removed extra whitespaces and hopefully fixed the test failures
This commit is contained in:
@@ -690,21 +690,21 @@ bool LBPEvaluator::setImage( InputArray _image, Size _origWinSize, Size _sumSize
|
||||
{
|
||||
Size imgsz = _image.size();
|
||||
int cols = imgsz.width, rows = imgsz.height;
|
||||
|
||||
|
||||
if (imgsz.width < origWinSize.width || imgsz.height < origWinSize.height)
|
||||
return false;
|
||||
|
||||
|
||||
origWinSize = _origWinSize;
|
||||
|
||||
|
||||
int rn = _sumSize.height, cn = _sumSize.width;
|
||||
int sumStep;
|
||||
CV_Assert(rn >= rows+1 && cn >= cols+1);
|
||||
|
||||
|
||||
if( _image.isUMat() )
|
||||
{
|
||||
usum0.create(rn, cn, CV_32S);
|
||||
usum = UMat(usum0, Rect(0, 0, cols+1, rows+1));
|
||||
|
||||
|
||||
integral(_image, usum, noArray(), noArray(), CV_32S);
|
||||
sumStep = (int)(usum.step/usum.elemSize());
|
||||
}
|
||||
@@ -712,14 +712,14 @@ bool LBPEvaluator::setImage( InputArray _image, Size _origWinSize, Size _sumSize
|
||||
{
|
||||
sum0.create(rn, cn, CV_32S);
|
||||
sum = sum0(Rect(0, 0, cols+1, rows+1));
|
||||
|
||||
|
||||
integral(_image, sum, noArray(), noArray(), CV_32S);
|
||||
sumStep = (int)(sum.step/sum.elemSize());
|
||||
}
|
||||
|
||||
|
||||
size_t fi, nfeatures = features->size();
|
||||
const std::vector<Feature>& ff = *features;
|
||||
|
||||
|
||||
if( sumSize0 != _sumSize )
|
||||
{
|
||||
optfeatures->resize(nfeatures);
|
||||
@@ -730,7 +730,7 @@ bool LBPEvaluator::setImage( InputArray _image, Size _origWinSize, Size _sumSize
|
||||
if( _image.isUMat() && (sumSize0 != _sumSize || ufbuf.empty()) )
|
||||
copyVectorToUMat(*optfeatures, ufbuf);
|
||||
sumSize0 = _sumSize;
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -743,7 +743,7 @@ bool LBPEvaluator::setWindow( Point pt )
|
||||
pwin = &sum.at<int>(pt);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void LBPEvaluator::getUMats(std::vector<UMat>& bufs)
|
||||
{
|
||||
@@ -1174,7 +1174,7 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
std::vector<UMat> bufs;
|
||||
size_t globalsize[] = { processingRectSize.width/yStep, processingRectSize.height/yStep };
|
||||
bool ok = false;
|
||||
|
||||
|
||||
if( ustages.empty() )
|
||||
{
|
||||
copyVectorToUMat(data.stages, ustages);
|
||||
@@ -1196,7 +1196,7 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
if( haarKernel.empty() )
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
haar->getUMats(bufs);
|
||||
Rect normrect = haar->getNormRect();
|
||||
|
||||
@@ -1220,7 +1220,7 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
Ptr<LBPEvaluator> lbp = featureEvaluator.dynamicCast<LBPEvaluator>();
|
||||
if( lbp.empty() )
|
||||
return false;
|
||||
|
||||
|
||||
lbp->setImage(_image, data.origWinSize, sumSize0);
|
||||
if( lbpKernel.empty() )
|
||||
{
|
||||
@@ -1228,20 +1228,20 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
if( lbpKernel.empty() )
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
lbp->getUMats(bufs);
|
||||
|
||||
|
||||
int subsetSize = (data.ncategories + 31)/32;
|
||||
lbpKernel.args(ocl::KernelArg::ReadOnlyNoSize(bufs[0]), // sum
|
||||
ocl::KernelArg::PtrReadOnly(bufs[1]), // optfeatures
|
||||
|
||||
|
||||
// cascade classifier
|
||||
(int)data.stages.size(),
|
||||
ocl::KernelArg::PtrReadOnly(ustages),
|
||||
ocl::KernelArg::PtrReadOnly(ustumps),
|
||||
ocl::KernelArg::PtrReadOnly(usubsets),
|
||||
subsetSize,
|
||||
|
||||
|
||||
ocl::KernelArg::PtrWriteOnly(ufacepos), // positions
|
||||
processingRectSize,
|
||||
yStep, (float)factor,
|
||||
|
||||
Reference in New Issue
Block a user