fixed FernDescriptorMatch; optimized keypoint regions matching in detector/descriptor evaluation; added CalonderDescriptorExtractor to evaluation tests

This commit is contained in:
Maria Dimashova
2010-10-04 14:12:36 +00:00
parent 51822f2072
commit 89935fc59b
5 changed files with 190 additions and 122 deletions

View File

@@ -204,15 +204,75 @@ static void filterEllipticKeyPointsByImageSize( vector<EllipticKeyPoint>& keypoi
}
}
static void overlap( const vector<EllipticKeyPoint>& keypoints1, const vector<EllipticKeyPoint>& keypoints2t, bool commonPart,
SparseMat_<float>& overlaps )
struct IntersectAreaCounter
{
IntersectAreaCounter() : bua(0.f), bna(0.f) {}
IntersectAreaCounter( float _miny, float _maxy, float _dr, const Point2f& _diff,
const Scalar& _ellipse1, const Scalar& _ellipse2 ) : bua(0.f), bna(0.f),
miny(_miny), maxy(_maxy), dr(_dr), diff(_diff),
ellipse1(_ellipse1), ellipse2(_ellipse2) {}
void operator()( const BlockedRange& range )
{
float temp_bua = bua, temp_bna = bna;
for( float rx1 = range.begin(); rx1 <= range.end(); rx1 += dr )
{
float rx2 = rx1 - diff.x;
for( float ry1 = miny; ry1 <= maxy; ry1 += dr )
{
float ry2 = ry1 - diff.y;
//compute the distance from the ellipse center
float e1 = (float)(ellipse1[0]*rx1*rx1 + 2*ellipse1[1]*rx1*ry1 + ellipse1[2]*ry1*ry1);
float e2 = (float)(ellipse2[0]*rx2*rx2 + 2*ellipse2[1]*rx2*ry2 + ellipse2[2]*ry2*ry2);
//compute the area
if( e1<1 && e2<1 ) temp_bna++;
if( e1<1 || e2<1 ) temp_bua++;
}
}
bua = temp_bua;
bna = temp_bna;
}
void join( IntersectAreaCounter& ac )
{
bua += ac.bua;
bna += ac.bna;
}
float bua, bna;
float miny, maxy, dr;
Point2f diff;
Scalar ellipse1, ellipse2;
};
struct SIdx
{
SIdx() : S(-1), i1(-1), i2(-1) {}
SIdx(float _S, int _i1, int _i2) : S(_S), i1(_i1), i2(_i2) {}
float S;
int i1;
int i2;
bool operator<(const SIdx& v) const { return S > v.S; }
struct UsedFinder
{
UsedFinder(const SIdx& _used) : used(_used) {}
const SIdx& used;
bool operator()(const SIdx& v) const { return (v.i1 == used.i1 || v.i2 == used.i2); }
};
};
static void computeOneToOneMatchedOverlaps( const vector<EllipticKeyPoint>& keypoints1, const vector<EllipticKeyPoint>& keypoints2t,
bool commonPart, vector<SIdx>& overlaps, float minOverlap )
{
CV_Assert( minOverlap >= 0.f );
overlaps.clear();
if( keypoints1.empty() || keypoints2t.empty() )
return;
int size[] = { keypoints1.size(), keypoints2t.size() };
overlaps.create( 2, size );
overlaps.clear();
overlaps.reserve(cvRound(keypoints1.size() * keypoints2t.size() * 0.01));
for( size_t i1 = 0; i1 < keypoints1.size(); i1++ )
{
@@ -246,34 +306,40 @@ static void overlap( const vector<EllipticKeyPoint>& keypoints1, const vector<El
float miny = floor((-keypoint1a.boundingBox.height < (diff.y-keypoint2a.boundingBox.height)) ?
-keypoint1a.boundingBox.height : (diff.y-keypoint2a.boundingBox.height));
float mina = (maxx-minx) < (maxy-miny) ? (maxx-minx) : (maxy-miny) ;
float dr = mina/50.f;
float bua = 0.f, bna = 0.f;
//compute the area
for( float rx1 = minx; rx1 <= maxx; rx1+=dr )
float dr = mina/50.f;
IntersectAreaCounter ac( miny, maxy, dr, diff, keypoint1a.ellipse, keypoint2a.ellipse );
parallel_reduce( BlockedRange(minx, maxx), ac );
if( ac.bna > 0 )
{
float rx2 = rx1-diff.x;
for( float ry1=miny; ry1<=maxy; ry1+=dr )
{
float ry2=ry1-diff.y;
//compute the distance from the ellipse center
float e1 = (float)(keypoint1a.ellipse[0]*rx1*rx1+2*keypoint1a.ellipse[1]*rx1*ry1+keypoint1a.ellipse[2]*ry1*ry1);
float e2 = (float)(keypoint2a.ellipse[0]*rx2*rx2+2*keypoint2a.ellipse[1]*rx2*ry2+keypoint2a.ellipse[2]*ry2*ry2);
//compute the area
if( e1<1 && e2<1 ) bna++;
if( e1<1 || e2<1 ) bua++;
}
float ov = ac.bna / ac.bua;
if( ov >= minOverlap )
overlaps.push_back(SIdx(ov, i1, i2));
}
if( bna > 0)
overlaps.ref(i1,i2) = bna/bua;
}
}
}
sort( overlaps.begin(), overlaps.end() );
typedef vector<SIdx>::iterator It;
It pos = overlaps.begin();
It end = overlaps.end();
while(pos != end)
{
It prev = pos++;
end = std::remove_if(pos, end, SIdx::UsedFinder(*prev));
}
overlaps.erase(pos, overlaps.end());
}
static void calculateRepeatability( const Mat& img1, const Mat& img2, const Mat& H1to2,
const vector<KeyPoint>& _keypoints1, const vector<KeyPoint>& _keypoints2,
float& repeatability, int& correspondencesCount,
SparseMat_<uchar>* thresholdedOverlapMask=0 )
Mat* thresholdedOverlapMask=0 )
{
vector<EllipticKeyPoint> keypoints1, keypoints2, keypoints1t, keypoints2t;
EllipticKeyPoint::convert( _keypoints1, keypoints1 );
@@ -284,8 +350,8 @@ static void calculateRepeatability( const Mat& img1, const Mat& img2, const Mat&
Mat H2to1; invert(H1to2, H2to1);
EllipticKeyPoint::calcProjection( keypoints2, H2to1, keypoints2t );
bool ifEvaluateDetectors = !thresholdedOverlapMask; // == commonPart
float overlapThreshold;
bool ifEvaluateDetectors = thresholdedOverlapMask == 0;
if( ifEvaluateDetectors )
{
overlapThreshold = 1.f - 0.4f;
@@ -300,57 +366,34 @@ static void calculateRepeatability( const Mat& img1, const Mat& img2, const Mat&
else
{
overlapThreshold = 1.f - 0.5f;
thresholdedOverlapMask->create( keypoints1.size(), keypoints2t.size(), CV_8UC1 );
thresholdedOverlapMask->setTo( Scalar::all(0) );
}
int minCount = min( keypoints1.size(), keypoints2t.size() );
// calculate overlap errors
SparseMat_<float> overlaps;
overlap( keypoints1, keypoints2t, ifEvaluateDetectors, overlaps );
vector<SIdx> overlaps;
computeOneToOneMatchedOverlaps( keypoints1, keypoints2t, ifEvaluateDetectors, overlaps, overlapThreshold/*min overlap*/ );
correspondencesCount = -1;
repeatability = -1.f;
const int* size = overlaps.size();
if( !size || overlaps.nzcount() == 0 )
if( overlaps.empty() )
return;
if( ifEvaluateDetectors )
{
// threshold the overlaps
for( int y = 0; y < size[0]; y++ )
{
for( int x = 0; x < size[1]; x++ )
{
if ( overlaps(y,x) < overlapThreshold )
overlaps.erase(y,x);
}
}
// regions one-to-one matching
correspondencesCount = 0;
while( overlaps.nzcount() > 0 )
{
double maxOverlap = 0;
int maxIdx[2];
minMaxLoc( overlaps, 0, &maxOverlap, 0, maxIdx );
for( size_t i1 = 0; i1 < keypoints1.size(); i1++ )
overlaps.erase(i1, maxIdx[1]);
for( size_t i2 = 0; i2 < keypoints2t.size(); i2++ )
overlaps.erase(maxIdx[0], i2);
correspondencesCount++;
}
repeatability = minCount ? (float)correspondencesCount/minCount : -1;
correspondencesCount = overlaps.size();
repeatability = minCount ? (float)correspondencesCount / minCount : -1;
}
else
{
thresholdedOverlapMask->create( 2, size );
for( int y = 0; y < size[0]; y++ )
for( size_t i = 0; i < overlaps.size(); i++ )
{
for( int x = 0; x < size[1]; x++ )
{
float val = overlaps(y,x);
if ( val >= overlapThreshold )
thresholdedOverlapMask->ref(y,x) = 1;
}
int y = overlaps[i].i1;
int x = overlaps[i].i2;
thresholdedOverlapMask->at<uchar>(y,x) = 1;
}
}
}
@@ -462,8 +505,9 @@ void cv::evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, con
dmatch->clear();
vector<vector<DMatch> > *matches1to2, buf1;
vector<vector<uchar> > *correctMatches1to2Mask, buf2;
matches1to2 = _matches1to2 != 0 ? _matches1to2 : &buf1;
vector<vector<uchar> > *correctMatches1to2Mask, buf2;
correctMatches1to2Mask = _correctMatches1to2Mask != 0 ? _correctMatches1to2Mask : &buf2;
if( keypoints1.empty() )
@@ -488,14 +532,10 @@ void cv::evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, con
}
float repeatability;
int correspCount;
SparseMat_<uchar> thresholdedOverlapMask; // thresholded allOverlapErrors
calculateRepeatability( img1, img2, H1to2,
keypoints1, keypoints2,
repeatability, correspCount,
&thresholdedOverlapMask );
Mat thresholdedOverlapMask; // thresholded allOverlapErrors
calculateRepeatability( img1, img2, H1to2, keypoints1, keypoints2, repeatability, correspCount, &thresholdedOverlapMask );
correctMatches1to2Mask->resize(matches1to2->size());
int ddd = 0;
for( size_t i = 0; i < matches1to2->size(); i++ )
{
(*correctMatches1to2Mask)[i].resize((*matches1to2)[i].size());
@@ -503,8 +543,7 @@ void cv::evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, con
{
int indexQuery = (*matches1to2)[i][j].indexQuery;
int indexTrain = (*matches1to2)[i][j].indexTrain;
(*correctMatches1to2Mask)[i][j] = thresholdedOverlapMask( indexQuery, indexTrain );
ddd += thresholdedOverlapMask( indexQuery, indexTrain ) != 0 ? 1 : 0;
(*correctMatches1to2Mask)[i][j] = thresholdedOverlapMask.at<uchar>( indexQuery, indexTrain );
}
}