thrust::bit_and;
|
||||
using thrust::bit_or;
|
||||
using thrust::bit_xor;
|
||||
template <typename T> struct bit_not : public unary_function<T, T>
|
||||
template <typename T> struct bit_not : unary_function<T, T>
|
||||
{
|
||||
__forceinline__ __device__ T operator ()(const T& v) const {return ~v;}
|
||||
};
|
||||
@ -81,12 +81,12 @@ namespace cv { namespace gpu { namespace device
|
||||
using thrust::identity;
|
||||
|
||||
#define OPENCV_GPU_IMPLEMENT_MINMAX(name, type, op) \
|
||||
template <> struct name<type> : public binary_function<type, type, type> \
|
||||
template <> struct name<type> : binary_function<type, type, type> \
|
||||
{ \
|
||||
__forceinline__ __device__ type operator()(type lhs, type rhs) const {return op(lhs, rhs);} \
|
||||
};
|
||||
|
||||
template <typename T> struct maximum : public binary_function<T, T, T>
|
||||
template <typename T> struct maximum : binary_function<T, T, T>
|
||||
{
|
||||
__forceinline__ __device__ T operator()(const T& lhs, const T& rhs) const {return lhs < rhs ? rhs : lhs;}
|
||||
};
|
||||
@ -100,7 +100,7 @@ namespace cv { namespace gpu { namespace device
|
||||
OPENCV_GPU_IMPLEMENT_MINMAX(maximum, float, fmax)
|
||||
OPENCV_GPU_IMPLEMENT_MINMAX(maximum, double, fmax)
|
||||
|
||||
template <typename T> struct minimum : public binary_function<T, T, T>
|
||||
template <typename T> struct minimum : binary_function<T, T, T>
|
||||
{
|
||||
__forceinline__ __device__ T operator()(const T &lhs, const T &rhs) const {return lhs < rhs ? lhs : rhs;}
|
||||
};
|
||||
@ -126,31 +126,31 @@ namespace cv { namespace gpu { namespace device
|
||||
using thrust::not2;
|
||||
|
||||
#define OPENCV_GPU_IMPLEMENT_UN_FUNCTOR(func) \
|
||||
template <typename T> struct func ## _func : public unary_function<T, float> \
|
||||
template <typename T> struct func ## _func : unary_function<T, float> \
|
||||
{ \
|
||||
__forceinline__ __device__ float operator ()(const T& v) \
|
||||
__forceinline__ __device__ float operator ()(const T& v) const \
|
||||
{ \
|
||||
return func ## f(v); \
|
||||
} \
|
||||
}; \
|
||||
template <> struct func ## _func<double> : public unary_function<double, double> \
|
||||
template <> struct func ## _func<double> : unary_function<double, double> \
|
||||
{ \
|
||||
__forceinline__ __device__ double operator ()(double v) \
|
||||
__forceinline__ __device__ double operator ()(double v) const \
|
||||
{ \
|
||||
return func(v); \
|
||||
} \
|
||||
};
|
||||
#define OPENCV_GPU_IMPLEMENT_BIN_FUNCTOR(func) \
|
||||
template <typename T> struct func ## _func : public binary_function<T, T, float> \
|
||||
template <typename T> struct func ## _func : binary_function<T, T, float> \
|
||||
{ \
|
||||
__forceinline__ __device__ float operator ()(const T& v1, const T& v2) \
|
||||
__forceinline__ __device__ float operator ()(const T& v1, const T& v2) const \
|
||||
{ \
|
||||
return func ## f(v1, v2); \
|
||||
} \
|
||||
}; \
|
||||
template <> struct func ## _func<double> : public binary_function<double, double, double> \
|
||||
template <> struct func ## _func<double> : binary_function<double, double, double> \
|
||||
{ \
|
||||
__forceinline__ __device__ double operator ()(double v1, double v2) \
|
||||
__forceinline__ __device__ double operator ()(double v1, double v2) const \
|
||||
{ \
|
||||
return func(v1, v2); \
|
||||
} \
|
||||
@ -184,7 +184,7 @@ namespace cv { namespace gpu { namespace device
|
||||
#undef OPENCV_GPU_IMPLEMENT_UN_FUNCTOR
|
||||
#undef OPENCV_GPU_IMPLEMENT_BIN_FUNCTOR
|
||||
|
||||
template<typename T> struct hypot_sqr_func : public binary_function<T, T, float>
|
||||
template<typename T> struct hypot_sqr_func : binary_function<T, T, float>
|
||||
{
|
||||
__forceinline__ __device__ T operator ()(T src1, T src2) const
|
||||
{
|
||||
@ -192,15 +192,15 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename D> struct saturate_cast_func : public unary_function<T, D>
|
||||
template <typename T, typename D> struct saturate_cast_func : unary_function<T, D>
|
||||
{
|
||||
__forceinline__ __device__ D operator ()(const T& v)
|
||||
__forceinline__ __device__ D operator ()(const T& v) const
|
||||
{
|
||||
return saturate_cast<D>(v);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T> struct thresh_binary_func : public unary_function<T, T>
|
||||
template <typename T> struct thresh_binary_func : unary_function<T, T>
|
||||
{
|
||||
__forceinline__ __host__ __device__ thresh_binary_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {}
|
||||
|
||||
@ -209,10 +209,10 @@ namespace cv { namespace gpu { namespace device
|
||||
return src > thresh ? maxVal : 0;
|
||||
}
|
||||
|
||||
T thresh;
|
||||
T maxVal;
|
||||
const T thresh;
|
||||
const T maxVal;
|
||||
};
|
||||
template <typename T> struct thresh_binary_inv_func : public unary_function<T, T>
|
||||
template <typename T> struct thresh_binary_inv_func : unary_function<T, T>
|
||||
{
|
||||
__forceinline__ __host__ __device__ thresh_binary_inv_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {}
|
||||
|
||||
@ -221,10 +221,10 @@ namespace cv { namespace gpu { namespace device
|
||||
return src > thresh ? 0 : maxVal;
|
||||
}
|
||||
|
||||
T thresh;
|
||||
T maxVal;
|
||||
const T thresh;
|
||||
const T maxVal;
|
||||
};
|
||||
template <typename T> struct thresh_trunc_func : public unary_function<T, T>
|
||||
template <typename T> struct thresh_trunc_func : unary_function<T, T>
|
||||
{
|
||||
explicit __forceinline__ __host__ __device__ thresh_trunc_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {}
|
||||
|
||||
@ -233,11 +233,10 @@ namespace cv { namespace gpu { namespace device
|
||||
return minimum<T>()(src, thresh);
|
||||
}
|
||||
|
||||
T thresh;
|
||||
const T thresh;
|
||||
};
|
||||
template <typename T> struct thresh_to_zero_func : public unary_function<T, T>
|
||||
template <typename T> struct thresh_to_zero_func : unary_function<T, T>
|
||||
{
|
||||
public:
|
||||
explicit __forceinline__ __host__ __device__ thresh_to_zero_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {}
|
||||
|
||||
__forceinline__ __device__ T operator()(const T& src) const
|
||||
@ -245,11 +244,10 @@ namespace cv { namespace gpu { namespace device
|
||||
return src > thresh ? src : 0;
|
||||
}
|
||||
|
||||
T thresh;
|
||||
const T thresh;
|
||||
};
|
||||
template <typename T> struct thresh_to_zero_inv_func : public unary_function<T, T>
|
||||
template <typename T> struct thresh_to_zero_inv_func : unary_function<T, T>
|
||||
{
|
||||
public:
|
||||
explicit __forceinline__ __host__ __device__ thresh_to_zero_inv_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {}
|
||||
|
||||
__forceinline__ __device__ T operator()(const T& src) const
|
||||
@ -257,36 +255,36 @@ namespace cv { namespace gpu { namespace device
|
||||
return src > thresh ? 0 : src;
|
||||
}
|
||||
|
||||
T thresh;
|
||||
const T thresh;
|
||||
};
|
||||
|
||||
template <typename Op> struct binder1st : public unary_function<typename Op::second_argument_type, typename Op::result_type>
|
||||
template <typename Op> struct binder1st : unary_function<typename Op::second_argument_type, typename Op::result_type>
|
||||
{
|
||||
__forceinline__ __host__ __device__ binder1st(const Op& op_, const typename Op::first_argument_type& arg1_) : op(op_), arg1(arg1_) {}
|
||||
|
||||
__forceinline__ __device__ typename Op::result_type operator ()(const typename Op::second_argument_type& a)
|
||||
__forceinline__ __device__ typename Op::result_type operator ()(const typename Op::second_argument_type& a) const
|
||||
{
|
||||
return op(arg1, a);
|
||||
}
|
||||
|
||||
Op op;
|
||||
typename Op::first_argument_type arg1;
|
||||
const Op op;
|
||||
const typename Op::first_argument_type arg1;
|
||||
};
|
||||
template <typename Op, typename T> static __forceinline__ __host__ __device__ binder1st<Op> bind1st(const Op& op, const T& x)
|
||||
{
|
||||
return binder1st<Op>(op, typename Op::first_argument_type(x));
|
||||
}
|
||||
template <typename Op> struct binder2nd : public unary_function<typename Op::first_argument_type, typename Op::result_type>
|
||||
template <typename Op> struct binder2nd : unary_function<typename Op::first_argument_type, typename Op::result_type>
|
||||
{
|
||||
__forceinline__ __host__ __device__ binder2nd(const Op& op_, const typename Op::second_argument_type& arg2_) : op(op_), arg2(arg2_) {}
|
||||
|
||||
__forceinline__ __device__ typename Op::result_type operator ()(const typename Op::first_argument_type& a)
|
||||
__forceinline__ __device__ typename Op::result_type operator ()(const typename Op::first_argument_type& a) const
|
||||
{
|
||||
return op(a, arg2);
|
||||
}
|
||||
|
||||
Op op;
|
||||
typename Op::second_argument_type arg2;
|
||||
const Op op;
|
||||
const typename Op::second_argument_type arg2;
|
||||
};
|
||||
template <typename Op, typename T> static __forceinline__ __host__ __device__ binder2nd<Op> bind2nd(const Op& op, const T& x)
|
||||
{
|
||||
|
@ -48,12 +48,12 @@
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
template <typename T, typename D, typename UnOp>
|
||||
static void transform(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, cudaStream_t stream = 0)
|
||||
static void transform(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, const UnOp& op, cudaStream_t stream = 0)
|
||||
{
|
||||
detail::transform_caller(src, dst, op, detail::NoMask(), stream);
|
||||
}
|
||||
template <typename T, typename D, typename UnOp>
|
||||
static void transform(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, const PtrStep& mask, UnOp op,
|
||||
static void transform(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, const PtrStep& mask, const UnOp& op,
|
||||
cudaStream_t stream = 0)
|
||||
{
|
||||
detail::transform_caller(src, dst, op, detail::MaskReader(mask), stream);
|
||||
@ -61,13 +61,13 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
template <typename T1, typename T2, typename D, typename BinOp>
|
||||
static void transform(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst,
|
||||
BinOp op, cudaStream_t stream = 0)
|
||||
const BinOp& op, cudaStream_t stream = 0)
|
||||
{
|
||||
detail::transform_caller(src1, src2, dst, op, detail::NoMask(), stream);
|
||||
}
|
||||
template <typename T1, typename T2, typename D, typename BinOp>
|
||||
static void transform(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst,
|
||||
const PtrStep& mask, BinOp op, cudaStream_t stream = 0)
|
||||
const PtrStep& mask, const BinOp& op, cudaStream_t stream = 0)
|
||||
{
|
||||
detail::transform_caller(src1, src2, dst, op, detail::MaskReader(mask), stream);
|
||||
}
|
||||
|
@ -65,15 +65,15 @@
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
template <typename T> void __host__ __device__ __forceinline__ swap(T &a, T &b)
|
||||
template <typename T> void __host__ __device__ __forceinline__ swap(T& a, T& b)
|
||||
{
|
||||
T temp = a;
|
||||
const T temp = a;
|
||||
a = b;
|
||||
b = temp;
|
||||
}
|
||||
|
||||
// warp-synchronous 32 elements reduction
|
||||
template <typename T, typename Op> __device__ __forceinline__ void warpReduce32(volatile T* data, T& partial_reduction, int tid, Op op)
|
||||
template <typename T, typename Op> __device__ __forceinline__ void warpReduce32(volatile T* data, T& partial_reduction, int tid, const Op& op)
|
||||
{
|
||||
data[tid] = partial_reduction;
|
||||
|
||||
@ -88,7 +88,7 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
// warp-synchronous 16 elements reduction
|
||||
template <typename T, typename Op> __device__ __forceinline__ void warpReduce16(volatile T* data, T& partial_reduction, int tid, Op op)
|
||||
template <typename T, typename Op> __device__ __forceinline__ void warpReduce16(volatile T* data, T& partial_reduction, int tid, const Op& op)
|
||||
{
|
||||
data[tid] = partial_reduction;
|
||||
|
||||
@ -102,7 +102,7 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
// warp-synchronous reduction
|
||||
template <int n, typename T, typename Op> __device__ __forceinline__ void warpReduce(volatile T* data, T& partial_reduction, int tid, Op op)
|
||||
template <int n, typename T, typename Op> __device__ __forceinline__ void warpReduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
|
||||
{
|
||||
if (tid < n)
|
||||
data[tid] = partial_reduction;
|
||||
|
@ -107,9 +107,9 @@ namespace
|
||||
maxCandidates = min(static_cast<int>(1.5 * maxFeatures), 65535);
|
||||
|
||||
CV_Assert(maxFeatures > 0);
|
||||
|
||||
cudaSafeCall( cudaMalloc((void**)&d_counters, (nOctaves + 1) * sizeof(unsigned int)) );
|
||||
cudaSafeCall( cudaMemset(d_counters, 0, (nOctaves + 1) * sizeof(unsigned int)) );
|
||||
|
||||
counters.create(1, nOctaves + 1, CV_32SC1);
|
||||
counters.setTo(Scalar::all(0));
|
||||
|
||||
uploadConstant("cv::gpu::surf::c_max_candidates", maxCandidates);
|
||||
uploadConstant("cv::gpu::surf::c_max_features", maxFeatures);
|
||||
@ -118,30 +118,20 @@ namespace
|
||||
uploadConstant("cv::gpu::surf::c_nOctaveLayers", nOctaveLayers);
|
||||
uploadConstant("cv::gpu::surf::c_hessianThreshold", static_cast<float>(hessianThreshold));
|
||||
|
||||
bindTexture("cv::gpu::surf::imgTex", (DevMem2D)img);
|
||||
imgTex.bind("cv::gpu::surf::imgTex", (DevMem2D)img);
|
||||
|
||||
integralBuffered(img, sum, intBuffer);
|
||||
bindTexture("cv::gpu::surf::sumTex", (DevMem2D_<unsigned int>)sum);
|
||||
sumTex.bind("cv::gpu::surf::sumTex", (DevMem2D_<unsigned int>)sum);
|
||||
|
||||
if (use_mask)
|
||||
{
|
||||
min(mask, 1.0, mask1);
|
||||
integralBuffered(mask1, maskSum, intBuffer);
|
||||
|
||||
bindTexture("cv::gpu::surf::maskSumTex", (DevMem2D_<unsigned int>)maskSum);
|
||||
maskSumTex.bind("cv::gpu::surf::maskSumTex", (DevMem2D_<unsigned int>)maskSum);
|
||||
}
|
||||
}
|
||||
|
||||
~SURF_GPU_Invoker()
|
||||
{
|
||||
cudaSafeCall( cudaFree(d_counters) );
|
||||
|
||||
unbindTexture("cv::gpu::surf::imgTex");
|
||||
unbindTexture("cv::gpu::surf::sumTex");
|
||||
if (use_mask)
|
||||
unbindTexture("cv::gpu::surf::maskSumTex");
|
||||
}
|
||||
|
||||
void detectKeypoints(GpuMat& keypoints)
|
||||
{
|
||||
ensureSizeIsEnough(img_rows * (nOctaveLayers + 2), img_cols, CV_32FC1, det);
|
||||
@ -162,11 +152,11 @@ namespace
|
||||
|
||||
icvCalcLayerDetAndTrace_gpu(det, trace, img_rows, img_cols, octave, nOctaveLayers);
|
||||
|
||||
icvFindMaximaInLayer_gpu(det, trace, maxPosBuffer.ptr<int4>(), d_counters + 1 + octave,
|
||||
icvFindMaximaInLayer_gpu(det, trace, maxPosBuffer.ptr<int4>(), counters.ptr<unsigned int>() + 1 + octave,
|
||||
img_rows, img_cols, octave, use_mask, nOctaveLayers);
|
||||
|
||||
unsigned int maxCounter;
|
||||
cudaSafeCall( cudaMemcpy(&maxCounter, d_counters + 1 + octave, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
cudaSafeCall( cudaMemcpy(&maxCounter, counters.ptr<unsigned int>() + 1 + octave, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
maxCounter = std::min(maxCounter, static_cast<unsigned int>(maxCandidates));
|
||||
|
||||
if (maxCounter > 0)
|
||||
@ -174,11 +164,11 @@ namespace
|
||||
icvInterpolateKeypoint_gpu(det, maxPosBuffer.ptr<int4>(), maxCounter,
|
||||
keypoints.ptr<float>(SURF_GPU::SF_X), keypoints.ptr<float>(SURF_GPU::SF_Y),
|
||||
keypoints.ptr<int>(SURF_GPU::SF_LAPLACIAN), keypoints.ptr<float>(SURF_GPU::SF_SIZE),
|
||||
keypoints.ptr<float>(SURF_GPU::SF_HESSIAN), d_counters);
|
||||
keypoints.ptr<float>(SURF_GPU::SF_HESSIAN), counters.ptr<unsigned int>());
|
||||
}
|
||||
}
|
||||
unsigned int featureCounter;
|
||||
cudaSafeCall( cudaMemcpy(&featureCounter, d_counters, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
cudaSafeCall( cudaMemcpy(&featureCounter, counters.ptr<unsigned int>(), sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
featureCounter = std::min(featureCounter, static_cast<unsigned int>(maxFeatures));
|
||||
|
||||
keypoints.cols = featureCounter;
|
||||
@ -226,7 +216,9 @@ namespace
|
||||
int maxCandidates;
|
||||
int maxFeatures;
|
||||
|
||||
unsigned int* d_counters;
|
||||
GpuMat counters;
|
||||
|
||||
TextureBinder imgTex, sumTex, maskSumTex;
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -318,7 +318,7 @@ TEST(BruteForceMatcher)
|
||||
GPU_OFF;
|
||||
|
||||
SUBTEST << "knnMatch";
|
||||
int knn = 10;
|
||||
int knn = 2;
|
||||
|
||||
CPU_ON;
|
||||
matcher.knnMatch(query, train, matches, knn);
|
||||
|
Loading…
x
Reference in New Issue
Block a user