Several type of formal refactoring:

1. someMatrix.data -> someMatrix.prt()
2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex )
3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>()
4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
This commit is contained in:
Adil Ibragimov
2014-08-13 15:08:27 +04:00
parent 30111a786a
commit 8a4a1bb018
134 changed files with 988 additions and 986 deletions

View File

@@ -605,8 +605,8 @@ cv::Scalar cv::sum( InputArray _src )
if( ippFuncHint || ippFuncNoHint )
{
Ipp64f res[4];
IppStatus ret = ippFuncHint ? ippFuncHint(src.data, (int)src.step[0], sz, res, ippAlgHintAccurate) :
ippFuncNoHint(src.data, (int)src.step[0], sz, res);
IppStatus ret = ippFuncHint ? ippFuncHint(src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) :
ippFuncNoHint(src.ptr(), (int)src.step[0], sz, res);
if( ret >= 0 )
{
Scalar sc;
@@ -791,7 +791,7 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask )
if( ippFuncC1 )
{
Ipp64f res;
if( ippFuncC1(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, &res) >= 0 )
if( ippFuncC1(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &res) >= 0 )
return Scalar(res);
setIppErrorStatus();
}
@@ -804,9 +804,9 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask )
if( ippFuncC3 )
{
Ipp64f res1, res2, res3;
if( ippFuncC3(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 1, &res1) >= 0 &&
ippFuncC3(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 2, &res2) >= 0 &&
ippFuncC3(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 3, &res3) >= 0 )
if( ippFuncC3(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &res1) >= 0 &&
ippFuncC3(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &res2) >= 0 &&
ippFuncC3(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &res3) >= 0 )
{
return Scalar(res1, res2, res3);
}
@@ -838,8 +838,8 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask )
if( ippFuncHint || ippFuncNoHint )
{
Ipp64f res[4];
IppStatus ret = ippFuncHint ? ippFuncHint(src.data, (int)src.step[0], sz, res, ippAlgHintAccurate) :
ippFuncNoHint(src.data, (int)src.step[0], sz, res);
IppStatus ret = ippFuncHint ? ippFuncHint(src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) :
ippFuncNoHint(src.ptr(), (int)src.step[0], sz, res);
if( ret >= 0 )
{
Scalar sc;
@@ -981,11 +981,11 @@ static bool ocl_meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> };
Mat dbm = db.getMat(ACCESS_READ);
mean = funcs[ddepth - CV_32S](Mat(1, groups, dtype, dbm.data));
stddev = funcs[sqddepth - CV_32S](Mat(1, groups, sqdtype, dbm.data + groups * CV_ELEM_SIZE(dtype)));
mean = funcs[ddepth - CV_32S](Mat(1, groups, dtype, dbm.ptr()));
stddev = funcs[sqddepth - CV_32S](Mat(1, groups, sqdtype, dbm.ptr() + groups * CV_ELEM_SIZE(dtype)));
if (haveMask)
nz = saturate_cast<int>(funcs[0](Mat(1, groups, CV_32SC1, dbm.data +
nz = saturate_cast<int>(funcs[0](Mat(1, groups, CV_32SC1, dbm.ptr() +
groups * (CV_ELEM_SIZE(dtype) +
CV_ELEM_SIZE(sqdtype))))[0]);
}
@@ -1052,7 +1052,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
_mean.create(cn, 1, CV_64F, -1, true);
mean = _mean.getMat();
dcn_mean = (int)mean.total();
pmean = (Ipp64f *)mean.data;
pmean = mean.ptr<Ipp64f>();
}
int dcn_stddev = -1;
if( _sdv.needed() )
@@ -1061,7 +1061,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
_sdv.create(cn, 1, CV_64F, -1, true);
stddev = _sdv.getMat();
dcn_stddev = (int)stddev.total();
pstddev = (Ipp64f *)stddev.data;
pstddev = stddev.ptr<Ipp64f>();
}
for( int c = cn; c < dcn_mean; c++ )
pmean[c] = 0;
@@ -1079,7 +1079,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
0;
if( ippFuncC1 )
{
if( ippFuncC1(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, pmean, pstddev) >= 0 )
if( ippFuncC1(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, pmean, pstddev) >= 0 )
return;
setIppErrorStatus();
}
@@ -1091,9 +1091,9 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
0;
if( ippFuncC3 )
{
if( ippFuncC3(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 &&
ippFuncC3(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 &&
ippFuncC3(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 )
if( ippFuncC3(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 &&
ippFuncC3(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 &&
ippFuncC3(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 )
return;
setIppErrorStatus();
}
@@ -1110,7 +1110,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
0;
if( ippFuncC1 )
{
if( ippFuncC1(src.data, (int)src.step[0], sz, pmean, pstddev) >= 0 )
if( ippFuncC1(src.ptr(), (int)src.step[0], sz, pmean, pstddev) >= 0 )
return;
setIppErrorStatus();
}
@@ -1122,9 +1122,9 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
0;
if( ippFuncC3 )
{
if( ippFuncC3(src.data, (int)src.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 &&
ippFuncC3(src.data, (int)src.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 &&
ippFuncC3(src.data, (int)src.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 )
if( ippFuncC3(src.ptr(), (int)src.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 &&
ippFuncC3(src.ptr(), (int)src.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 &&
ippFuncC3(src.ptr(), (int)src.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 )
return;
setIppErrorStatus();
}
@@ -1358,26 +1358,26 @@ void getMinMaxRes(const Mat & db, double * minVal, double * maxVal,
const uint * minlocptr = NULL, * maxlocptr = NULL;
if (minVal || minLoc)
{
minptr = (const T *)db.data;
minptr = db.ptr<T>();
index += sizeof(T) * groupnum;
}
if (maxVal || maxLoc)
{
maxptr = (const T *)(db.data + index);
maxptr = (const T *)(db.ptr() + index);
index += sizeof(T) * groupnum;
}
if (minLoc)
{
minlocptr = (uint *)(db.data + index);
minlocptr = (const uint *)(db.ptr() + index);
index += sizeof(uint) * groupnum;
}
if (maxLoc)
{
maxlocptr = (uint *)(db.data + index);
maxlocptr = (const uint *)(db.ptr() + index);
index += sizeof(uint) * groupnum;
}
if (maxVal2)
maxptr2 = (const T *)(db.data + index);
maxptr2 = (const T *)(db.ptr() + index);
for (int i = 0; i < groupnum; i++)
{
@@ -1602,13 +1602,13 @@ void cv::minMaxIdx(InputArray _src, double* minVal,
{
Ipp32f min, max;
IppiPoint minp, maxp;
if( ippFuncC1(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, &min, &max, &minp, &maxp) >= 0 )
if( ippFuncC1(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &min, &max, &minp, &maxp) >= 0 )
{
if( minVal )
*minVal = (double)min;
if( maxVal )
*maxVal = (double)max;
if( !minp.x && !minp.y && !maxp.x && !maxp.y && !mask.data[0] )
if( !minp.x && !minp.y && !maxp.x && !maxp.y && !mask.ptr()[0] )
minp.x = maxp.x = -1;
if( minIdx )
{
@@ -1641,7 +1641,7 @@ void cv::minMaxIdx(InputArray _src, double* minVal,
{
Ipp32f min, max;
IppiPoint minp, maxp;
if( ippFuncC1(src.data, (int)src.step[0], sz, &min, &max, &minp, &maxp) >= 0 )
if( ippFuncC1(src.ptr(), (int)src.step[0], sz, &min, &max, &minp, &maxp) >= 0 )
{
if( minVal )
*minVal = (double)min;
@@ -2280,7 +2280,7 @@ double cv::norm( InputArray _src, int normType, InputArray _mask )
if( ippFuncC1 )
{
Ipp64f norm;
if( ippFuncC1(src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, &norm) >= 0 )
if( ippFuncC1(src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 )
return normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm;
setIppErrorStatus();
@@ -2381,8 +2381,8 @@ double cv::norm( InputArray _src, int normType, InputArray _mask )
if( ippFuncHint || ippFuncNoHint )
{
Ipp64f norm_array[4];
IppStatus ret = ippFuncHint ? ippFuncHint(src.data, (int)src.step[0], sz, norm_array, ippAlgHintAccurate) :
ippFuncNoHint(src.data, (int)src.step[0], sz, norm_array);
IppStatus ret = ippFuncHint ? ippFuncHint(src.ptr(), (int)src.step[0], sz, norm_array, ippAlgHintAccurate) :
ippFuncNoHint(src.ptr(), (int)src.step[0], sz, norm_array);
if( ret >= 0 )
{
Ipp64f norm = (normType == NORM_L2 || normType == NORM_L2SQR) ? norm_array[0] * norm_array[0] : norm_array[0];
@@ -2643,7 +2643,7 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m
if( ippFuncC1 )
{
Ipp64f norm;
if( ippFuncC1(src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, &norm) >= 0 )
if( ippFuncC1(src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 )
return normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm;
setIppErrorStatus();
}
@@ -2679,14 +2679,14 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m
if (ippFuncNoHint)
{
Ipp64f norm;
if( ippFuncNoHint(src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], sz, &norm) >= 0 )
if( ippFuncNoHint(src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm) >= 0 )
return (double)norm;
setIppErrorStatus();
}
if (ippFuncHint)
{
Ipp64f norm;
if( ippFuncHint(src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], sz, &norm, ippAlgHintAccurate) >= 0 )
if( ippFuncHint(src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm, ippAlgHintAccurate) >= 0 )
return (double)norm;
setIppErrorStatus();
}
@@ -2739,7 +2739,7 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m
if( ippFuncC1 )
{
Ipp64f norm;
if( ippFuncC1(src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, &norm) >= 0 )
if( ippFuncC1(src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 )
return normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm;
setIppErrorStatus();
}
@@ -2839,8 +2839,8 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m
if( ippFuncHint || ippFuncNoHint )
{
Ipp64f norm_array[4];
IppStatus ret = ippFuncHint ? ippFuncHint(src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], sz, norm_array, ippAlgHintAccurate) :
ippFuncNoHint(src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], sz, norm_array);
IppStatus ret = ippFuncHint ? ippFuncHint(src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, norm_array, ippAlgHintAccurate) :
ippFuncNoHint(src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, norm_array);
if( ret >= 0 )
{
Ipp64f norm = (normType == NORM_L2 || normType == NORM_L2SQR) ? norm_array[0] * norm_array[0] : norm_array[0];
@@ -3322,7 +3322,7 @@ void cv::findNonZero( InputArray _src, OutputArray _idx )
_idx.create(n, 1, CV_32SC2);
Mat idx = _idx.getMat();
CV_Assert(idx.isContinuous());
Point* idx_ptr = (Point*)idx.data;
Point* idx_ptr = idx.ptr<Point>();
for( int i = 0; i < src.rows; i++ )
{