removed extra whitespaces and hopefully fixed the test failures

This commit is contained in:
Vadim Pisarevsky
2013-12-23 18:41:54 +04:00
parent d084d19779
commit 8998186ce4
4 changed files with 39 additions and 34 deletions

View File

@@ -690,21 +690,21 @@ bool LBPEvaluator::setImage( InputArray _image, Size _origWinSize, Size _sumSize
{
Size imgsz = _image.size();
int cols = imgsz.width, rows = imgsz.height;
if (imgsz.width < origWinSize.width || imgsz.height < origWinSize.height)
return false;
origWinSize = _origWinSize;
int rn = _sumSize.height, cn = _sumSize.width;
int sumStep;
CV_Assert(rn >= rows+1 && cn >= cols+1);
if( _image.isUMat() )
{
usum0.create(rn, cn, CV_32S);
usum = UMat(usum0, Rect(0, 0, cols+1, rows+1));
integral(_image, usum, noArray(), noArray(), CV_32S);
sumStep = (int)(usum.step/usum.elemSize());
}
@@ -712,14 +712,14 @@ bool LBPEvaluator::setImage( InputArray _image, Size _origWinSize, Size _sumSize
{
sum0.create(rn, cn, CV_32S);
sum = sum0(Rect(0, 0, cols+1, rows+1));
integral(_image, sum, noArray(), noArray(), CV_32S);
sumStep = (int)(sum.step/sum.elemSize());
}
size_t fi, nfeatures = features->size();
const std::vector<Feature>& ff = *features;
if( sumSize0 != _sumSize )
{
optfeatures->resize(nfeatures);
@@ -730,7 +730,7 @@ bool LBPEvaluator::setImage( InputArray _image, Size _origWinSize, Size _sumSize
if( _image.isUMat() && (sumSize0 != _sumSize || ufbuf.empty()) )
copyVectorToUMat(*optfeatures, ufbuf);
sumSize0 = _sumSize;
return true;
}
@@ -743,7 +743,7 @@ bool LBPEvaluator::setWindow( Point pt )
pwin = &sum.at<int>(pt);
return true;
}
void LBPEvaluator::getUMats(std::vector<UMat>& bufs)
{
@@ -1174,7 +1174,7 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
std::vector<UMat> bufs;
size_t globalsize[] = { processingRectSize.width/yStep, processingRectSize.height/yStep };
bool ok = false;
if( ustages.empty() )
{
copyVectorToUMat(data.stages, ustages);
@@ -1196,7 +1196,7 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
if( haarKernel.empty() )
return false;
}
haar->getUMats(bufs);
Rect normrect = haar->getNormRect();
@@ -1220,7 +1220,7 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
Ptr<LBPEvaluator> lbp = featureEvaluator.dynamicCast<LBPEvaluator>();
if( lbp.empty() )
return false;
lbp->setImage(_image, data.origWinSize, sumSize0);
if( lbpKernel.empty() )
{
@@ -1228,20 +1228,20 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
if( lbpKernel.empty() )
return false;
}
lbp->getUMats(bufs);
int subsetSize = (data.ncategories + 31)/32;
lbpKernel.args(ocl::KernelArg::ReadOnlyNoSize(bufs[0]), // sum
ocl::KernelArg::PtrReadOnly(bufs[1]), // optfeatures
// cascade classifier
(int)data.stages.size(),
ocl::KernelArg::PtrReadOnly(ustages),
ocl::KernelArg::PtrReadOnly(ustumps),
ocl::KernelArg::PtrReadOnly(usubsets),
subsetSize,
ocl::KernelArg::PtrWriteOnly(ufacepos), // positions
processingRectSize,
yStep, (float)factor,