rename variables

This commit is contained in:
Adrien BAK 2014-09-29 18:26:54 +09:00
parent b3ddc2b9a7
commit 89be83e5be
2 changed files with 77 additions and 78 deletions

View File

@ -61,9 +61,9 @@ namespace cv
protected:
void init_var(const cv::Mat &I, const cv::Mat &wmask);
void compute_derivatives(const cv::Mat &I, const cv::Mat &mask, const cv::Mat &wmask);
void compute_derivatives(const cv::Mat &destination, const cv::Mat &patch, const cv::Mat &binaryMask);
void scalar_product(cv::Mat mat, float r, float g, float b);
void poisson(const cv::Mat &I, const cv::Mat &gx, const cv::Mat &gy, const cv::Mat &sx, const cv::Mat &sy);
void poisson(const cv::Mat &destination, const cv::Mat &gx, const cv::Mat &gy, const cv::Mat &sx, const cv::Mat &sy);
void evaluate(const cv::Mat &I, const cv::Mat &wmask, const cv::Mat &cloned);
void dst(double *mod_diff, double *sineTransform,int h,int w);
void idst(double *mod_diff, double *sineTransform,int h,int w);
@ -80,7 +80,10 @@ namespace cv
private:
std::vector <cv::Mat> rgb_channel, rgbx_channel, rgby_channel, output;
cv::Mat grx, gry, sgx, sgy, srx32, sry32, grx32, gry32, smask, smask1;
cv::Mat gradientX, gradientY;
cv::Mat patchGradientX, patchGradientY;
cv::Mat srx32, sry32, grx32, gry32;
cv::Mat binaryMaskFloat, binaryMaskFloatInverted;
};
}

View File

@ -40,7 +40,9 @@
//M*/
#include "seamless_cloning.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <complex>
using namespace cv;
@ -324,39 +326,36 @@ void Cloning::poisson_solver(const Mat &img, Mat &gxx , Mat &gyy, Mat &result)
void Cloning::init_var(const Mat &I, const Mat &wmask)
{
grx = Mat(I.size(),CV_32FC3);
gry = Mat(I.size(),CV_32FC3);
sgx = Mat(I.size(),CV_32FC3);
sgy = Mat(I.size(),CV_32FC3);
gradientX = Mat(I.size(),CV_32FC3);
gradientY = Mat(I.size(),CV_32FC3);
patchGradientX = Mat(I.size(),CV_32FC3);
patchGradientY = Mat(I.size(),CV_32FC3);
split(I,rgb_channel);
smask = Mat(wmask.size(),CV_32FC1);
binaryMaskFloat = Mat(wmask.size(),CV_32FC1);
srx32 = Mat(I.size(),CV_32FC3);
sry32 = Mat(I.size(),CV_32FC3);
smask1 = Mat(wmask.size(),CV_32FC1);
binaryMaskFloatInverted = Mat(wmask.size(),CV_32FC1);
grx32 = Mat(I.size(),CV_32FC3);
gry32 = Mat(I.size(),CV_32FC3);
}
void Cloning::compute_derivatives(const Mat &I, const Mat &mask, const Mat &wmask)
void Cloning::compute_derivatives(const Mat& destination, const Mat &patch, const Mat &binaryMask)
{
init_var(I,wmask);
init_var(destination,binaryMask);
computeGradientX(I,grx);
computeGradientY(I,gry);
computeGradientX(destination,gradientX);
computeGradientY(destination,gradientY);
computeGradientX(mask,sgx);
computeGradientY(mask,sgy);
computeGradientX(patch,patchGradientX);
computeGradientY(patch,patchGradientY);
Mat Kernel(Size(3, 3), CV_8UC1);
Kernel.setTo(Scalar(1));
erode(binaryMask, binaryMask, Kernel, Point(-1,-1), 3);
erode(wmask, wmask, Kernel, Point(-1,-1), 3);
wmask.convertTo(smask,CV_32FC1,1.0/255.0);
I.convertTo(srx32,CV_32FC3,1.0/255.0);
I.convertTo(sry32,CV_32FC3,1.0/255.0);
binaryMask.convertTo(binaryMaskFloat,CV_32FC1,1.0/255.0);
}
void Cloning::scalar_product(Mat mat, float r, float g, float b)
@ -383,16 +382,16 @@ void Cloning::array_product(const cv::Mat& lhs, const cv::Mat& rhs, cv::Mat& res
merge(result_channels,result);
}
void Cloning::poisson(const Mat &I, const Mat &gx, const Mat &gy, const Mat &sx, const Mat &sy)
void Cloning::poisson(const Mat &destination, const Mat &gx, const Mat &gy, const Mat &sx, const Mat &sy)
{
Mat fx = Mat(I.size(),CV_32FC3);
Mat fy = Mat(I.size(),CV_32FC3);
Mat fx = Mat(destination.size(),CV_32FC3);
Mat fy = Mat(destination.size(),CV_32FC3);
fx = gx + sx;
fy = gy + sy;
Mat gxx = Mat(I.size(),CV_32FC3);
Mat gyy = Mat(I.size(),CV_32FC3);
Mat gxx = Mat(destination.size(),CV_32FC3);
Mat gyy = Mat(destination.size(),CV_32FC3);
computeLaplacianX(fx,gxx);
computeLaplacianY(fy,gyy);
@ -400,7 +399,7 @@ void Cloning::poisson(const Mat &I, const Mat &gx, const Mat &gy, const Mat &sx,
split(gxx,rgbx_channel);
split(gyy,rgby_channel);
split(I,output);
split(destination,output);
poisson_solver(rgb_channel[2],rgbx_channel[2], rgby_channel[2],output[2]);
poisson_solver(rgb_channel[1],rgbx_channel[1], rgby_channel[1],output[1]);
@ -411,85 +410,82 @@ void Cloning::evaluate(const Mat &I, const Mat &wmask, const Mat &cloned)
{
bitwise_not(wmask,wmask);
wmask.convertTo(smask1,CV_32FC1,1.0/255.0);
I.convertTo(grx32,CV_32FC3,1.0/255.0);
I.convertTo(gry32,CV_32FC3,1.0/255.0);
wmask.convertTo(binaryMaskFloatInverted,CV_32FC1,1.0/255.0);
array_product(grx,smask1, grx32);
array_product(gry,smask1, gry32);
array_product(gradientX,binaryMaskFloatInverted, grx32);
array_product(gradientY,binaryMaskFloatInverted, gry32);
poisson(I,grx32,gry32,srx32,sry32);
merge(output,cloned);
}
void Cloning::normal_clone(const Mat &destination, const Mat &mask, const Mat &wmask, Mat &cloned, int flag)
void Cloning::normal_clone(const Mat &destination, const Mat &patch, const Mat &binaryMask, Mat &cloned, int flag)
{
int w = destination.size().width;
int h = destination.size().height;
int channel = destination.channels();
compute_derivatives(destination,mask,wmask);
compute_derivatives(destination,patch,binaryMask);
switch(flag)
{
case NORMAL_CLONE:
array_product(sgx,smask, srx32);
array_product(sgy,smask, sry32);
array_product(patchGradientX,binaryMaskFloat, srx32);
array_product(patchGradientY,binaryMaskFloat, sry32);
break;
case MIXED_CLONE:
for(int i=0;i < h; i++)
{
for(int j=0; j < w; j++)
for(int i=0;i < h; i++)
{
for(int c=0;c<channel;++c)
for(int j=0; j < w; j++)
{
if(abs(sgx.at<float>(i,j*channel+c) - sgy.at<float>(i,j*channel+c)) >
abs(grx.at<float>(i,j*channel+c) - gry.at<float>(i,j*channel+c)))
for(int c=0;c<channel;++c)
{
if(abs(patchGradientX.at<float>(i,j*channel+c) - patchGradientY.at<float>(i,j*channel+c)) >
abs(gradientX.at<float>(i,j*channel+c) - gradientY.at<float>(i,j*channel+c)))
{
srx32.at<float>(i,j*channel+c) = sgx.at<float>(i,j*channel+c)
* smask.at<float>(i,j);
sry32.at<float>(i,j*channel+c) = sgy.at<float>(i,j*channel+c)
* smask.at<float>(i,j);
}
else
{
srx32.at<float>(i,j*channel+c) = grx.at<float>(i,j*channel+c)
* smask.at<float>(i,j);
sry32.at<float>(i,j*channel+c) = gry.at<float>(i,j*channel+c)
* smask.at<float>(i,j);
srx32.at<float>(i,j*channel+c) = patchGradientX.at<float>(i,j*channel+c)
* binaryMaskFloat.at<float>(i,j);
sry32.at<float>(i,j*channel+c) = patchGradientY.at<float>(i,j*channel+c)
* binaryMaskFloat.at<float>(i,j);
}
else
{
srx32.at<float>(i,j*channel+c) = gradientX.at<float>(i,j*channel+c)
* binaryMaskFloat.at<float>(i,j);
sry32.at<float>(i,j*channel+c) = gradientY.at<float>(i,j*channel+c)
* binaryMaskFloat.at<float>(i,j);
}
}
}
}
}
break;
break;
case MONOCHROME_TRANSFER:
Mat gray = Mat(mask.size(),CV_8UC1);
Mat gray8 = Mat(mask.size(),CV_8UC3);
cvtColor(mask, gray, COLOR_BGR2GRAY );
vector <Mat> temp;
split(destination,temp);
gray.copyTo(temp[2]);
gray.copyTo(temp[1]);
gray.copyTo(temp[0]);
Mat gray = Mat(patch.size(),CV_8UC1);
Mat gray8 = Mat(patch.size(),CV_8UC3);
cvtColor(patch, gray, COLOR_BGR2GRAY );
vector <Mat> temp;
split(destination,temp);
gray.copyTo(temp[2]);
gray.copyTo(temp[1]);
gray.copyTo(temp[0]);
merge(temp,gray8);
merge(temp,gray8);
computeGradientX(gray8,sgx);
computeGradientY(gray8,sgy);
computeGradientX(gray8,patchGradientX);
computeGradientY(gray8,patchGradientY);
array_product(sgx, smask, srx32);
array_product(sgy, smask, sry32);
array_product(patchGradientX, binaryMaskFloat, srx32);
array_product(patchGradientY, binaryMaskFloat, sry32);
break;
}
evaluate(destination,wmask,cloned);
evaluate(destination,binaryMask,cloned);
}
void Cloning::local_color_change(Mat &I, Mat &mask, Mat &wmask, Mat &cloned, float red_mul=1.0,
@ -497,8 +493,8 @@ void Cloning::local_color_change(Mat &I, Mat &mask, Mat &wmask, Mat &cloned, flo
{
compute_derivatives(I,mask,wmask);
array_product(sgx,smask, srx32);
array_product(sgy,smask, sry32);
array_product(patchGradientX,binaryMaskFloat, srx32);
array_product(patchGradientY,binaryMaskFloat, sry32);
scalar_product(srx32,red_mul,green_mul,blue_mul);
scalar_product(sry32,red_mul,green_mul,blue_mul);
@ -509,8 +505,8 @@ void Cloning::illum_change(Mat &I, Mat &mask, Mat &wmask, Mat &cloned, float alp
{
compute_derivatives(I,mask,wmask);
array_product(sgx,smask, srx32);
array_product(sgy,smask, sry32);
array_product(patchGradientX,binaryMaskFloat, srx32);
array_product(patchGradientY,binaryMaskFloat, sry32);
Mat mag = Mat(I.size(),CV_32FC3);
magnitude(srx32,sry32,mag);
@ -541,14 +537,14 @@ void Cloning::texture_flatten(Mat &I, Mat &mask, Mat &wmask, double low_threshol
Mat out = Mat(mask.size(),CV_8UC1);
Canny(mask,out,low_threshold,high_threshold,kernel_size);
Mat zeros(sgx.size(), CV_32FC3);
Mat zeros(patchGradientX.size(), CV_32FC3);
zeros.setTo(0);
Mat zerosMask = (out != 255);
zeros.copyTo(sgx, zerosMask);
zeros.copyTo(sgy, zerosMask);
zeros.copyTo(patchGradientX, zerosMask);
zeros.copyTo(patchGradientY, zerosMask);
array_product(sgx,smask, srx32);
array_product(sgy,smask, sry32);
array_product(patchGradientX,binaryMaskFloat, srx32);
array_product(patchGradientY,binaryMaskFloat, sry32);
evaluate(I,wmask,cloned);
}