Several type of formal refactoring:

1. someMatrix.data -> someMatrix.prt()
2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex )
3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>()
4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
This commit is contained in:
Adil Ibragimov
2014-08-13 15:08:27 +04:00
parent 30111a786a
commit 8a4a1bb018
134 changed files with 988 additions and 986 deletions

View File

@@ -75,28 +75,28 @@ thresh_8u( const Mat& _src, Mat& _dst, uchar thresh, uchar maxval, int type )
{
case THRESH_TRUNC:
#ifndef HAVE_IPP_ICV_ONLY
if (_src.data == _dst.data && ippiThreshold_GT_8u_C1IR(_src.data, (int)src_step, sz, thresh) >= 0)
if (_src.data == _dst.data && ippiThreshold_GT_8u_C1IR(_src.ptr(), (int)src_step, sz, thresh) >= 0)
return;
#endif
if (ippiThreshold_GT_8u_C1R(_src.data, (int)src_step, _dst.data, (int)dst_step, sz, thresh) >= 0)
if (ippiThreshold_GT_8u_C1R(_src.ptr(), (int)src_step, _dst.ptr(), (int)dst_step, sz, thresh) >= 0)
return;
setIppErrorStatus();
break;
case THRESH_TOZERO:
#ifndef HAVE_IPP_ICV_ONLY
if (_src.data == _dst.data && ippiThreshold_LTVal_8u_C1IR(_src.data, (int)src_step, sz, thresh+1, 0) >= 0)
if (_src.data == _dst.data && ippiThreshold_LTVal_8u_C1IR(_src.ptr(), (int)src_step, sz, thresh+1, 0) >= 0)
return;
#endif
if (ippiThreshold_LTVal_8u_C1R(_src.data, (int)src_step, _dst.data, (int)dst_step, sz, thresh+1, 0) >= 0)
if (ippiThreshold_LTVal_8u_C1R(_src.ptr(), (int)src_step, _dst.ptr(), (int)dst_step, sz, thresh+1, 0) >= 0)
return;
setIppErrorStatus();
break;
case THRESH_TOZERO_INV:
#ifndef HAVE_IPP_ICV_ONLY
if (_src.data == _dst.data && ippiThreshold_GTVal_8u_C1IR(_src.data, (int)src_step, sz, thresh, 0) >= 0)
if (_src.data == _dst.data && ippiThreshold_GTVal_8u_C1IR(_src.ptr(), (int)src_step, sz, thresh, 0) >= 0)
return;
#endif
if (ippiThreshold_GTVal_8u_C1R(_src.data, (int)src_step, _dst.data, (int)dst_step, sz, thresh, 0) >= 0)
if (ippiThreshold_GTVal_8u_C1R(_src.ptr(), (int)src_step, _dst.ptr(), (int)dst_step, sz, thresh, 0) >= 0)
return;
setIppErrorStatus();
break;
@@ -151,8 +151,8 @@ thresh_8u( const Mat& _src, Mat& _dst, uchar thresh, uchar maxval, int type )
for( i = 0; i < roi.height; i++ )
{
const uchar* src = (const uchar*)(_src.data + src_step*i);
uchar* dst = (uchar*)(_dst.data + dst_step*i);
const uchar* src = _src.ptr() + src_step*i;
uchar* dst = _dst.ptr() + dst_step*i;
switch( type )
{
@@ -270,8 +270,8 @@ thresh_8u( const Mat& _src, Mat& _dst, uchar thresh, uchar maxval, int type )
{
for( i = 0; i < roi.height; i++ )
{
const uchar* src = (const uchar*)(_src.data + src_step*i);
uchar* dst = (uchar*)(_dst.data + dst_step*i);
const uchar* src = _src.ptr() + src_step*i;
uchar* dst = _dst.ptr() + dst_step*i;
j = j_scalar;
#if CV_ENABLE_UNROLLED
for( ; j <= roi.width - 4; j += 4 )
@@ -302,8 +302,8 @@ thresh_16s( const Mat& _src, Mat& _dst, short thresh, short maxval, int type )
int i, j;
Size roi = _src.size();
roi.width *= _src.channels();
const short* src = (const short*)_src.data;
short* dst = (short*)_dst.data;
const short* src = _src.ptr<short>();
short* dst = _dst.ptr<short>();
size_t src_step = _src.step/sizeof(src[0]);
size_t dst_step = _dst.step/sizeof(dst[0]);
@@ -511,8 +511,8 @@ thresh_32f( const Mat& _src, Mat& _dst, float thresh, float maxval, int type )
int i, j;
Size roi = _src.size();
roi.width *= _src.channels();
const float* src = (const float*)_src.data;
float* dst = (float*)_dst.data;
const float* src = _src.ptr<float>();
float* dst = _dst.ptr<float>();
size_t src_step = _src.step/sizeof(src[0]);
size_t dst_step = _dst.step/sizeof(dst[0]);
@@ -715,7 +715,7 @@ getThreshVal_Otsu_8u( const Mat& _src )
IppiSize srcSize = { size.width, size.height };
Ipp8u thresh;
CV_SUPPRESS_DEPRECATED_START
IppStatus ok = ippiComputeThreshold_Otsu_8u_C1R(_src.data, step, srcSize, &thresh);
IppStatus ok = ippiComputeThreshold_Otsu_8u_C1R(_src.ptr(), step, srcSize, &thresh);
CV_SUPPRESS_DEPRECATED_END
if (ok >= 0)
return thresh;
@@ -726,7 +726,7 @@ getThreshVal_Otsu_8u( const Mat& _src )
int i, j, h[N] = {0};
for( i = 0; i < size.height; i++ )
{
const uchar* src = _src.data + step*i;
const uchar* src = _src.ptr() + step*i;
j = 0;
#if CV_ENABLE_UNROLLED
for( ; j <= size.width - 4; j += 4 )
@@ -1003,9 +1003,9 @@ void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue,
for( i = 0; i < size.height; i++ )
{
const uchar* sdata = src.data + src.step*i;
const uchar* mdata = mean.data + mean.step*i;
uchar* ddata = dst.data + dst.step*i;
const uchar* sdata = src.ptr(i);
const uchar* mdata = mean.ptr(i);
uchar* ddata = dst.ptr(i);
for( j = 0; j < size.width; j++ )
ddata[j] = tab[sdata[j] - mdata[j] + 255];