Several type of formal refactoring:
1. someMatrix.data -> someMatrix.prt() 2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex ) 3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>() 4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
This commit is contained in:
@@ -503,7 +503,7 @@ bool FeatureEvaluator::setImage( InputArray _image, const std::vector<float>& _s
|
||||
for (i = 0; i < nscales; i++)
|
||||
{
|
||||
const ScaleData& s = scaleData->at(i);
|
||||
Mat dst(s.szi.height - 1, s.szi.width - 1, CV_8U, rbuf.data);
|
||||
Mat dst(s.szi.height - 1, s.szi.width - 1, CV_8U, rbuf.ptr());
|
||||
resize(image, dst, dst.size(), 1. / s.scale, 1. / s.scale, INTER_LINEAR);
|
||||
computeChannels((int)i, dst);
|
||||
}
|
||||
|
@@ -123,7 +123,7 @@ void HOGDescriptor::setSVMDetector(InputArray _svmDetector)
|
||||
for (int j = 0; j < blocks_per_img.width; ++j)
|
||||
{
|
||||
const float *src = &svmDetector[0] + (j * blocks_per_img.height + i) * block_hist_size;
|
||||
float *dst = (float*)detector_reordered.data + (i * blocks_per_img.width + j) * block_hist_size;
|
||||
float *dst = detector_reordered.ptr<float>() + (i * blocks_per_img.width + j) * block_hist_size;
|
||||
for (size_t k = 0; k < block_hist_size; ++k)
|
||||
dst[k] = src[k];
|
||||
}
|
||||
@@ -300,12 +300,12 @@ void HOGDescriptor::computeGradient(const Mat& img, Mat& grad, Mat& qangle,
|
||||
float angleScale = (float)(nbins/CV_PI);
|
||||
for( y = 0; y < gradsize.height; y++ )
|
||||
{
|
||||
const uchar* imgPtr = img.data + img.step*ymap[y];
|
||||
const uchar* prevPtr = img.data + img.step*ymap[y-1];
|
||||
const uchar* nextPtr = img.data + img.step*ymap[y+1];
|
||||
const uchar* imgPtr = img.ptr(ymap[y]);
|
||||
const uchar* prevPtr = img.ptr(ymap[y-1]);
|
||||
const uchar* nextPtr = img.ptr(ymap[y+1]);
|
||||
|
||||
float* gradPtr = (float*)grad.ptr(y);
|
||||
uchar* qanglePtr = (uchar*)qangle.ptr(y);
|
||||
float* gradPtr = grad.ptr<float>(y);
|
||||
uchar* qanglePtr = qangle.ptr(y);
|
||||
|
||||
if( cn == 1 )
|
||||
{
|
||||
@@ -781,8 +781,8 @@ const float* HOGCache::getBlock(Point pt, float* buf)
|
||||
}
|
||||
|
||||
int k, C1 = count1, C2 = count2, C4 = count4;
|
||||
const float* gradPtr = (const float*)(grad.data + grad.step*pt.y) + pt.x*2;
|
||||
const uchar* qanglePtr = qangle.data + qangle.step*pt.y + pt.x*2;
|
||||
const float* gradPtr = grad.ptr<float>(pt.y) + pt.x*2;
|
||||
const uchar* qanglePtr = qangle.ptr(pt.y) + pt.x*2;
|
||||
|
||||
// CV_Assert( blockHist != 0 );
|
||||
memset(blockHist, 0, sizeof(float) * blockHistogramSize);
|
||||
@@ -1581,7 +1581,7 @@ public:
|
||||
{
|
||||
double scale = levelScale[i];
|
||||
Size sz(cvRound(img.cols/scale), cvRound(img.rows/scale));
|
||||
Mat smallerImg(sz, img.type(), smallerImgBuf.data);
|
||||
Mat smallerImg(sz, img.type(), smallerImgBuf.ptr());
|
||||
if( sz == img.size() )
|
||||
smallerImg = Mat(sz, img.type(), img.data, img.step);
|
||||
else
|
||||
@@ -3282,7 +3282,7 @@ public:
|
||||
double scale = (*locations)[i].scale;
|
||||
|
||||
Size sz(cvRound(img.cols / scale), cvRound(img.rows / scale));
|
||||
Mat smallerImg(sz, img.type(), smallerImgBuf.data);
|
||||
Mat smallerImg(sz, img.type(), smallerImgBuf.ptr());
|
||||
|
||||
if( sz == img.size() )
|
||||
smallerImg = Mat(sz, img.type(), img.data, img.step);
|
||||
|
Reference in New Issue
Block a user