Documented error measures used in calcOpticalFlowPyrLK
This commit is contained in:
parent
af198233a9
commit
8b65286139
@ -8,9 +8,9 @@ calcOpticalFlowPyrLK
|
||||
------------------------
|
||||
Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with pyramids.
|
||||
|
||||
.. ocv:function:: void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg, InputArray prevPts, InputOutputArray nextPts, OutputArray status, OutputArray err, Size winSize=Size(15,15), int maxLevel=3, TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), double derivLambda=0.5, int flags=0 )
|
||||
.. ocv:function:: void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg, InputArray prevPts, InputOutputArray nextPts, OutputArray status, OutputArray err, Size winSize=Size(15,15), int maxLevel=3, TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags=0, double minEigThreshold=1e-4)
|
||||
|
||||
.. ocv:pyfunction:: cv2.calcOpticalFlowPyrLK(prevImg, nextImg, prevPts[, nextPts[, status[, err[, winSize[, maxLevel[, criteria[, derivLambda[, flags]]]]]]]]) -> nextPts, status, err
|
||||
.. ocv:pyfunction:: cv2.calcOpticalFlowPyrLK(prevImg, nextImg, prevPts[, nextPts[, status[, err[, winSize[, maxLevel[, criteria[, flags[, minEigThreshold]]]]]]]]) -> nextPts, status, err
|
||||
|
||||
.. ocv:cfunction:: void cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr, CvArr* prevPyr, CvArr* currPyr, const CvPoint2D32f* prevFeatures, CvPoint2D32f* currFeatures, int count, CvSize winSize, int level, char* status, float* trackError, CvTermCriteria criteria, int flags )
|
||||
.. ocv:pyoldfunction:: cv.CalcOpticalFlowPyrLK( prev, curr, prevPyr, currPyr, prevFeatures, winSize, level, criteria, flags, guesses=None) -> (currFeatures, status, trackError)
|
||||
@ -25,7 +25,7 @@ Calculates an optical flow for a sparse feature set using the iterative Lucas-Ka
|
||||
|
||||
:param status: Output status vector. Each element of the vector is set to 1 if the flow for the corresponding features has been found. Otherwise, it is set to 0.
|
||||
|
||||
:param err: Output vector that contains the difference between patches around the original and moved points.
|
||||
:param err: Output vector of errors. Each element of the vector is set to a error for the corresponding feature. A type of the error measure can be set in ``flags`` parameter. If the flow wasn't found then the error is not defined (use the ``status`` parameter to find such cases).
|
||||
|
||||
:param winSize: Size of the search window at each pyramid level.
|
||||
|
||||
@ -33,12 +33,14 @@ Calculates an optical flow for a sparse feature set using the iterative Lucas-Ka
|
||||
|
||||
:param criteria: Parameter specifying the termination criteria of the iterative search algorithm (after the specified maximum number of iterations ``criteria.maxCount`` or when the search window moves by less than ``criteria.epsilon`` .
|
||||
|
||||
:param derivLambda: Not used.
|
||||
|
||||
:param flags: Operation flags:
|
||||
|
||||
* **OPTFLOW_USE_INITIAL_FLOW** Use initial estimations stored in ``nextPts`` . If the flag is not set, then ``prevPts`` is copied to ``nextPts`` and is considered as the initial estimate.
|
||||
|
||||
* **OPTFLOW_LK_GET_MIN_EIGENVALS** Use minimum eigen values as a error measure (see ``minEigThreshold`` description). If the flag is not set, then L1 norm between patches around the original and a moved point divided by number of pixels in a window is used as a error measure.
|
||||
|
||||
:param minEigThreshold: The algorithm computes a minimum eigen value of a 2x2 normal matrix of optical flow equations (this matrix is called a spatial gradient matrix in [Bouguet00]_) divided by number of pixels in a window. If this value is less then ``minEigThreshold`` then a corresponding feature is filtered out and its flow is not computed. So it allows to remove bad points earlier and speed up the computation.
|
||||
|
||||
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
|
||||
[Bouguet00]_.
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user