Merge branch '2.4'
This commit is contained in:
@@ -53,6 +53,10 @@ void cv::ocl::dft(const oclMat&, oclMat&, Size, int)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, "OpenCL DFT is not implemented");
|
||||
}
|
||||
namespace cv { namespace ocl {
|
||||
void fft_teardown();
|
||||
}}
|
||||
void cv::ocl::fft_teardown(){}
|
||||
#else
|
||||
#include "clAmdFft.h"
|
||||
namespace cv
|
||||
|
||||
@@ -55,13 +55,16 @@ using namespace cv::ocl;
|
||||
|
||||
//#define PRINT_KERNEL_RUN_TIME
|
||||
#define RUN_TIMES 100
|
||||
|
||||
#ifndef CL_MEM_USE_PERSISTENT_MEM_AMD
|
||||
#define CL_MEM_USE_PERSISTENT_MEM_AMD 0
|
||||
#endif
|
||||
//#define AMD_DOUBLE_DIFFER
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
extern void fft_teardown();
|
||||
/*
|
||||
* The binary caching system to eliminate redundant program source compilation.
|
||||
* Strictly, this is not a cache because we do not implement evictions right now.
|
||||
@@ -69,6 +72,15 @@ namespace cv
|
||||
*/
|
||||
std::auto_ptr<ProgramCache> ProgramCache::programCache;
|
||||
ProgramCache *programCache = NULL;
|
||||
DevMemType gDeviceMemType = DEVICE_MEM_DEFAULT;
|
||||
DevMemRW gDeviceMemRW = DEVICE_MEM_R_W;
|
||||
int gDevMemTypeValueMap[5] = {0,
|
||||
CL_MEM_ALLOC_HOST_PTR,
|
||||
CL_MEM_USE_HOST_PTR,
|
||||
CL_MEM_COPY_HOST_PTR,
|
||||
CL_MEM_USE_PERSISTENT_MEM_AMD};
|
||||
int gDevMemRWValueMap[3] = {CL_MEM_READ_WRITE, CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY};
|
||||
|
||||
ProgramCache::ProgramCache()
|
||||
{
|
||||
codeCache.clear();
|
||||
@@ -110,30 +122,25 @@ namespace cv
|
||||
}
|
||||
|
||||
////////////////////////Common OpenCL specific calls///////////////
|
||||
//Info::Info()
|
||||
//{
|
||||
// oclplatform = 0;
|
||||
// oclcontext = 0;
|
||||
// devnum = 0;
|
||||
//}
|
||||
//Info::~Info()
|
||||
//{
|
||||
// release();
|
||||
//}
|
||||
//void Info::release()
|
||||
//{
|
||||
// if(oclplatform)
|
||||
// {
|
||||
// oclplatform = 0;
|
||||
// }
|
||||
// if(oclcontext)
|
||||
// {
|
||||
// openCLSafeCall(clReleaseContext(oclcontext));
|
||||
// }
|
||||
// devices.empty();
|
||||
// devName.empty();
|
||||
//}
|
||||
struct Info::Impl
|
||||
int getDevMemType(DevMemRW& rw_type, DevMemType& mem_type)
|
||||
{
|
||||
rw_type = gDeviceMemRW;
|
||||
mem_type = gDeviceMemType;
|
||||
return Context::getContext()->impl->unified_memory;
|
||||
}
|
||||
|
||||
int setDevMemType(DevMemRW rw_type, DevMemType mem_type)
|
||||
{
|
||||
if( (mem_type == DEVICE_MEM_PM && Context::getContext()->impl->unified_memory == 0) ||
|
||||
mem_type == DEVICE_MEM_UHP ||
|
||||
mem_type == DEVICE_MEM_CHP )
|
||||
return -1;
|
||||
gDeviceMemRW = rw_type;
|
||||
gDeviceMemType = mem_type;
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct Info::Impl
|
||||
{
|
||||
cl_platform_id oclplatform;
|
||||
std::vector<cl_device_id> devices;
|
||||
@@ -287,11 +294,8 @@ namespace cv
|
||||
}
|
||||
|
||||
void *getoclContext()
|
||||
|
||||
{
|
||||
|
||||
return &(Context::getContext()->impl->clContext);
|
||||
|
||||
}
|
||||
|
||||
void *getoclCommandQueue()
|
||||
@@ -316,10 +320,16 @@ namespace cv
|
||||
|
||||
void openCLMallocPitch(Context *clCxt, void **dev_ptr, size_t *pitch,
|
||||
size_t widthInBytes, size_t height)
|
||||
{
|
||||
openCLMallocPitchEx(clCxt, dev_ptr, pitch, widthInBytes, height, gDeviceMemRW, gDeviceMemType);
|
||||
}
|
||||
|
||||
void openCLMallocPitchEx(Context *clCxt, void **dev_ptr, size_t *pitch,
|
||||
size_t widthInBytes, size_t height, DevMemRW rw_type, DevMemType mem_type)
|
||||
{
|
||||
cl_int status;
|
||||
|
||||
*dev_ptr = clCreateBuffer(clCxt->impl->clContext, CL_MEM_READ_WRITE,
|
||||
*dev_ptr = clCreateBuffer(clCxt->impl->clContext, gDevMemRWValueMap[rw_type]|gDevMemTypeValueMap[mem_type],
|
||||
widthInBytes * height, 0, &status);
|
||||
openCLVerifyCall(status);
|
||||
*pitch = widthInBytes;
|
||||
@@ -834,6 +844,11 @@ namespace cv
|
||||
clcxt->impl->double_support = oclinfo.impl->double_support;
|
||||
//extra options to recognize compiler options
|
||||
memcpy(clcxt->impl->extra_options, oclinfo.impl->extra_options, 512);
|
||||
cl_bool unfymem = false;
|
||||
openCLSafeCall(clGetDeviceInfo(clcxt->impl->devices, CL_DEVICE_HOST_UNIFIED_MEMORY,
|
||||
sizeof(cl_bool), (void *)&unfymem, NULL));
|
||||
if(unfymem)
|
||||
clcxt->impl->unified_memory = 1;
|
||||
}
|
||||
Context::Context()
|
||||
{
|
||||
@@ -850,6 +865,7 @@ namespace cv
|
||||
impl->double_support = 0;
|
||||
//extra options to recognize vendor specific fp64 extensions
|
||||
memset(impl->extra_options, 0, 512);
|
||||
impl->unified_memory = 0;
|
||||
programCache = ProgramCache::getProgramCache();
|
||||
}
|
||||
|
||||
@@ -874,6 +890,7 @@ namespace cv
|
||||
}
|
||||
void Info::release()
|
||||
{
|
||||
fft_teardown();
|
||||
if(impl->oclplatform)
|
||||
{
|
||||
impl->oclplatform = 0;
|
||||
|
||||
@@ -45,6 +45,7 @@
|
||||
|
||||
#include <iomanip>
|
||||
#include "precomp.hpp"
|
||||
#include "mcwutil.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
@@ -230,73 +231,10 @@ void interpolate::blendFrames(const oclMat &frame0, const oclMat &/*frame1*/, co
|
||||
|
||||
void interpolate::bindImgTex(const oclMat &img, cl_mem &texture)
|
||||
{
|
||||
cl_image_format format;
|
||||
int err;
|
||||
int depth = img.depth();
|
||||
int channels = img.channels();
|
||||
|
||||
switch(depth)
|
||||
{
|
||||
case CV_8U:
|
||||
format.image_channel_data_type = CL_UNSIGNED_INT8;
|
||||
break;
|
||||
case CV_32S:
|
||||
format.image_channel_data_type = CL_UNSIGNED_INT32;
|
||||
break;
|
||||
case CV_32F:
|
||||
format.image_channel_data_type = CL_FLOAT;
|
||||
break;
|
||||
default:
|
||||
throw std::exception();
|
||||
break;
|
||||
}
|
||||
switch(channels)
|
||||
{
|
||||
case 1:
|
||||
format.image_channel_order = CL_R;
|
||||
break;
|
||||
case 3:
|
||||
format.image_channel_order = CL_RGB;
|
||||
break;
|
||||
case 4:
|
||||
format.image_channel_order = CL_RGBA;
|
||||
break;
|
||||
default:
|
||||
throw std::exception();
|
||||
break;
|
||||
}
|
||||
if(texture)
|
||||
{
|
||||
openCLFree(texture);
|
||||
}
|
||||
|
||||
#ifdef CL_VERSION_1_2
|
||||
cl_image_desc desc;
|
||||
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
|
||||
desc.image_width = img.step / img.elemSize();
|
||||
desc.image_height = img.rows;
|
||||
desc.image_depth = 0;
|
||||
desc.image_array_size = 1;
|
||||
desc.image_row_pitch = 0;
|
||||
desc.image_slice_pitch = 0;
|
||||
desc.buffer = NULL;
|
||||
desc.num_mip_levels = 0;
|
||||
desc.num_samples = 0;
|
||||
texture = clCreateImage(Context::getContext()->impl->clContext, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
|
||||
#else
|
||||
texture = clCreateImage2D(
|
||||
Context::getContext()->impl->clContext,
|
||||
CL_MEM_READ_WRITE,
|
||||
&format,
|
||||
img.step / img.elemSize(),
|
||||
img.rows,
|
||||
0,
|
||||
NULL,
|
||||
&err);
|
||||
#endif
|
||||
size_t origin[] = { 0, 0, 0 };
|
||||
size_t region[] = { img.step / img.elemSize(), img.rows, 1 };
|
||||
clEnqueueCopyBufferToImage(img.clCxt->impl->clCmdQueue, (cl_mem)img.data, texture, 0, origin, region, 0, NULL, 0);
|
||||
openCLSafeCall(err);
|
||||
texture = bindTexture(img);
|
||||
}
|
||||
|
||||
|
||||
@@ -203,8 +203,8 @@ __kernel void YUV2RGB(int cols,int rows,int src_step,int dst_step,int channels,
|
||||
|
||||
__constant int ITUR_BT_601_CY = 1220542;
|
||||
__constant int ITUR_BT_601_CUB = 2116026;
|
||||
__constant int ITUR_BT_601_CUG = -409993;
|
||||
__constant int ITUR_BT_601_CVG = -852492;
|
||||
__constant int ITUR_BT_601_CUG = 409993;
|
||||
__constant int ITUR_BT_601_CVG = 852492;
|
||||
__constant int ITUR_BT_601_CVR = 1673527;
|
||||
__constant int ITUR_BT_601_SHIFT = 20;
|
||||
|
||||
@@ -229,7 +229,7 @@ __kernel void YUV2RGBA_NV12(int cols,int rows,int src_step,int dst_step,
|
||||
int V = usrc[1] - 128;
|
||||
|
||||
int ruv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVR * V;
|
||||
int guv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVG * V + ITUR_BT_601_CUG * U;
|
||||
int guv = (1 << (ITUR_BT_601_SHIFT - 1)) - ITUR_BT_601_CVG * V - ITUR_BT_601_CUG * U;
|
||||
int buv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CUB * U;
|
||||
|
||||
Y1 = max(0, Y1 - 16) * ITUR_BT_601_CY;
|
||||
|
||||
938
modules/ocl/src/kernels/moments.cl
Normal file
938
modules/ocl/src/kernels/moments.cl
Normal file
@@ -0,0 +1,938 @@
|
||||
#if defined (DOUBLE_SUPPORT)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#else
|
||||
typedef float double;
|
||||
typedef float4 double4;
|
||||
#define convert_double4 convert_float4
|
||||
#endif
|
||||
//#pragma OPENCL EXTENSION cl_amd_printf:enable
|
||||
//#if defined (DOUBLE_SUPPORT)
|
||||
__kernel void icvContourMoments(int contour_total,
|
||||
__global float* reader_oclmat_data,
|
||||
__global double* dst_a00,
|
||||
__global double* dst_a10,
|
||||
__global double* dst_a01,
|
||||
__global double* dst_a20,
|
||||
__global double* dst_a11,
|
||||
__global double* dst_a02,
|
||||
__global double* dst_a30,
|
||||
__global double* dst_a21,
|
||||
__global double* dst_a12,
|
||||
__global double* dst_a03)
|
||||
{
|
||||
double xi_1, yi_1, xi_12, yi_12, xi, yi, xi2, yi2, dxy, xii_1, yii_1;
|
||||
int idx = get_global_id(0);
|
||||
|
||||
xi_1 = *(reader_oclmat_data + (get_global_id(0) << 1));
|
||||
yi_1 = *(reader_oclmat_data + (get_global_id(0) << 1) + 1);
|
||||
xi_12 = xi_1 * xi_1;
|
||||
yi_12 = yi_1 * yi_1;
|
||||
|
||||
if(idx == contour_total - 1)
|
||||
{
|
||||
xi = *(reader_oclmat_data);
|
||||
yi = *(reader_oclmat_data + 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
xi = *(reader_oclmat_data + (idx + 1) * 2);
|
||||
yi = *(reader_oclmat_data + (idx + 1) * 2 + 1);
|
||||
}
|
||||
|
||||
xi2 = xi * xi;
|
||||
yi2 = yi * yi;
|
||||
dxy = xi_1 * yi - xi * yi_1;
|
||||
xii_1 = xi_1 + xi;
|
||||
yii_1 = yi_1 + yi;
|
||||
|
||||
dst_a00[idx] = dxy;
|
||||
dst_a10[idx] = dxy * xii_1;
|
||||
dst_a01[idx] = dxy * yii_1;
|
||||
dst_a20[idx] = dxy * (xi_1 * xii_1 + xi2);
|
||||
dst_a11[idx] = dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi));
|
||||
dst_a02[idx] = dxy * (yi_1 * yii_1 + yi2);
|
||||
dst_a30[idx] = dxy * xii_1 * (xi_12 + xi2);
|
||||
dst_a03[idx] = dxy * yii_1 * (yi_12 + yi2);
|
||||
dst_a21[idx] =
|
||||
dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 +
|
||||
xi2 * (yi_1 + 3 * yi));
|
||||
dst_a12[idx] =
|
||||
dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 +
|
||||
yi2 * (xi_1 + 3 * xi));
|
||||
}
|
||||
//#endif
|
||||
|
||||
//#if defined (DOUBLE_SUPPORT)
|
||||
__kernel void CvMoments_D0(__global uchar16* src_data, int src_rows, int src_cols, int src_step, int tileSize_width, int tileSize_height,
|
||||
__global double* dst_m00,
|
||||
__global double* dst_m10,
|
||||
__global double* dst_m01,
|
||||
__global double* dst_m20,
|
||||
__global double* dst_m11,
|
||||
__global double* dst_m02,
|
||||
__global double* dst_m30,
|
||||
__global double* dst_m21,
|
||||
__global double* dst_m12,
|
||||
__global double* dst_m03,
|
||||
int dst_cols, int dst_step, int type, int depth, int cn, int coi, int binary, int TILE_SIZE)
|
||||
{
|
||||
uchar tmp_coi[16]; // get the coi data
|
||||
uchar16 tmp[16];
|
||||
int VLEN_C = 16; // vector length of uchar
|
||||
|
||||
int gidy = get_global_id(0);
|
||||
int gidx = get_global_id(1);
|
||||
int wgidy = get_group_id(0);
|
||||
int wgidx = get_group_id(1);
|
||||
int lidy = get_local_id(0);
|
||||
int lidx = get_local_id(1);
|
||||
int y = wgidy*TILE_SIZE; // vector length of uchar
|
||||
int x = wgidx*TILE_SIZE; // vector length of uchar
|
||||
int kcn = (cn==2)?2:4;
|
||||
int rstep = min(src_step, TILE_SIZE);
|
||||
tileSize_height = min(TILE_SIZE, src_rows - y);
|
||||
tileSize_width = min(TILE_SIZE, src_cols - x);
|
||||
|
||||
if( tileSize_width < TILE_SIZE )
|
||||
for(int i = tileSize_width; i < rstep; i++ )
|
||||
*((__global uchar*)src_data+(y+lidy)*src_step+x+i) = 0;
|
||||
if( coi > 0 ) //channel of interest
|
||||
for(int i = 0; i < tileSize_width; i += VLEN_C)
|
||||
{
|
||||
for(int j=0; j<VLEN_C; j++)
|
||||
tmp_coi[j] = *((__global uchar*)src_data+(y+lidy)*src_step+(x+i+j)*kcn+coi-1);
|
||||
tmp[i/VLEN_C] = (uchar16)(tmp_coi[0],tmp_coi[1],tmp_coi[2],tmp_coi[3],tmp_coi[4],tmp_coi[5],tmp_coi[6],tmp_coi[7],
|
||||
tmp_coi[8],tmp_coi[9],tmp_coi[10],tmp_coi[11],tmp_coi[12],tmp_coi[13],tmp_coi[14],tmp_coi[15]);
|
||||
}
|
||||
else
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_C)
|
||||
tmp[i/VLEN_C] = *(src_data+(y+lidy)*src_step/VLEN_C+(x+i)/VLEN_C);
|
||||
uchar16 zero = (uchar16)(0);
|
||||
uchar16 full = (uchar16)(255);
|
||||
if( binary )
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_C)
|
||||
tmp[i/VLEN_C] = (tmp[i/VLEN_C]!=zero)?full:zero;
|
||||
double mom[10];
|
||||
__local int m[10][128];
|
||||
if(lidy == 0)
|
||||
for(int i=0; i<10; i++)
|
||||
for(int j=0; j<128; j++)
|
||||
m[i][j]=0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
int lm[10] = {0};
|
||||
int16 x0 = (int16)(0);
|
||||
int16 x1 = (int16)(0);
|
||||
int16 x2 = (int16)(0);
|
||||
int16 x3 = (int16)(0);
|
||||
for( int xt = 0 ; xt < tileSize_width; xt+=(VLEN_C) )
|
||||
{
|
||||
int16 v_xt = (int16)(xt, xt+1, xt+2, xt+3, xt+4, xt+5, xt+6, xt+7, xt+8, xt+9, xt+10, xt+11, xt+12, xt+13, xt+14, xt+15);
|
||||
int16 p = convert_int16(tmp[xt/VLEN_C]);
|
||||
int16 xp = v_xt * p, xxp = xp *v_xt;
|
||||
x0 += p;
|
||||
x1 += xp;
|
||||
x2 += xxp;
|
||||
x3 += xxp * v_xt;
|
||||
}
|
||||
x0.s0 += x0.s1 + x0.s2 + x0.s3 + x0.s4 + x0.s5 + x0.s6 + x0.s7 + x0.s8 + x0.s9 + x0.sa + x0.sb + x0.sc + x0.sd + x0.se + x0.sf;
|
||||
x1.s0 += x1.s1 + x1.s2 + x1.s3 + x1.s4 + x1.s5 + x1.s6 + x1.s7 + x1.s8 + x1.s9 + x1.sa + x1.sb + x1.sc + x1.sd + x1.se + x1.sf;
|
||||
x2.s0 += x2.s1 + x2.s2 + x2.s3 + x2.s4 + x2.s5 + x2.s6 + x2.s7 + x2.s8 + x2.s9 + x2.sa + x2.sb + x2.sc + x2.sd + x2.se + x2.sf;
|
||||
x3.s0 += x3.s1 + x3.s2 + x3.s3 + x3.s4 + x3.s5 + x3.s6 + x3.s7 + x3.s8 + x3.s9 + x3.sa + x3.sb + x3.sc + x3.sd + x3.se + x3.sf;
|
||||
int py = lidy * ((int)x0.s0);
|
||||
int sy = lidy*lidy;
|
||||
int bheight = min(tileSize_height, TILE_SIZE/2);
|
||||
if(bheight >= TILE_SIZE/2&&lidy > bheight-1&&lidy < tileSize_height)
|
||||
{
|
||||
m[9][lidy-bheight] = ((int)py) * sy; // m03
|
||||
m[8][lidy-bheight] = ((int)x1.s0) * sy; // m12
|
||||
m[7][lidy-bheight] = ((int)x2.s0) * lidy; // m21
|
||||
m[6][lidy-bheight] = x3.s0; // m30
|
||||
m[5][lidy-bheight] = x0.s0 * sy; // m02
|
||||
m[4][lidy-bheight] = x1.s0 * lidy; // m11
|
||||
m[3][lidy-bheight] = x2.s0; // m20
|
||||
m[2][lidy-bheight] = py; // m01
|
||||
m[1][lidy-bheight] = x1.s0; // m10
|
||||
m[0][lidy-bheight] = x0.s0; // m00
|
||||
}
|
||||
else if(lidy < bheight)
|
||||
{
|
||||
lm[9] = ((int)py) * sy; // m03
|
||||
lm[8] = ((int)x1.s0) * sy; // m12
|
||||
lm[7] = ((int)x2.s0) * lidy; // m21
|
||||
lm[6] = x3.s0; // m30
|
||||
lm[5] = x0.s0 * sy; // m02
|
||||
lm[4] = x1.s0 * lidy; // m11
|
||||
lm[3] = x2.s0; // m20
|
||||
lm[2] = py; // m01
|
||||
lm[1] = x1.s0; // m10
|
||||
lm[0] = x0.s0; // m00
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for( int j = bheight; j >= 1; j = j/2 )
|
||||
{
|
||||
if(lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
lm[i] = lm[i] + m[i][lidy];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(lidy >= j/2&&lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
m[i][lidy-j/2] = lm[i];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if(lidy == 0&&lidx == 0)
|
||||
{
|
||||
for( int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] = (double)lm[mt];
|
||||
if(binary)
|
||||
{
|
||||
double s = 1./255;
|
||||
for( int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] *= s;
|
||||
}
|
||||
double xm = x * mom[0], ym = y * mom[0];
|
||||
|
||||
// accumulate moments computed in each tile
|
||||
|
||||
// + m00 ( = m00' )
|
||||
dst_m00[wgidy*dst_cols+wgidx] = mom[0];
|
||||
|
||||
// + m10 ( = m10' + x*m00' )
|
||||
dst_m10[wgidy*dst_cols+wgidx] = mom[1] + xm;
|
||||
|
||||
// + m01 ( = m01' + y*m00' )
|
||||
dst_m01[wgidy*dst_cols+wgidx] = mom[2] + ym;
|
||||
|
||||
// + m20 ( = m20' + 2*x*m10' + x*x*m00' )
|
||||
dst_m20[wgidy*dst_cols+wgidx] = mom[3] + x * (mom[1] * 2 + xm);
|
||||
|
||||
// + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
|
||||
dst_m11[wgidy*dst_cols+wgidx] = mom[4] + x * (mom[2] + ym) + y * mom[1];
|
||||
|
||||
// + m02 ( = m02' + 2*y*m01' + y*y*m00' )
|
||||
dst_m02[wgidy*dst_cols+wgidx] = mom[5] + y * (mom[2] * 2 + ym);
|
||||
|
||||
// + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
|
||||
dst_m30[wgidy*dst_cols+wgidx] = mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
|
||||
|
||||
// + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
|
||||
dst_m21[wgidy*dst_cols+wgidx] = mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
|
||||
|
||||
// + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
|
||||
dst_m12[wgidy*dst_cols+wgidx] = mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
|
||||
|
||||
// + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
|
||||
dst_m03[wgidy*dst_cols+wgidx] = mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
|
||||
}
|
||||
}
|
||||
//#endif
|
||||
//#if defined (DOUBLE_SUPPORT)
|
||||
__kernel void dst_sum(int src_rows, int src_cols, int tile_height, int tile_width, int TILE_SIZE, __global double* sum, __global double* dst_m00,
|
||||
__global double* dst_m10,
|
||||
__global double* dst_m01,
|
||||
__global double* dst_m20,
|
||||
__global double* dst_m11,
|
||||
__global double* dst_m02,
|
||||
__global double* dst_m30,
|
||||
__global double* dst_m21,
|
||||
__global double* dst_m12,
|
||||
__global double* dst_m03)
|
||||
{
|
||||
int gidy = get_global_id(0);
|
||||
int gidx = get_global_id(1);
|
||||
int block_y = src_rows/tile_height;
|
||||
int block_x = src_cols/tile_width;
|
||||
int block_num;
|
||||
|
||||
if(src_rows > TILE_SIZE && src_rows % TILE_SIZE != 0)
|
||||
block_y ++;
|
||||
if(src_cols > TILE_SIZE && src_cols % TILE_SIZE != 0)
|
||||
block_x ++;
|
||||
block_num = block_y * block_x;
|
||||
__local double dst_sum[10][128];
|
||||
if(gidy<128-block_num)
|
||||
for(int i=0; i<10; i++)
|
||||
dst_sum[i][gidy+block_num]=0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(gidy<block_num)
|
||||
{
|
||||
dst_sum[0][gidy] = dst_m00[gidy];
|
||||
dst_sum[1][gidy] = dst_m10[gidy];
|
||||
dst_sum[2][gidy] = dst_m01[gidy];
|
||||
dst_sum[3][gidy] = dst_m20[gidy];
|
||||
dst_sum[4][gidy] = dst_m11[gidy];
|
||||
dst_sum[5][gidy] = dst_m02[gidy];
|
||||
dst_sum[6][gidy] = dst_m30[gidy];
|
||||
dst_sum[7][gidy] = dst_m21[gidy];
|
||||
dst_sum[8][gidy] = dst_m12[gidy];
|
||||
dst_sum[9][gidy] = dst_m03[gidy];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for(int lsize=64; lsize>0; lsize>>=1)
|
||||
{
|
||||
if(gidy<lsize)
|
||||
{
|
||||
int lsize2 = gidy + lsize;
|
||||
for(int i=0; i<10; i++)
|
||||
dst_sum[i][gidy] += dst_sum[i][lsize2];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if(gidy==0)
|
||||
for(int i=0; i<10; i++)
|
||||
sum[i] = dst_sum[i][0];
|
||||
}
|
||||
//#endif
|
||||
//#if defined (DOUBLE_SUPPORT)
|
||||
__kernel void CvMoments_D2(__global ushort8* src_data, int src_rows, int src_cols, int src_step, int tileSize_width, int tileSize_height,
|
||||
__global double* dst_m00,
|
||||
__global double* dst_m10,
|
||||
__global double* dst_m01,
|
||||
__global double* dst_m20,
|
||||
__global double* dst_m11,
|
||||
__global double* dst_m02,
|
||||
__global double* dst_m30,
|
||||
__global double* dst_m21,
|
||||
__global double* dst_m12,
|
||||
__global double* dst_m03,
|
||||
int dst_cols, int dst_step,
|
||||
int type, int depth, int cn, int coi, int binary, const int TILE_SIZE)
|
||||
{
|
||||
ushort tmp_coi[8]; // get the coi data
|
||||
ushort8 tmp[32];
|
||||
int VLEN_US = 8; // vector length of ushort
|
||||
int gidy = get_global_id(0);
|
||||
int gidx = get_global_id(1);
|
||||
int wgidy = get_group_id(0);
|
||||
int wgidx = get_group_id(1);
|
||||
int lidy = get_local_id(0);
|
||||
int lidx = get_local_id(1);
|
||||
int y = wgidy*TILE_SIZE; // real Y index of pixel
|
||||
int x = wgidx*TILE_SIZE; // real X index of pixel
|
||||
int kcn = (cn==2)?2:4;
|
||||
int rstep = min(src_step/2, TILE_SIZE);
|
||||
tileSize_height = min(TILE_SIZE, src_rows - y);
|
||||
tileSize_width = min(TILE_SIZE, src_cols -x);
|
||||
if(src_cols > TILE_SIZE && tileSize_width < TILE_SIZE)
|
||||
for(int i=tileSize_width; i < rstep; i++ )
|
||||
*((__global ushort*)src_data+(y+lidy)*src_step/2+x+i) = 0;
|
||||
if( coi > 0 )
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_US)
|
||||
{
|
||||
for(int j=0; j<VLEN_US; j++)
|
||||
tmp_coi[j] = *((__global ushort*)src_data+(y+lidy)*(int)src_step/2+(x+i+j)*kcn+coi-1);
|
||||
tmp[i/VLEN_US] = (ushort8)(tmp_coi[0],tmp_coi[1],tmp_coi[2],tmp_coi[3],tmp_coi[4],tmp_coi[5],tmp_coi[6],tmp_coi[7]);
|
||||
}
|
||||
else
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_US)
|
||||
tmp[i/VLEN_US] = *(src_data+(y+lidy)*src_step/(2*VLEN_US)+(x+i)/VLEN_US);
|
||||
ushort8 zero = (ushort8)(0);
|
||||
ushort8 full = (ushort8)(255);
|
||||
if( binary )
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_US)
|
||||
tmp[i/VLEN_US] = (tmp[i/VLEN_US]!=zero)?full:zero;
|
||||
double mom[10];
|
||||
__local long m[10][128];
|
||||
if(lidy == 0)
|
||||
for(int i=0; i<10; i++)
|
||||
for(int j=0; j<128; j++)
|
||||
m[i][j]=0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
long lm[10] = {0};
|
||||
int8 x0 = (int8)(0);
|
||||
int8 x1 = (int8)(0);
|
||||
int8 x2 = (int8)(0);
|
||||
long8 x3 = (long8)(0);
|
||||
for( int xt = 0 ; xt < tileSize_width; xt+=(VLEN_US) )
|
||||
{
|
||||
int8 v_xt = (int8)(xt, xt+1, xt+2, xt+3, xt+4, xt+5, xt+6, xt+7);
|
||||
int8 p = convert_int8(tmp[xt/VLEN_US]);
|
||||
int8 xp = v_xt * p, xxp = xp * v_xt;
|
||||
x0 += p;
|
||||
x1 += xp;
|
||||
x2 += xxp;
|
||||
x3 += convert_long8(xxp) *convert_long8(v_xt);
|
||||
}
|
||||
x0.s0 += x0.s1 + x0.s2 + x0.s3 + x0.s4 + x0.s5 + x0.s6 + x0.s7;
|
||||
x1.s0 += x1.s1 + x1.s2 + x1.s3 + x1.s4 + x1.s5 + x1.s6 + x1.s7;
|
||||
x2.s0 += x2.s1 + x2.s2 + x2.s3 + x2.s4 + x2.s5 + x2.s6 + x2.s7;
|
||||
x3.s0 += x3.s1 + x3.s2 + x3.s3 + x3.s4 + x3.s5 + x3.s6 + x3.s7;
|
||||
|
||||
int py = lidy * x0.s0, sy = lidy*lidy;
|
||||
int bheight = min(tileSize_height, TILE_SIZE/2);
|
||||
if(bheight >= TILE_SIZE/2&&lidy > bheight-1&&lidy < tileSize_height)
|
||||
{
|
||||
m[9][lidy-bheight] = ((long)py) * sy; // m03
|
||||
m[8][lidy-bheight] = ((long)x1.s0) * sy; // m12
|
||||
m[7][lidy-bheight] = ((long)x2.s0) * lidy; // m21
|
||||
m[6][lidy-bheight] = x3.s0; // m30
|
||||
m[5][lidy-bheight] = x0.s0 * sy; // m02
|
||||
m[4][lidy-bheight] = x1.s0 * lidy; // m11
|
||||
m[3][lidy-bheight] = x2.s0; // m20
|
||||
m[2][lidy-bheight] = py; // m01
|
||||
m[1][lidy-bheight] = x1.s0; // m10
|
||||
m[0][lidy-bheight] = x0.s0; // m00
|
||||
}
|
||||
else if(lidy < bheight)
|
||||
{
|
||||
lm[9] = ((long)py) * sy; // m03
|
||||
lm[8] = ((long)x1.s0) * sy; // m12
|
||||
lm[7] = ((long)x2.s0) * lidy; // m21
|
||||
lm[6] = x3.s0; // m30
|
||||
lm[5] = x0.s0 * sy; // m02
|
||||
lm[4] = x1.s0 * lidy; // m11
|
||||
lm[3] = x2.s0; // m20
|
||||
lm[2] = py; // m01
|
||||
lm[1] = x1.s0; // m10
|
||||
lm[0] = x0.s0; // m00
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for( int j = TILE_SIZE/2; j >= 1; j = j/2 )
|
||||
{
|
||||
if(lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
lm[i] = lm[i] + m[i][lidy];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(lidy >= j/2&&lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
m[i][lidy-j/2] = lm[i];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if(lidy == 0&&lidx == 0)
|
||||
{
|
||||
for(int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] = (double)lm[mt];
|
||||
|
||||
if(binary)
|
||||
{
|
||||
double s = 1./255;
|
||||
for( int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] *= s;
|
||||
}
|
||||
|
||||
double xm = x *mom[0], ym = y * mom[0];
|
||||
|
||||
// accumulate moments computed in each tile
|
||||
|
||||
// + m00 ( = m00' )
|
||||
dst_m00[wgidy*dst_cols+wgidx] = mom[0];
|
||||
|
||||
// + m10 ( = m10' + x*m00' )
|
||||
dst_m10[wgidy*dst_cols+wgidx] = mom[1] + xm;
|
||||
|
||||
// + m01 ( = m01' + y*m00' )
|
||||
dst_m01[wgidy*dst_cols+wgidx] = mom[2] + ym;
|
||||
|
||||
// + m20 ( = m20' + 2*x*m10' + x*x*m00' )
|
||||
dst_m20[wgidy*dst_cols+wgidx] = mom[3] + x * (mom[1] * 2 + xm);
|
||||
|
||||
// + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
|
||||
dst_m11[wgidy*dst_cols+wgidx] = mom[4] + x * (mom[2] + ym) + y * mom[1];
|
||||
|
||||
// + m02 ( = m02' + 2*y*m01' + y*y*m00' )
|
||||
dst_m02[wgidy*dst_cols+wgidx] = mom[5] + y * (mom[2] * 2 + ym);
|
||||
|
||||
// + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
|
||||
dst_m30[wgidy*dst_cols+wgidx] = mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
|
||||
|
||||
// + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
|
||||
dst_m21[wgidy*dst_cols+wgidx] = mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
|
||||
|
||||
// + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
|
||||
dst_m12[wgidy*dst_cols+wgidx] = mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
|
||||
|
||||
// + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
|
||||
dst_m03[wgidy*dst_cols+wgidx] = mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
|
||||
}
|
||||
}
|
||||
//#endif
|
||||
//#if defined (DOUBLE_SUPPORT)
|
||||
__kernel void CvMoments_D3(__global short8* src_data, int src_rows, int src_cols, int src_step, int tileSize_width, int tileSize_height,
|
||||
__global double* dst_m00,
|
||||
__global double* dst_m10,
|
||||
__global double* dst_m01,
|
||||
__global double* dst_m20,
|
||||
__global double* dst_m11,
|
||||
__global double* dst_m02,
|
||||
__global double* dst_m30,
|
||||
__global double* dst_m21,
|
||||
__global double* dst_m12,
|
||||
__global double* dst_m03,
|
||||
int dst_cols, int dst_step,
|
||||
int type, int depth, int cn, int coi, int binary, const int TILE_SIZE)
|
||||
{
|
||||
short tmp_coi[8]; // get the coi data
|
||||
short8 tmp[32];
|
||||
int VLEN_S =8; // vector length of short
|
||||
int gidy = get_global_id(0);
|
||||
int gidx = get_global_id(1);
|
||||
int wgidy = get_group_id(0);
|
||||
int wgidx = get_group_id(1);
|
||||
int lidy = get_local_id(0);
|
||||
int lidx = get_local_id(1);
|
||||
int y = wgidy*TILE_SIZE; // real Y index of pixel
|
||||
int x = wgidx*TILE_SIZE; // real X index of pixel
|
||||
int kcn = (cn==2)?2:4;
|
||||
int rstep = min(src_step/2, TILE_SIZE);
|
||||
tileSize_height = min(TILE_SIZE, src_rows - y);
|
||||
tileSize_width = min(TILE_SIZE, src_cols -x);
|
||||
if(tileSize_width < TILE_SIZE)
|
||||
for(int i = tileSize_width; i < rstep; i++ )
|
||||
*((__global short*)src_data+(y+lidy)*src_step/2+x+i) = 0;
|
||||
if( coi > 0 )
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_S)
|
||||
{
|
||||
for(int j=0; j<VLEN_S; j++)
|
||||
tmp_coi[j] = *((__global short*)src_data+(y+lidy)*src_step/2+(x+i+j)*kcn+coi-1);
|
||||
tmp[i/VLEN_S] = (short8)(tmp_coi[0],tmp_coi[1],tmp_coi[2],tmp_coi[3],tmp_coi[4],tmp_coi[5],tmp_coi[6],tmp_coi[7]);
|
||||
}
|
||||
else
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_S)
|
||||
tmp[i/VLEN_S] = *(src_data+(y+lidy)*src_step/(2*VLEN_S)+(x+i)/VLEN_S);
|
||||
short8 zero = (short8)(0);
|
||||
short8 full = (short8)(255);
|
||||
if( binary )
|
||||
for(int i=0; i < tileSize_width; i+=(VLEN_S))
|
||||
tmp[i/VLEN_S] = (tmp[i/VLEN_S]!=zero)?full:zero;
|
||||
|
||||
double mom[10];
|
||||
__local long m[10][128];
|
||||
if(lidy == 0)
|
||||
for(int i=0; i<10; i++)
|
||||
for(int j=0; j<128; j++)
|
||||
m[i][j]=0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
long lm[10] = {0};
|
||||
int8 x0 = (int8)(0);
|
||||
int8 x1 = (int8)(0);
|
||||
int8 x2 = (int8)(0);
|
||||
long8 x3 = (long8)(0);
|
||||
for( int xt = 0 ; xt < tileSize_width; xt+= (VLEN_S))
|
||||
{
|
||||
int8 v_xt = (int8)(xt, xt+1, xt+2, xt+3, xt+4, xt+5, xt+6, xt+7);
|
||||
int8 p = convert_int8(tmp[xt/VLEN_S]);
|
||||
int8 xp = v_xt * p, xxp = xp * v_xt;
|
||||
x0 += p;
|
||||
x1 += xp;
|
||||
x2 += xxp;
|
||||
x3 += convert_long8(xxp) * convert_long8(v_xt);
|
||||
}
|
||||
x0.s0 += x0.s1 + x0.s2 + x0.s3 + x0.s4 + x0.s5 + x0.s6 + x0.s7;
|
||||
x1.s0 += x1.s1 + x1.s2 + x1.s3 + x1.s4 + x1.s5 + x1.s6 + x1.s7;
|
||||
x2.s0 += x2.s1 + x2.s2 + x2.s3 + x2.s4 + x2.s5 + x2.s6 + x2.s7;
|
||||
x3.s0 += x3.s1 + x3.s2 + x3.s3 + x3.s4 + x3.s5 + x3.s6 + x3.s7;
|
||||
|
||||
int py = lidy * x0.s0, sy = lidy*lidy;
|
||||
int bheight = min(tileSize_height, TILE_SIZE/2);
|
||||
if(bheight >= TILE_SIZE/2&&lidy > bheight-1&&lidy < tileSize_height)
|
||||
{
|
||||
m[9][lidy-bheight] = ((long)py) * sy; // m03
|
||||
m[8][lidy-bheight] = ((long)x1.s0) * sy; // m12
|
||||
m[7][lidy-bheight] = ((long)x2.s0) * lidy; // m21
|
||||
m[6][lidy-bheight] = x3.s0; // m30
|
||||
m[5][lidy-bheight] = x0.s0 * sy; // m02
|
||||
m[4][lidy-bheight] = x1.s0 * lidy; // m11
|
||||
m[3][lidy-bheight] = x2.s0; // m20
|
||||
m[2][lidy-bheight] = py; // m01
|
||||
m[1][lidy-bheight] = x1.s0; // m10
|
||||
m[0][lidy-bheight] = x0.s0; // m00
|
||||
}
|
||||
else if(lidy < bheight)
|
||||
{
|
||||
lm[9] = ((long)py) * sy; // m03
|
||||
lm[8] = ((long)(x1.s0)) * sy; // m12
|
||||
lm[7] = ((long)(x2.s0)) * lidy; // m21
|
||||
lm[6] = x3.s0; // m30
|
||||
lm[5] = x0.s0 * sy; // m02
|
||||
lm[4] = x1.s0 * lidy; // m11
|
||||
lm[3] = x2.s0; // m20
|
||||
lm[2] = py; // m01
|
||||
lm[1] = x1.s0; // m10
|
||||
lm[0] = x0.s0; // m00
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for( int j = TILE_SIZE/2; j >=1; j = j/2 )
|
||||
{
|
||||
if(lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
lm[i] = lm[i] + m[i][lidy];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(lidy >= j/2&&lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
m[i][lidy-j/2] = lm[i];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if(lidy ==0 &&lidx ==0)
|
||||
{
|
||||
for(int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] = (double)lm[mt];
|
||||
|
||||
if(binary)
|
||||
{
|
||||
double s = 1./255;
|
||||
for( int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] *= s;
|
||||
}
|
||||
|
||||
double xm = x * mom[0], ym = y*mom[0];
|
||||
|
||||
// accumulate moments computed in each tile
|
||||
|
||||
// + m00 ( = m00' )
|
||||
dst_m00[wgidy*dst_cols+wgidx] = mom[0];
|
||||
|
||||
// + m10 ( = m10' + x*m00' )
|
||||
dst_m10[wgidy*dst_cols+wgidx] = mom[1] + xm;
|
||||
|
||||
// + m01 ( = m01' + y*m00' )
|
||||
dst_m01[wgidy*dst_cols+wgidx] = mom[2] + ym;
|
||||
|
||||
// + m20 ( = m20' + 2*x*m10' + x*x*m00' )
|
||||
dst_m20[wgidy*dst_cols+wgidx] = mom[3] + x * (mom[1] * 2 + xm);
|
||||
|
||||
// + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
|
||||
dst_m11[wgidy*dst_cols+wgidx] = mom[4] + x * (mom[2] + ym) + y * mom[1];
|
||||
|
||||
// + m02 ( = m02' + 2*y*m01' + y*y*m00' )
|
||||
dst_m02[wgidy*dst_cols+wgidx] = mom[5] + y * (mom[2] * 2 + ym);
|
||||
|
||||
// + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
|
||||
dst_m30[wgidy*dst_cols+wgidx] = mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
|
||||
|
||||
// + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
|
||||
dst_m21[wgidy*dst_cols+wgidx] = mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
|
||||
|
||||
// + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
|
||||
dst_m12[wgidy*dst_cols+wgidx] = mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
|
||||
|
||||
// + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
|
||||
dst_m03[wgidy*dst_cols+wgidx] = mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
|
||||
}
|
||||
}
|
||||
//#endif
|
||||
//#if defined (DOUBLE_SUPPORT)
|
||||
__kernel void CvMoments_D5( __global float* src_data, int src_rows, int src_cols, int src_step, int tileSize_width, int tileSize_height,
|
||||
__global double* dst_m00,
|
||||
__global double* dst_m10,
|
||||
__global double* dst_m01,
|
||||
__global double* dst_m20,
|
||||
__global double* dst_m11,
|
||||
__global double* dst_m02,
|
||||
__global double* dst_m30,
|
||||
__global double* dst_m21,
|
||||
__global double* dst_m12,
|
||||
__global double* dst_m03,
|
||||
int dst_cols, int dst_step,
|
||||
int type, int depth, int cn, int coi, int binary, const int TILE_SIZE)
|
||||
{
|
||||
float tmp_coi[4]; // get the coi data
|
||||
float4 tmp[64] ;
|
||||
int VLEN_F = 4; // vector length of float
|
||||
int gidy = get_global_id(0);
|
||||
int gidx = get_global_id(1);
|
||||
int wgidy = get_group_id(0);
|
||||
int wgidx = get_group_id(1);
|
||||
int lidy = get_local_id(0);
|
||||
int lidx = get_local_id(1);
|
||||
int y = wgidy*TILE_SIZE; // real Y index of pixel
|
||||
int x = wgidx*TILE_SIZE; // real X index of pixel
|
||||
int kcn = (cn==2)?2:4;
|
||||
int rstep = min(src_step/4, TILE_SIZE);
|
||||
tileSize_height = min(TILE_SIZE, src_rows - y);
|
||||
tileSize_width = min(TILE_SIZE, src_cols -x);
|
||||
if(tileSize_width < TILE_SIZE)
|
||||
for(int i = tileSize_width; i < rstep; i++ )
|
||||
*((__global float*)src_data+(y+lidy)*src_step/4+x+i) = 0;
|
||||
if( coi > 0 )
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_F)
|
||||
{
|
||||
for(int j=0; j<4; j++)
|
||||
tmp_coi[j] = *(src_data+(y+lidy)*src_step/4+(x+i+j)*kcn+coi-1);
|
||||
tmp[i/VLEN_F] = (float4)(tmp_coi[0],tmp_coi[1],tmp_coi[2],tmp_coi[3]);
|
||||
}
|
||||
else
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_F)
|
||||
tmp[i/VLEN_F] = (float4)(*(src_data+(y+lidy)*src_step/4+x+i),*(src_data+(y+lidy)*src_step/4+x+i+1),*(src_data+(y+lidy)*src_step/4+x+i+2),*(src_data+(y+lidy)*src_step/4+x+i+3));
|
||||
float4 zero = (float4)(0);
|
||||
float4 full = (float4)(255);
|
||||
if( binary )
|
||||
for(int i=0; i < tileSize_width; i+=4)
|
||||
tmp[i/VLEN_F] = (tmp[i/VLEN_F]!=zero)?full:zero;
|
||||
double mom[10];
|
||||
__local double m[10][128];
|
||||
if(lidy == 0)
|
||||
for(int i = 0; i < 10; i ++)
|
||||
for(int j = 0; j < 128; j ++)
|
||||
m[i][j] = 0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
double lm[10] = {0};
|
||||
double4 x0 = (double4)(0);
|
||||
double4 x1 = (double4)(0);
|
||||
double4 x2 = (double4)(0);
|
||||
double4 x3 = (double4)(0);
|
||||
for( int xt = 0 ; xt < tileSize_width; xt+=VLEN_F )
|
||||
{
|
||||
double4 v_xt = (double4)(xt, xt+1, xt+2, xt+3);
|
||||
double4 p = convert_double4(tmp[xt/VLEN_F]);
|
||||
double4 xp = v_xt * p, xxp = xp * v_xt;
|
||||
x0 += p;
|
||||
x1 += xp;
|
||||
x2 += xxp;
|
||||
x3 += xxp * v_xt;
|
||||
}
|
||||
x0.s0 += x0.s1 + x0.s2 + x0.s3;
|
||||
x1.s0 += x1.s1 + x1.s2 + x1.s3;
|
||||
x2.s0 += x2.s1 + x2.s2 + x2.s3;
|
||||
x3.s0 += x3.s1 + x3.s2 + x3.s3;
|
||||
/*
|
||||
double py = lidy * x0.s0, sy = lidy*lidy;
|
||||
int bheight = min(tileSize_height, TILE_SIZE/2);
|
||||
if(bheight >= TILE_SIZE/2&&lidy > bheight-1&&lidy < tileSize_height)
|
||||
{
|
||||
m[9][lidy-bheight] = ((double)py) * sy; // m03
|
||||
m[8][lidy-bheight] = ((double)x1.s0) * sy; // m12
|
||||
m[7][lidy-bheight] = ((double)x2.s0) * lidy; // m21
|
||||
m[6][lidy-bheight] = x3.s0; // m30
|
||||
m[5][lidy-bheight] = x0.s0 * sy; // m02
|
||||
m[4][lidy-bheight] = x1.s0 * lidy; // m11
|
||||
m[3][lidy-bheight] = x2.s0; // m20
|
||||
m[2][lidy-bheight] = py; // m01
|
||||
m[1][lidy-bheight] = x1.s0; // m10
|
||||
m[0][lidy-bheight] = x0.s0; // m00
|
||||
}
|
||||
else if(lidy < bheight)
|
||||
{
|
||||
lm[9] = ((double)py) * sy; // m03
|
||||
lm[8] = ((double)x1.s0) * sy; // m12
|
||||
lm[7] = ((double)x2.s0) * lidy; // m21
|
||||
lm[6] = x3.s0; // m30
|
||||
lm[5] = x0.s0 * sy; // m02
|
||||
lm[4] = x1.s0 * lidy; // m11
|
||||
lm[3] = x2.s0; // m20
|
||||
lm[2] = py; // m01
|
||||
lm[1] = x1.s0; // m10
|
||||
lm[0] = x0.s0; // m00
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for( int j = TILE_SIZE/2; j >= 1; j = j/2 )
|
||||
{
|
||||
if(lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
lm[i] = lm[i] + m[i][lidy];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(lidy >= j/2&&lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
m[i][lidy-j/2] = lm[i];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if(lidy == 0&&lidx == 0)
|
||||
{
|
||||
for(int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] = (double)lm[mt];
|
||||
|
||||
if(binary)
|
||||
{
|
||||
double s = 1./255;
|
||||
for( int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] *= s;
|
||||
}
|
||||
|
||||
double xm = x * mom[0], ym = y * mom[0];
|
||||
|
||||
// accumulate moments computed in each tile
|
||||
|
||||
// + m00 ( = m00' )
|
||||
dst_m00[wgidy*dst_cols+wgidx]= mom[0];
|
||||
|
||||
// + m10 ( = m10' + x*m00' )
|
||||
dst_m10[wgidy*dst_cols+wgidx] = mom[1] + xm;
|
||||
|
||||
// + m01 ( = m01' + y*m00' )
|
||||
dst_m01[wgidy*dst_cols+wgidx] = mom[2] + ym;
|
||||
|
||||
// + m20 ( = m20' + 2*x*m10' + x*x*m00' )
|
||||
dst_m20[wgidy*dst_cols+wgidx] = mom[3] + x * (mom[1] * 2 + xm);
|
||||
|
||||
// + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
|
||||
dst_m11[wgidy*dst_cols+wgidx] = mom[4] + x * (mom[2] + ym) + y * mom[1];
|
||||
|
||||
// + m02 ( = m02' + 2*y*m01' + y*y*m00' )
|
||||
dst_m02[wgidy*dst_cols+wgidx]= mom[5] + y * (mom[2] * 2 + ym);
|
||||
|
||||
// + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
|
||||
dst_m30[wgidy*dst_cols+wgidx]= mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
|
||||
|
||||
// + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
|
||||
dst_m21[wgidy*dst_cols+wgidx] = mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
|
||||
|
||||
// + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
|
||||
dst_m12[wgidy*dst_cols+wgidx] = mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
|
||||
|
||||
// + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
|
||||
dst_m03[wgidy*dst_cols+wgidx]= mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
|
||||
}*/
|
||||
}
|
||||
//#endif
|
||||
//#if defined (DOUBLE_SUPPORT)
|
||||
__kernel void CvMoments_D6(__global double* src_data, int src_rows, int src_cols, int src_step, int tileSize_width, int tileSize_height,
|
||||
__global double* dst_m00,
|
||||
__global double* dst_m10,
|
||||
__global double* dst_m01,
|
||||
__global double* dst_m20,
|
||||
__global double* dst_m11,
|
||||
__global double* dst_m02,
|
||||
__global double* dst_m30,
|
||||
__global double* dst_m21,
|
||||
__global double* dst_m12,
|
||||
__global double* dst_m03,
|
||||
int dst_cols, int dst_step,
|
||||
int type, int depth, int cn, int coi, int binary, const int TILE_SIZE)
|
||||
{
|
||||
double tmp_coi[4]; // get the coi data
|
||||
double4 tmp[64];
|
||||
int VLEN_D = 4; // length of vetor
|
||||
int gidy = get_global_id(0);
|
||||
int gidx = get_global_id(1);
|
||||
int wgidy = get_group_id(0);
|
||||
int wgidx = get_group_id(1);
|
||||
int lidy = get_local_id(0);
|
||||
int lidx = get_local_id(1);
|
||||
int y = wgidy*TILE_SIZE; // real Y index of pixel
|
||||
int x = wgidx*TILE_SIZE; // real X index of pixel
|
||||
int kcn = (cn==2)?2:4;
|
||||
int rstep = min(src_step/8, TILE_SIZE);
|
||||
tileSize_height = min(TILE_SIZE, src_rows - y);
|
||||
tileSize_width = min(TILE_SIZE, src_cols - x);
|
||||
|
||||
if(tileSize_width < TILE_SIZE)
|
||||
for(int i = tileSize_width; i < rstep; i++ )
|
||||
*((__global double*)src_data+(y+lidy)*src_step/8+x+i) = 0;
|
||||
if( coi > 0 )
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_D)
|
||||
{
|
||||
for(int j=0; j<4; j++)
|
||||
tmp_coi[j] = *(src_data+(y+lidy)*src_step/8+(x+i+j)*kcn+coi-1);
|
||||
tmp[i/VLEN_D] = (double4)(tmp_coi[0],tmp_coi[1],tmp_coi[2],tmp_coi[3]);
|
||||
}
|
||||
else
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_D)
|
||||
tmp[i/VLEN_D] = (double4)(*(src_data+(y+lidy)*src_step/8+x+i),*(src_data+(y+lidy)*src_step/8+x+i+1),*(src_data+(y+lidy)*src_step/8+x+i+2),*(src_data+(y+lidy)*src_step/8+x+i+3));
|
||||
double4 zero = (double4)(0);
|
||||
double4 full = (double4)(255);
|
||||
if( binary )
|
||||
for(int i=0; i < tileSize_width; i+=VLEN_D)
|
||||
tmp[i/VLEN_D] = (tmp[i/VLEN_D]!=zero)?full:zero;
|
||||
double mom[10];
|
||||
__local double m[10][128];
|
||||
if(lidy == 0)
|
||||
for(int i=0; i<10; i++)
|
||||
for(int j=0; j<128; j++)
|
||||
m[i][j]=0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
double lm[10] = {0};
|
||||
double4 x0 = (double4)(0);
|
||||
double4 x1 = (double4)(0);
|
||||
double4 x2 = (double4)(0);
|
||||
double4 x3 = (double4)(0);
|
||||
for( int xt = 0 ; xt < tileSize_width; xt+=VLEN_D )
|
||||
{
|
||||
double4 v_xt = (double4)(xt, xt+1, xt+2, xt+3);
|
||||
double4 p = tmp[xt/VLEN_D];
|
||||
double4 xp = v_xt * p, xxp = xp * v_xt;
|
||||
x0 += p;
|
||||
x1 += xp;
|
||||
x2 += xxp;
|
||||
x3 += xxp *v_xt;
|
||||
}
|
||||
x0.s0 += x0.s1 + x0.s2 + x0.s3;
|
||||
x1.s0 += x1.s1 + x1.s2 + x1.s3;
|
||||
x2.s0 += x2.s1 + x2.s2 + x2.s3;
|
||||
x3.s0 += x3.s1 + x3.s2 + x3.s3;
|
||||
|
||||
double py = lidy * x0.s0, sy = lidy*lidy;
|
||||
int bheight = min(tileSize_height, TILE_SIZE/2);
|
||||
if(bheight >= TILE_SIZE/2&&lidy > bheight-1&&lidy < tileSize_height)
|
||||
{
|
||||
m[9][lidy-bheight] = ((double)py) * sy; // m03
|
||||
m[8][lidy-bheight] = ((double)x1.s0) * sy; // m12
|
||||
m[7][lidy-bheight] = ((double)x2.s0) * lidy; // m21
|
||||
m[6][lidy-bheight] = x3.s0; // m30
|
||||
m[5][lidy-bheight] = x0.s0 * sy; // m02
|
||||
m[4][lidy-bheight] = x1.s0 * lidy; // m11
|
||||
m[3][lidy-bheight] = x2.s0; // m20
|
||||
m[2][lidy-bheight] = py; // m01
|
||||
m[1][lidy-bheight] = x1.s0; // m10
|
||||
m[0][lidy-bheight] = x0.s0; // m00
|
||||
}
|
||||
|
||||
else if(lidy < bheight)
|
||||
{
|
||||
lm[9] = ((double)py) * sy; // m03
|
||||
lm[8] = ((double)x1.s0) * sy; // m12
|
||||
lm[7] = ((double)x2.s0) * lidy; // m21
|
||||
lm[6] = x3.s0; // m30
|
||||
lm[5] = x0.s0 * sy; // m02
|
||||
lm[4] = x1.s0 * lidy; // m11
|
||||
lm[3] = x2.s0; // m20
|
||||
lm[2] = py; // m01
|
||||
lm[1] = x1.s0; // m10
|
||||
lm[0] = x0.s0; // m00
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for( int j = TILE_SIZE/2; j >= 1; j = j/2 )
|
||||
{
|
||||
if(lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
lm[i] = lm[i] + m[i][lidy];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(lidy >= j/2&&lidy < j)
|
||||
for( int i = 0; i < 10; i++ )
|
||||
m[i][lidy-j/2] = lm[i];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
if(lidy == 0&&lidx == 0)
|
||||
{
|
||||
for( int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] = (double)lm[mt];
|
||||
if(binary)
|
||||
{
|
||||
double s = 1./255;
|
||||
for( int mt = 0; mt < 10; mt++ )
|
||||
mom[mt] *= s;
|
||||
}
|
||||
|
||||
double xm = x * mom[0], ym = y * mom[0];
|
||||
|
||||
// accumulate moments computed in each tile
|
||||
|
||||
// + m00 ( = m00' )
|
||||
dst_m00[wgidy*dst_cols+wgidx] = mom[0];
|
||||
|
||||
// + m10 ( = m10' + x*m00' )
|
||||
dst_m10[wgidy*dst_cols+wgidx] = mom[1] + xm;
|
||||
|
||||
// + m01 ( = m01' + y*m00' )
|
||||
dst_m01[wgidy*dst_cols+wgidx] = mom[2] + ym;
|
||||
|
||||
// + m20 ( = m20' + 2*x*m10' + x*x*m00' )
|
||||
dst_m20[wgidy*dst_cols+wgidx] = mom[3] + x * (mom[1] * 2 + xm);
|
||||
|
||||
// + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
|
||||
dst_m11[wgidy*dst_cols+wgidx] = mom[4] + x * (mom[2] + ym) + y * mom[1];
|
||||
|
||||
// + m02 ( = m02' + 2*y*m01' + y*y*m00' )
|
||||
dst_m02[wgidy*dst_cols+wgidx] = mom[5] + y * (mom[2] * 2 + ym);
|
||||
|
||||
// + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
|
||||
dst_m30[wgidy*dst_cols+wgidx] = mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
|
||||
|
||||
// + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
|
||||
dst_m21[wgidy*dst_cols+wgidx] = mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
|
||||
|
||||
// + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
|
||||
dst_m12[wgidy*dst_cols+wgidx] = mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
|
||||
|
||||
// + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
|
||||
dst_m03[wgidy*dst_cols+wgidx] = mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
|
||||
}
|
||||
}
|
||||
//#endif
|
||||
@@ -43,10 +43,39 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#pragma OPENCL EXTENSION cl_amd_printf : enable
|
||||
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
|
||||
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
|
||||
|
||||
// specialized for non-image2d_t supported platform, intel HD4000, for example
|
||||
#ifdef DISABLE_IMAGE2D
|
||||
#define IMAGE_INT32 __global uint *
|
||||
#define IMAGE_INT8 __global uchar *
|
||||
#else
|
||||
#define IMAGE_INT32 image2d_t
|
||||
#define IMAGE_INT8 image2d_t
|
||||
#endif
|
||||
|
||||
uint read_sumTex(IMAGE_INT32 img, sampler_t sam, int2 coord, int rows, int cols, int elemPerRow)
|
||||
{
|
||||
#ifdef DISABLE_IMAGE2D
|
||||
int x = clamp(coord.x, 0, cols);
|
||||
int y = clamp(coord.y, 0, rows);
|
||||
return img[elemPerRow * y + x];
|
||||
#else
|
||||
return read_imageui(img, sam, coord).x;
|
||||
#endif
|
||||
}
|
||||
uchar read_imgTex(IMAGE_INT8 img, sampler_t sam, float2 coord, int rows, int cols, int elemPerRow)
|
||||
{
|
||||
#ifdef DISABLE_IMAGE2D
|
||||
int x = clamp(convert_int_rte(coord.x), 0, cols - 1);
|
||||
int y = clamp(convert_int_rte(coord.y), 0, rows - 1);
|
||||
return img[elemPerRow * y + x];
|
||||
#else
|
||||
return (uchar)read_imageui(img, sam, coord).x;
|
||||
#endif
|
||||
}
|
||||
|
||||
// dynamically change the precision used for floating type
|
||||
|
||||
#if defined (__ATI__) || defined (__NVIDIA__)
|
||||
@@ -58,14 +87,24 @@
|
||||
// Image read mode
|
||||
__constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
|
||||
|
||||
#ifndef FLT_EPSILON
|
||||
#define FLT_EPSILON (1e-15)
|
||||
#define CV_PI_F 3.14159265f
|
||||
#endif
|
||||
|
||||
#ifndef CV_PI_F
|
||||
#define CV_PI_F 3.14159265f
|
||||
#endif
|
||||
|
||||
// Use integral image to calculate haar wavelets.
|
||||
// N = 2
|
||||
// for simple haar paatern
|
||||
float icvCalcHaarPatternSum_2(image2d_t sumTex, __constant float src[2][5], int oldSize, int newSize, int y, int x)
|
||||
float icvCalcHaarPatternSum_2(
|
||||
IMAGE_INT32 sumTex,
|
||||
__constant float src[2][5],
|
||||
int oldSize,
|
||||
int newSize,
|
||||
int y, int x,
|
||||
int rows, int cols, int elemPerRow)
|
||||
{
|
||||
|
||||
float ratio = (float)newSize / oldSize;
|
||||
@@ -81,11 +120,10 @@ float icvCalcHaarPatternSum_2(image2d_t sumTex, __constant float src[2][5], int
|
||||
int dy2 = convert_int_rte(ratio * src[k][3]);
|
||||
|
||||
F t = 0;
|
||||
t += read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy1)).x;
|
||||
t -= read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy2)).x;
|
||||
t -= read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy1)).x;
|
||||
t += read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy2)).x;
|
||||
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
|
||||
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
|
||||
}
|
||||
|
||||
@@ -93,7 +131,13 @@ float icvCalcHaarPatternSum_2(image2d_t sumTex, __constant float src[2][5], int
|
||||
}
|
||||
|
||||
// N = 3
|
||||
float icvCalcHaarPatternSum_3(image2d_t sumTex, __constant float src[3][5], int oldSize, int newSize, int y, int x)
|
||||
float icvCalcHaarPatternSum_3(
|
||||
IMAGE_INT32 sumTex,
|
||||
__constant float src[2][5],
|
||||
int oldSize,
|
||||
int newSize,
|
||||
int y, int x,
|
||||
int rows, int cols, int elemPerRow)
|
||||
{
|
||||
|
||||
float ratio = (float)newSize / oldSize;
|
||||
@@ -109,11 +153,10 @@ float icvCalcHaarPatternSum_3(image2d_t sumTex, __constant float src[3][5], int
|
||||
int dy2 = convert_int_rte(ratio * src[k][3]);
|
||||
|
||||
F t = 0;
|
||||
t += read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy1)).x;
|
||||
t -= read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy2)).x;
|
||||
t -= read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy1)).x;
|
||||
t += read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy2)).x;
|
||||
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
|
||||
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
|
||||
}
|
||||
|
||||
@@ -121,7 +164,13 @@ float icvCalcHaarPatternSum_3(image2d_t sumTex, __constant float src[3][5], int
|
||||
}
|
||||
|
||||
// N = 4
|
||||
float icvCalcHaarPatternSum_4(image2d_t sumTex, __constant float src[4][5], int oldSize, int newSize, int y, int x)
|
||||
float icvCalcHaarPatternSum_4(
|
||||
IMAGE_INT32 sumTex,
|
||||
__constant float src[2][5],
|
||||
int oldSize,
|
||||
int newSize,
|
||||
int y, int x,
|
||||
int rows, int cols, int elemPerRow)
|
||||
{
|
||||
|
||||
float ratio = (float)newSize / oldSize;
|
||||
@@ -137,11 +186,10 @@ float icvCalcHaarPatternSum_4(image2d_t sumTex, __constant float src[4][5], int
|
||||
int dy2 = convert_int_rte(ratio * src[k][3]);
|
||||
|
||||
F t = 0;
|
||||
t += read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy1)).x;
|
||||
t -= read_imageui(sumTex, sampler, (int2)(x + dx1, y + dy2)).x;
|
||||
t -= read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy1)).x;
|
||||
t += read_imageui(sumTex, sampler, (int2)(x + dx2, y + dy2)).x;
|
||||
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
|
||||
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
|
||||
}
|
||||
|
||||
@@ -172,7 +220,7 @@ __inline int calcSize(int octave, int layer)
|
||||
|
||||
//calculate targeted layer per-pixel determinant and trace with an integral image
|
||||
__kernel void icvCalcLayerDetAndTrace(
|
||||
image2d_t sumTex, // input integral image
|
||||
IMAGE_INT32 sumTex, // input integral image
|
||||
__global float * det, // output Determinant
|
||||
__global float * trace, // output trace
|
||||
int det_step, // the step of det in bytes
|
||||
@@ -181,11 +229,13 @@ __kernel void icvCalcLayerDetAndTrace(
|
||||
int c_img_cols,
|
||||
int c_nOctaveLayers,
|
||||
int c_octave,
|
||||
int c_layer_rows
|
||||
int c_layer_rows,
|
||||
int sumTex_step
|
||||
)
|
||||
{
|
||||
det_step /= sizeof(*det);
|
||||
trace_step /= sizeof(*trace);
|
||||
sumTex_step/= sizeof(uint);
|
||||
// Determine the indices
|
||||
const int gridDim_y = get_num_groups(1) / (c_nOctaveLayers + 2);
|
||||
const int blockIdx_y = get_group_id(1) % gridDim_y;
|
||||
@@ -205,9 +255,9 @@ __kernel void icvCalcLayerDetAndTrace(
|
||||
|
||||
if (size <= c_img_rows && size <= c_img_cols && i < samples_i && j < samples_j)
|
||||
{
|
||||
const float dx = icvCalcHaarPatternSum_3(sumTex, c_DX , 9, size, i << c_octave, j << c_octave);
|
||||
const float dy = icvCalcHaarPatternSum_3(sumTex, c_DY , 9, size, i << c_octave, j << c_octave);
|
||||
const float dxy = icvCalcHaarPatternSum_4(sumTex, c_DXY, 9, size, i << c_octave, j << c_octave);
|
||||
const float dx = icvCalcHaarPatternSum_3(sumTex, c_DX , 9, size, i << c_octave, j << c_octave, c_img_rows, c_img_cols, sumTex_step);
|
||||
const float dy = icvCalcHaarPatternSum_3(sumTex, c_DY , 9, size, i << c_octave, j << c_octave, c_img_rows, c_img_cols, sumTex_step);
|
||||
const float dxy = icvCalcHaarPatternSum_4(sumTex, c_DXY, 9, size, i << c_octave, j << c_octave, c_img_rows, c_img_cols, sumTex_step);
|
||||
|
||||
det [j + margin + det_step * (layer * c_layer_rows + i + margin)] = dx * dy - 0.81f * dxy * dxy;
|
||||
trace[j + margin + trace_step * (layer * c_layer_rows + i + margin)] = dx + dy;
|
||||
@@ -220,7 +270,7 @@ __kernel void icvCalcLayerDetAndTrace(
|
||||
|
||||
__constant float c_DM[5] = {0, 0, 9, 9, 1};
|
||||
|
||||
bool within_check(image2d_t maskSumTex, int sum_i, int sum_j, int size)
|
||||
bool within_check(IMAGE_INT32 maskSumTex, int sum_i, int sum_j, int size, int rows, int cols, int step)
|
||||
{
|
||||
float ratio = (float)size / 9.0f;
|
||||
|
||||
@@ -233,10 +283,10 @@ bool within_check(image2d_t maskSumTex, int sum_i, int sum_j, int size)
|
||||
|
||||
float t = 0;
|
||||
|
||||
t += read_imageui(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy1)).x;
|
||||
t -= read_imageui(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy2)).x;
|
||||
t -= read_imageui(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy1)).x;
|
||||
t += read_imageui(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy2)).x;
|
||||
t += read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy1), rows, cols, step);
|
||||
t -= read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx1, sum_i + dy2), rows, cols, step);
|
||||
t -= read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy1), rows, cols, step);
|
||||
t += read_sumTex(maskSumTex, sampler, (int2)(sum_j + dx2, sum_i + dy2), rows, cols, step);
|
||||
|
||||
d += t * c_DM[4] / ((dx2 - dx1) * (dy2 - dy1));
|
||||
|
||||
@@ -261,7 +311,8 @@ __kernel
|
||||
int c_layer_cols,
|
||||
int c_max_candidates,
|
||||
float c_hessianThreshold,
|
||||
image2d_t maskSumTex
|
||||
IMAGE_INT32 maskSumTex,
|
||||
int mask_step
|
||||
)
|
||||
{
|
||||
volatile __local float N9[768]; // threads.x * threads.y * 3
|
||||
@@ -269,6 +320,7 @@ __kernel
|
||||
det_step /= sizeof(*det);
|
||||
trace_step /= sizeof(*trace);
|
||||
maxCounter += counter_offset;
|
||||
mask_step /= sizeof(uint);
|
||||
|
||||
// Determine the indices
|
||||
const int gridDim_y = get_num_groups(1) / c_nOctaveLayers;
|
||||
@@ -321,7 +373,7 @@ __kernel
|
||||
const int sum_i = (i - ((size >> 1) >> c_octave)) << c_octave;
|
||||
const int sum_j = (j - ((size >> 1) >> c_octave)) << c_octave;
|
||||
|
||||
if (within_check(maskSumTex, sum_i, sum_j, size))
|
||||
if (within_check(maskSumTex, sum_i, sum_j, size, c_img_rows, c_img_cols, mask_step))
|
||||
{
|
||||
// Check to see if we have a max (in its 26 neighbours)
|
||||
const bool condmax = val0 > N9[localLin - 1 - get_local_size(0) - zoff]
|
||||
@@ -704,14 +756,16 @@ void reduce_32_sum(volatile __local float * data, float partial_reduction, int
|
||||
|
||||
__kernel
|
||||
void icvCalcOrientation(
|
||||
image2d_t sumTex,
|
||||
IMAGE_INT32 sumTex,
|
||||
__global float * keypoints,
|
||||
int keypoints_step,
|
||||
int c_img_rows,
|
||||
int c_img_cols
|
||||
int c_img_cols,
|
||||
int sum_step
|
||||
)
|
||||
{
|
||||
keypoints_step /= sizeof(*keypoints);
|
||||
sum_step /= sizeof(uint);
|
||||
__global float* featureX = keypoints + X_ROW * keypoints_step;
|
||||
__global float* featureY = keypoints + Y_ROW * keypoints_step;
|
||||
__global float* featureSize = keypoints + SIZE_ROW * keypoints_step;
|
||||
@@ -754,8 +808,8 @@ __kernel
|
||||
if (y >= 0 && y < (c_img_rows + 1) - grad_wav_size &&
|
||||
x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
|
||||
{
|
||||
X = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NX, 4, grad_wav_size, y, x);
|
||||
Y = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NY, 4, grad_wav_size, y, x);
|
||||
X = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NX, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
|
||||
Y = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NY, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
|
||||
|
||||
angle = atan2(Y, X);
|
||||
|
||||
@@ -881,20 +935,20 @@ __constant float c_DW[PATCH_SZ * PATCH_SZ] =
|
||||
|
||||
// utility for linear filter
|
||||
inline uchar readerGet(
|
||||
image2d_t src,
|
||||
IMAGE_INT8 src,
|
||||
const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
|
||||
int i, int j
|
||||
int i, int j, int rows, int cols, int elemPerRow
|
||||
)
|
||||
{
|
||||
float pixel_x = centerX + (win_offset + j) * cos_dir + (win_offset + i) * sin_dir;
|
||||
float pixel_y = centerY - (win_offset + j) * sin_dir + (win_offset + i) * cos_dir;
|
||||
return (uchar)read_imageui(src, sampler, (float2)(pixel_x, pixel_y)).x;
|
||||
return read_imgTex(src, sampler, (float2)(pixel_x, pixel_y), rows, cols, elemPerRow);
|
||||
}
|
||||
|
||||
inline float linearFilter(
|
||||
image2d_t src,
|
||||
IMAGE_INT8 src,
|
||||
const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
|
||||
float y, float x
|
||||
float y, float x, int rows, int cols, int elemPerRow
|
||||
)
|
||||
{
|
||||
x -= 0.5f;
|
||||
@@ -907,30 +961,33 @@ inline float linearFilter(
|
||||
const int x2 = x1 + 1;
|
||||
const int y2 = y1 + 1;
|
||||
|
||||
uchar src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x1);
|
||||
uchar src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x1, rows, cols, elemPerRow);
|
||||
out = out + src_reg * ((x2 - x) * (y2 - y));
|
||||
|
||||
src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x2);
|
||||
src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y1, x2, rows, cols, elemPerRow);
|
||||
out = out + src_reg * ((x - x1) * (y2 - y));
|
||||
|
||||
src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x1);
|
||||
src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x1, rows, cols, elemPerRow);
|
||||
out = out + src_reg * ((x2 - x) * (y - y1));
|
||||
|
||||
src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x2);
|
||||
src_reg = readerGet(src, centerX, centerY, win_offset, cos_dir, sin_dir, y2, x2, rows, cols, elemPerRow);
|
||||
out = out + src_reg * ((x - x1) * (y - y1));
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void calc_dx_dy(
|
||||
image2d_t imgTex,
|
||||
IMAGE_INT8 imgTex,
|
||||
volatile __local float s_dx_bin[25],
|
||||
volatile __local float s_dy_bin[25],
|
||||
volatile __local float s_PATCH[6][6],
|
||||
__global const float* featureX,
|
||||
__global const float* featureY,
|
||||
__global const float* featureSize,
|
||||
__global const float* featureDir
|
||||
__global const float* featureDir,
|
||||
int rows,
|
||||
int cols,
|
||||
int elemPerRow
|
||||
)
|
||||
{
|
||||
const float centerX = featureX[get_group_id(0)];
|
||||
@@ -965,7 +1022,7 @@ void calc_dx_dy(
|
||||
const float icoo = ((float)yIndex / (PATCH_SZ + 1)) * win_size;
|
||||
const float jcoo = ((float)xIndex / (PATCH_SZ + 1)) * win_size;
|
||||
|
||||
s_PATCH[get_local_id(1)][get_local_id(0)] = linearFilter(imgTex, centerX, centerY, win_offset, cos_dir, sin_dir, icoo, jcoo);
|
||||
s_PATCH[get_local_id(1)][get_local_id(0)] = linearFilter(imgTex, centerX, centerY, win_offset, cos_dir, sin_dir, icoo, jcoo, rows, cols, elemPerRow);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
@@ -1035,16 +1092,18 @@ void reduce_sum25(
|
||||
|
||||
__kernel
|
||||
void compute_descriptors64(
|
||||
image2d_t imgTex,
|
||||
IMAGE_INT8 imgTex,
|
||||
volatile __global float * descriptors,
|
||||
__global const float * keypoints,
|
||||
int descriptors_step,
|
||||
int keypoints_step
|
||||
int keypoints_step,
|
||||
int rows,
|
||||
int cols,
|
||||
int img_step
|
||||
)
|
||||
{
|
||||
descriptors_step /= sizeof(float);
|
||||
keypoints_step /= sizeof(float);
|
||||
|
||||
__global const float * featureX = keypoints + X_ROW * keypoints_step;
|
||||
__global const float * featureY = keypoints + Y_ROW * keypoints_step;
|
||||
__global const float * featureSize = keypoints + SIZE_ROW * keypoints_step;
|
||||
@@ -1057,7 +1116,7 @@ __kernel
|
||||
volatile __local float sdyabs[25];
|
||||
volatile __local float s_PATCH[6][6];
|
||||
|
||||
calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir);
|
||||
calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
|
||||
@@ -1066,10 +1125,10 @@ __kernel
|
||||
{
|
||||
sdxabs[tid] = fabs(sdx[tid]); // |dx| array
|
||||
sdyabs[tid] = fabs(sdy[tid]); // |dy| array
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
reduce_sum25(sdx, sdy, sdxabs, sdyabs, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
volatile __global float* descriptors_block = descriptors + descriptors_step * get_group_id(0) + (get_group_id(1) << 2);
|
||||
|
||||
@@ -1085,11 +1144,14 @@ __kernel
|
||||
}
|
||||
__kernel
|
||||
void compute_descriptors128(
|
||||
image2d_t imgTex,
|
||||
IMAGE_INT8 imgTex,
|
||||
__global volatile float * descriptors,
|
||||
__global float * keypoints,
|
||||
int descriptors_step,
|
||||
int keypoints_step
|
||||
int keypoints_step,
|
||||
int rows,
|
||||
int cols,
|
||||
int img_step
|
||||
)
|
||||
{
|
||||
descriptors_step /= sizeof(*descriptors);
|
||||
@@ -1111,7 +1173,7 @@ __kernel
|
||||
volatile __local float sdabs2[25];
|
||||
volatile __local float s_PATCH[6][6];
|
||||
|
||||
calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir);
|
||||
calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
|
||||
@@ -1132,10 +1194,10 @@ __kernel
|
||||
sd2[tid] = sdx[tid];
|
||||
sdabs2[tid] = fabs(sdx[tid]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
volatile __global float* descriptors_block = descriptors + descriptors_step * get_group_id(0) + (get_group_id(1) << 3);
|
||||
|
||||
@@ -1162,10 +1224,10 @@ __kernel
|
||||
sd2[tid] = sdy[tid];
|
||||
sdabs2[tid] = fabs(sdy[tid]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
//barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
// write dy (dx >= 0), |dy| (dx >= 0), dy (dx < 0), |dy| (dx < 0)
|
||||
if (tid == 0)
|
||||
|
||||
@@ -68,6 +68,8 @@ namespace cv
|
||||
extern const char *operator_setTo;
|
||||
extern const char *operator_setToM;
|
||||
extern const char *convertC3C4;
|
||||
extern DevMemType gDeviceMemType;
|
||||
extern DevMemRW gDeviceMemRW;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -911,7 +913,17 @@ oclMat cv::ocl::oclMat::reshape(int new_cn, int new_rows) const
|
||||
|
||||
}
|
||||
|
||||
void cv::ocl::oclMat::createEx(Size size, int type, DevMemRW rw_type, DevMemType mem_type)
|
||||
{
|
||||
createEx(size.height, size.width, type, rw_type, mem_type);
|
||||
}
|
||||
|
||||
void cv::ocl::oclMat::create(int _rows, int _cols, int _type)
|
||||
{
|
||||
createEx(_rows, _cols, _type, gDeviceMemRW, gDeviceMemType);
|
||||
}
|
||||
|
||||
void cv::ocl::oclMat::createEx(int _rows, int _cols, int _type, DevMemRW rw_type, DevMemType mem_type)
|
||||
{
|
||||
clCxt = Context::getContext();
|
||||
/* core logic */
|
||||
@@ -936,7 +948,7 @@ void cv::ocl::oclMat::create(int _rows, int _cols, int _type)
|
||||
size_t esz = elemSize();
|
||||
|
||||
void *dev_ptr;
|
||||
openCLMallocPitch(clCxt, &dev_ptr, &step, GPU_MATRIX_MALLOC_STEP(esz * cols), rows);
|
||||
openCLMallocPitchEx(clCxt, &dev_ptr, &step, GPU_MATRIX_MALLOC_STEP(esz * cols), rows, rw_type, mem_type);
|
||||
//openCLMallocPitch(clCxt,&dev_ptr, &step, esz * cols, rows);
|
||||
|
||||
if (esz * cols == step)
|
||||
|
||||
@@ -217,6 +217,36 @@ namespace cv
|
||||
{
|
||||
openCLFree(texture);
|
||||
}
|
||||
|
||||
bool support_image2d(Context *clCxt)
|
||||
{
|
||||
static const char * _kernel_string = "__kernel void test_func(image2d_t img) {}";
|
||||
static bool _isTested = false;
|
||||
static bool _support = false;
|
||||
if(_isTested)
|
||||
{
|
||||
return _support;
|
||||
}
|
||||
try
|
||||
{
|
||||
cv::ocl::openCLGetKernelFromSource(clCxt, &_kernel_string, "test_func");
|
||||
_support = true;
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
if(e.code == -217)
|
||||
{
|
||||
_support = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
// throw e once again
|
||||
throw e;
|
||||
}
|
||||
}
|
||||
_isTested = true;
|
||||
return _support;
|
||||
}
|
||||
}//namespace ocl
|
||||
|
||||
}//namespace cv
|
||||
|
||||
@@ -69,6 +69,10 @@ namespace cv
|
||||
// 2. for faster clamping, there is no buffer padding for the constructed texture
|
||||
cl_mem bindTexture(const oclMat &mat);
|
||||
void releaseTexture(cl_mem& texture);
|
||||
|
||||
// returns whether the current context supports image2d_t format or not
|
||||
bool support_image2d(Context *clCxt = Context::getContext());
|
||||
|
||||
}//namespace ocl
|
||||
|
||||
}//namespace cv
|
||||
|
||||
379
modules/ocl/src/moments.cpp
Normal file
379
modules/ocl/src/moments.cpp
Normal file
@@ -0,0 +1,379 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Sen Liu, sen@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "precomp.hpp"
|
||||
#include <iostream>
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
extern const char *moments;
|
||||
|
||||
// The function calculates center of gravity and the central second order moments
|
||||
static void icvCompleteMomentState( CvMoments* moments )
|
||||
{
|
||||
double cx = 0, cy = 0;
|
||||
double mu20, mu11, mu02;
|
||||
|
||||
assert( moments != 0 );
|
||||
moments->inv_sqrt_m00 = 0;
|
||||
|
||||
if( fabs(moments->m00) > DBL_EPSILON )
|
||||
{
|
||||
double inv_m00 = 1. / moments->m00;
|
||||
cx = moments->m10 * inv_m00;
|
||||
cy = moments->m01 * inv_m00;
|
||||
moments->inv_sqrt_m00 = std::sqrt( fabs(inv_m00) );
|
||||
}
|
||||
|
||||
// mu20 = m20 - m10*cx
|
||||
mu20 = moments->m20 - moments->m10 * cx;
|
||||
// mu11 = m11 - m10*cy
|
||||
mu11 = moments->m11 - moments->m10 * cy;
|
||||
// mu02 = m02 - m01*cy
|
||||
mu02 = moments->m02 - moments->m01 * cy;
|
||||
|
||||
moments->mu20 = mu20;
|
||||
moments->mu11 = mu11;
|
||||
moments->mu02 = mu02;
|
||||
|
||||
// mu30 = m30 - cx*(3*mu20 + cx*m10)
|
||||
moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10);
|
||||
mu11 += mu11;
|
||||
// mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20
|
||||
moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20;
|
||||
// mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02
|
||||
moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02;
|
||||
// mu03 = m03 - cy*(3*mu02 + cy*m01)
|
||||
moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01);
|
||||
}
|
||||
|
||||
|
||||
static void icvContourMoments( CvSeq* contour, CvMoments* mom )
|
||||
{
|
||||
if( contour->total )
|
||||
{
|
||||
CvSeqReader reader;
|
||||
int lpt = contour->total;
|
||||
double a00, a10, a01, a20, a11, a02, a30, a21, a12, a03;
|
||||
int dst_type = cv::ocl::Context::getContext()->impl->double_support ? CV_64FC1 : CV_32FC1;
|
||||
|
||||
cvStartReadSeq( contour, &reader, 0 );
|
||||
|
||||
cv::ocl::oclMat dst_a00(1,lpt,dst_type);
|
||||
cv::ocl::oclMat dst_a10(1,lpt,dst_type);
|
||||
cv::ocl::oclMat dst_a01(1,lpt,dst_type);
|
||||
cv::ocl::oclMat dst_a20(1,lpt,dst_type);
|
||||
cv::ocl::oclMat dst_a11(1,lpt,dst_type);
|
||||
cv::ocl::oclMat dst_a02(1,lpt,dst_type);
|
||||
cv::ocl::oclMat dst_a30(1,lpt,dst_type);
|
||||
cv::ocl::oclMat dst_a21(1,lpt,dst_type);
|
||||
cv::ocl::oclMat dst_a12(1,lpt,dst_type);
|
||||
cv::ocl::oclMat dst_a03(1,lpt,dst_type);
|
||||
size_t reader_size = lpt << 1;
|
||||
cv::Mat reader_mat(1,reader_size,CV_32FC1);
|
||||
|
||||
bool is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2;
|
||||
|
||||
if( is_float )
|
||||
{
|
||||
for(size_t i = 0; i < reader_size; ++i)
|
||||
{
|
||||
reader_mat.at<float>(0, i++) = ((CvPoint2D32f*)(reader.ptr))->x;
|
||||
reader_mat.at<float>(0, i) = ((CvPoint2D32f*)(reader.ptr))->y;
|
||||
CV_NEXT_SEQ_ELEM( contour->elem_size, reader );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(size_t i = 0; i < reader_size; ++i)
|
||||
{
|
||||
reader_mat.at<float>(0, i++) = ((CvPoint*)(reader.ptr))->x;
|
||||
reader_mat.at<float>(0, i) = ((CvPoint*)(reader.ptr))->y;
|
||||
CV_NEXT_SEQ_ELEM( contour->elem_size, reader );
|
||||
}
|
||||
}
|
||||
|
||||
cv::ocl::oclMat reader_oclmat(reader_mat);
|
||||
int llength = std::min(lpt,128);
|
||||
size_t localThreads[3] = { llength, 1, 1};
|
||||
size_t globalThreads[3] = { lpt, 1, 1};
|
||||
std::vector<std::pair<size_t , const void *> > args;
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&contour->total ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&reader_oclmat.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a00.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a10.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a01.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a20.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a11.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a02.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a30.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a21.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a12.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_a03.data ));
|
||||
openCLExecuteKernel(dst_a00.clCxt, &moments, "icvContourMoments", globalThreads, localThreads, args, -1, -1);
|
||||
|
||||
cv::Mat dst(dst_a00);
|
||||
cv::Scalar s = cv::sum(dst);
|
||||
a00 = s[0];
|
||||
dst = dst_a10;
|
||||
s = cv::sum(dst);
|
||||
a10 = s[0];//dstsum[1];
|
||||
dst = dst_a01;
|
||||
s = cv::sum(dst);
|
||||
a01 = s[0];//dstsum[2];
|
||||
dst = dst_a20;
|
||||
s = cv::sum(dst);
|
||||
a20 = s[0];//dstsum[3];
|
||||
dst = dst_a11;
|
||||
s = cv::sum(dst);
|
||||
a11 = s[0];//dstsum[4];
|
||||
dst = dst_a02;
|
||||
s = cv::sum(dst);
|
||||
a02 = s[0];//dstsum[5];
|
||||
dst = dst_a30;
|
||||
s = cv::sum(dst);
|
||||
a30 = s[0];//dstsum[6];
|
||||
dst = dst_a21;
|
||||
s = cv::sum(dst);
|
||||
a21 = s[0];//dstsum[7];
|
||||
dst = dst_a12;
|
||||
s = cv::sum(dst);
|
||||
a12 = s[0];//dstsum[8];
|
||||
dst = dst_a03;
|
||||
s = cv::sum(dst);
|
||||
a03 = s[0];//dstsum[9];
|
||||
|
||||
double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60;
|
||||
if( fabs(a00) > FLT_EPSILON )
|
||||
{
|
||||
if( a00 > 0 )
|
||||
{
|
||||
db1_2 = 0.5;
|
||||
db1_6 = 0.16666666666666666666666666666667;
|
||||
db1_12 = 0.083333333333333333333333333333333;
|
||||
db1_24 = 0.041666666666666666666666666666667;
|
||||
db1_20 = 0.05;
|
||||
db1_60 = 0.016666666666666666666666666666667;
|
||||
}
|
||||
else
|
||||
{
|
||||
db1_2 = -0.5;
|
||||
db1_6 = -0.16666666666666666666666666666667;
|
||||
db1_12 = -0.083333333333333333333333333333333;
|
||||
db1_24 = -0.041666666666666666666666666666667;
|
||||
db1_20 = -0.05;
|
||||
db1_60 = -0.016666666666666666666666666666667;
|
||||
}
|
||||
|
||||
// spatial moments
|
||||
mom->m00 = a00 * db1_2;
|
||||
mom->m10 = a10 * db1_6;
|
||||
mom->m01 = a01 * db1_6;
|
||||
mom->m20 = a20 * db1_12;
|
||||
mom->m11 = a11 * db1_24;
|
||||
mom->m02 = a02 * db1_12;
|
||||
mom->m30 = a30 * db1_20;
|
||||
mom->m21 = a21 * db1_60;
|
||||
mom->m12 = a12 * db1_60;
|
||||
mom->m03 = a03 * db1_20;
|
||||
|
||||
icvCompleteMomentState( mom );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ocl_cvMoments( const void* array, CvMoments* mom, int binary )
|
||||
{
|
||||
const int TILE_SIZE = 256;
|
||||
int type, depth, cn, coi = 0;
|
||||
CvMat stub, *mat = (CvMat*)array;
|
||||
CvContour contourHeader;
|
||||
CvSeq* contour = 0;
|
||||
CvSeqBlock block;
|
||||
if( CV_IS_SEQ( array ))
|
||||
{
|
||||
contour = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POINT_SET( contour ))
|
||||
CV_Error( CV_StsBadArg, "The passed sequence is not a valid contour" );
|
||||
}
|
||||
|
||||
if( !moments )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
memset( mom, 0, sizeof(*mom));
|
||||
|
||||
if( !contour )
|
||||
{
|
||||
|
||||
mat = cvGetMat( mat, &stub, &coi );
|
||||
type = CV_MAT_TYPE( mat->type );
|
||||
|
||||
if( type == CV_32SC2 || type == CV_32FC2 )
|
||||
{
|
||||
contour = cvPointSeqFromMat(
|
||||
CV_SEQ_KIND_CURVE | CV_SEQ_FLAG_CLOSED,
|
||||
mat, &contourHeader, &block );
|
||||
}
|
||||
}
|
||||
if( contour )
|
||||
{
|
||||
icvContourMoments( contour, mom );
|
||||
return;
|
||||
}
|
||||
|
||||
type = CV_MAT_TYPE( mat->type );
|
||||
depth = CV_MAT_DEPTH( type );
|
||||
cn = CV_MAT_CN( type );
|
||||
|
||||
cv::Size size = cvGetMatSize( mat );
|
||||
if( cn > 1 && coi == 0 )
|
||||
CV_Error( CV_StsBadArg, "Invalid image type" );
|
||||
|
||||
if( size.width <= 0 || size.height <= 0 )
|
||||
return;
|
||||
|
||||
cv::Mat src0(mat);
|
||||
cv::ocl::oclMat src(src0);
|
||||
cv::Size tileSize;
|
||||
int blockx,blocky;
|
||||
if(size.width%TILE_SIZE == 0)
|
||||
blockx = size.width/TILE_SIZE;
|
||||
else
|
||||
blockx = size.width/TILE_SIZE + 1;
|
||||
if(size.height%TILE_SIZE == 0)
|
||||
blocky = size.height/TILE_SIZE;
|
||||
else
|
||||
blocky = size.height/TILE_SIZE + 1;
|
||||
cv::ocl::oclMat dst_m00(blocky, blockx, CV_64FC1);
|
||||
cv::ocl::oclMat dst_m10(blocky, blockx, CV_64FC1);
|
||||
cv::ocl::oclMat dst_m01(blocky, blockx, CV_64FC1);
|
||||
cv::ocl::oclMat dst_m20(blocky, blockx, CV_64FC1);
|
||||
cv::ocl::oclMat dst_m11(blocky, blockx, CV_64FC1);
|
||||
cv::ocl::oclMat dst_m02(blocky, blockx, CV_64FC1);
|
||||
cv::ocl::oclMat dst_m30(blocky, blockx, CV_64FC1);
|
||||
cv::ocl::oclMat dst_m21(blocky, blockx, CV_64FC1);
|
||||
cv::ocl::oclMat dst_m12(blocky, blockx, CV_64FC1);
|
||||
cv::ocl::oclMat dst_m03(blocky, blockx, CV_64FC1);
|
||||
cl_mem sum = openCLCreateBuffer(src.clCxt,CL_MEM_READ_WRITE,10*sizeof(double));
|
||||
int tile_width = std::min(size.width,TILE_SIZE);
|
||||
int tile_height = std::min(size.height,TILE_SIZE);
|
||||
size_t localThreads[3] = { tile_height, 1, 1};
|
||||
size_t globalThreads[3] = { size.height, blockx, 1};
|
||||
std::vector<std::pair<size_t , const void *> > args,args_sum;
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&tileSize.width ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&tileSize.height ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m00.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m10.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m01.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m20.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m11.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m02.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m30.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m21.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m12.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m03.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst_m00.cols ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst_m00.step ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&type ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&depth ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cn ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&coi ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&binary ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&TILE_SIZE ));
|
||||
openCLExecuteKernel(dst_m00.clCxt, &moments, "CvMoments", globalThreads, localThreads, args, -1, depth);
|
||||
|
||||
size_t localThreadss[3] = { 128, 1, 1};
|
||||
size_t globalThreadss[3] = { 128, 1, 1};
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&tile_height ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&tile_width ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&TILE_SIZE ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&sum ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m00.data ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m10.data ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m01.data ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m20.data ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m11.data ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m02.data ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m30.data ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m21.data ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m12.data ));
|
||||
args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m03.data ));
|
||||
openCLExecuteKernel(dst_m00.clCxt, &moments, "dst_sum", globalThreadss, localThreadss, args_sum, -1, -1);
|
||||
double* dstsum = new double[10];
|
||||
memset(dstsum,0,10*sizeof(double));
|
||||
openCLReadBuffer(dst_m00.clCxt,sum,(void *)dstsum,10*sizeof(double));
|
||||
mom->m00 = dstsum[0];
|
||||
mom->m10 = dstsum[1];
|
||||
mom->m01 = dstsum[2];
|
||||
mom->m20 = dstsum[3];
|
||||
mom->m11 = dstsum[4];
|
||||
mom->m02 = dstsum[5];
|
||||
mom->m30 = dstsum[6];
|
||||
mom->m21 = dstsum[7];
|
||||
mom->m12 = dstsum[8];
|
||||
mom->m03 = dstsum[9];
|
||||
|
||||
icvCompleteMomentState( mom );
|
||||
}
|
||||
|
||||
Moments ocl_moments( InputArray _array, bool binaryImage )
|
||||
{
|
||||
CvMoments om;
|
||||
Mat arr = _array.getMat();
|
||||
CvMat c_array = arr;
|
||||
ocl_cvMoments(&c_array, &om, binaryImage);
|
||||
return om;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
@@ -93,6 +93,8 @@ namespace cv
|
||||
///////////////////////////OpenCL call wrappers////////////////////////////
|
||||
void openCLMallocPitch(Context *clCxt, void **dev_ptr, size_t *pitch,
|
||||
size_t widthInBytes, size_t height);
|
||||
void openCLMallocPitchEx(Context *clCxt, void **dev_ptr, size_t *pitch,
|
||||
size_t widthInBytes, size_t height, DevMemRW rw_type, DevMemType mem_type);
|
||||
void openCLMemcpy2D(Context *clCxt, void *dst, size_t dpitch,
|
||||
const void *src, size_t spitch,
|
||||
size_t width, size_t height, enum openCLMemcpyKind kind, int channels = -1);
|
||||
@@ -141,6 +143,7 @@ namespace cv
|
||||
//extra options to recognize vendor specific fp64 extensions
|
||||
char extra_options[512];
|
||||
std::string Binpath;
|
||||
int unified_memory; //1 means integrated GPU, otherwise this value is 0
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -573,8 +573,9 @@ static void lkSparse_run(oclMat &I, oclMat &J,
|
||||
Context *clCxt = I.clCxt;
|
||||
int elemCntPerRow = I.step / I.elemSize();
|
||||
std::string kernelName = "lkSparse";
|
||||
size_t localThreads[3] = { 8, 8, 1 };
|
||||
size_t globalThreads[3] = { 8 * ptcount, 8, 1};
|
||||
bool isImageSupported = support_image2d();
|
||||
size_t localThreads[3] = { 8, isImageSupported ? 8 : 32, 1 };
|
||||
size_t globalThreads[3] = { 8 * ptcount, isImageSupported ? 8 : 32, 1};
|
||||
int cn = I.oclchannels();
|
||||
char calcErr;
|
||||
if (level == 0)
|
||||
@@ -587,8 +588,9 @@ static void lkSparse_run(oclMat &I, oclMat &J,
|
||||
}
|
||||
|
||||
std::vector<std::pair<size_t , const void *> > args;
|
||||
cl_mem ITex = bindTexture(I);
|
||||
cl_mem JTex = bindTexture(J);
|
||||
|
||||
cl_mem ITex = isImageSupported ? bindTexture(I) : (cl_mem)I.data;
|
||||
cl_mem JTex = isImageSupported ? bindTexture(J) : (cl_mem)J.data;
|
||||
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&ITex ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&JTex ));
|
||||
@@ -601,6 +603,8 @@ static void lkSparse_run(oclMat &I, oclMat &J,
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&level ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&I.rows ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&I.cols ));
|
||||
if (!isImageSupported)
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&patch.x ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&patch.y ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cn ));
|
||||
@@ -609,19 +613,14 @@ static void lkSparse_run(oclMat &I, oclMat &J,
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&iters ));
|
||||
args.push_back( std::make_pair( sizeof(cl_char), (void *)&calcErr ));
|
||||
|
||||
try
|
||||
if(isImageSupported)
|
||||
{
|
||||
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
|
||||
}
|
||||
catch(Exception&)
|
||||
{
|
||||
printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n");
|
||||
releaseTexture(ITex);
|
||||
releaseTexture(JTex);
|
||||
ITex = (cl_mem)I.data;
|
||||
JTex = (cl_mem)J.data;
|
||||
localThreads[1] = globalThreads[1] = 32;
|
||||
args.insert( args.begin()+11, std::make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
|
||||
}
|
||||
}
|
||||
@@ -723,7 +722,7 @@ static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
|
||||
oclMat &prevU, oclMat &prevV, oclMat *err, Size winSize, int iters)
|
||||
{
|
||||
Context *clCxt = I.clCxt;
|
||||
bool isImageSupported = clCxt->impl->devName.find("Intel(R) HD Graphics") == std::string::npos;
|
||||
bool isImageSupported = support_image2d();
|
||||
int elemCntPerRow = I.step / I.elemSize();
|
||||
|
||||
std::string kernelName = "lkDense";
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
/*M/////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
@@ -44,6 +44,7 @@
|
||||
//M*/
|
||||
#include <iomanip>
|
||||
#include "precomp.hpp"
|
||||
#include "mcwutil.hpp"
|
||||
//#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
using namespace cv;
|
||||
@@ -70,7 +71,7 @@ static inline int calcSize(int octave, int layer)
|
||||
|
||||
/* Wavelet size increment between layers. This should be an even number,
|
||||
such that the wavelet sizes in an octave are either all even or all odd.
|
||||
This ensures that when looking for the neighbours of a sample, the layers
|
||||
This ensures that when looking for the neighbors of a sample, the layers
|
||||
|
||||
above and below are aligned correctly. */
|
||||
const int HAAR_SIZE_INC = 6;
|
||||
@@ -78,6 +79,11 @@ static inline int calcSize(int octave, int layer)
|
||||
return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
const char* noImage2dOption = "-D DISABLE_IMAGE2D";
|
||||
}
|
||||
|
||||
class SURF_OCL_Invoker
|
||||
{
|
||||
public:
|
||||
@@ -87,7 +93,7 @@ public:
|
||||
//void loadGlobalConstants(int maxCandidates, int maxFeatures, int img_rows, int img_cols, int nOctaveLayers, float hessianThreshold);
|
||||
//void loadOctaveConstants(int octave, int layer_rows, int layer_cols);
|
||||
|
||||
// kernel callers declearations
|
||||
// kernel callers declarations
|
||||
void icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, int octave, int nOctaveLayers, int layer_rows);
|
||||
|
||||
void icvFindMaximaInLayer_gpu(const oclMat &det, const oclMat &trace, oclMat &maxPosBuffer, oclMat &maxCounter, int counterOffset,
|
||||
@@ -99,14 +105,14 @@ public:
|
||||
void icvCalcOrientation_gpu(const oclMat &keypoints, int nFeatures);
|
||||
|
||||
void compute_descriptors_gpu(const oclMat &descriptors, const oclMat &keypoints, int nFeatures);
|
||||
// end of kernel callers declearations
|
||||
// end of kernel callers declarations
|
||||
|
||||
|
||||
SURF_OCL_Invoker(SURF_OCL &surf, const oclMat &img, const oclMat &mask) :
|
||||
surf_(surf),
|
||||
img_cols(img.cols), img_rows(img.rows),
|
||||
use_mask(!mask.empty()),
|
||||
imgTex(NULL), sumTex(NULL), maskSumTex(NULL)
|
||||
use_mask(!mask.empty()), counters(oclMat()),
|
||||
imgTex(NULL), sumTex(NULL), maskSumTex(NULL), _img(img)
|
||||
{
|
||||
CV_Assert(!img.empty() && img.type() == CV_8UC1);
|
||||
CV_Assert(mask.empty() || (mask.size() == img.size() && mask.type() == CV_8UC1));
|
||||
@@ -130,12 +136,13 @@ public:
|
||||
counters.create(1, surf_.nOctaves + 1, CV_32SC1);
|
||||
counters.setTo(Scalar::all(0));
|
||||
|
||||
//loadGlobalConstants(maxCandidates, maxFeatures, img_rows, img_cols, surf_.nOctaveLayers, static_cast<float>(surf_.hessianThreshold));
|
||||
|
||||
integral(img, surf_.sum);
|
||||
if(support_image2d())
|
||||
{
|
||||
bindImgTex(img, imgTex);
|
||||
integral(img, surf_.sum); // the two argumented integral version is incorrect
|
||||
bindImgTex(surf_.sum, sumTex);
|
||||
}
|
||||
|
||||
bindImgTex(surf_.sum, sumTex);
|
||||
maskSumTex = 0;
|
||||
|
||||
if (use_mask)
|
||||
@@ -154,7 +161,7 @@ public:
|
||||
void detectKeypoints(oclMat &keypoints)
|
||||
{
|
||||
// create image pyramid buffers
|
||||
// different layers have same sized buffers, but they are sampled from gaussin kernel.
|
||||
// different layers have same sized buffers, but they are sampled from Gaussian kernel.
|
||||
ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.det);
|
||||
ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.trace);
|
||||
|
||||
@@ -221,7 +228,6 @@ public:
|
||||
openCLFree(sumTex);
|
||||
if(maskSumTex)
|
||||
openCLFree(maskSumTex);
|
||||
additioalParamBuffer.release();
|
||||
}
|
||||
|
||||
private:
|
||||
@@ -241,7 +247,7 @@ private:
|
||||
cl_mem sumTex;
|
||||
cl_mem maskSumTex;
|
||||
|
||||
oclMat additioalParamBuffer;
|
||||
const oclMat _img; // make a copy for non-image2d_t supported platform
|
||||
|
||||
SURF_OCL_Invoker &operator= (const SURF_OCL_Invoker &right)
|
||||
{
|
||||
@@ -361,11 +367,6 @@ void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, oclMat
|
||||
{
|
||||
if (!img.empty())
|
||||
{
|
||||
if (img.clCxt->impl->devName.find("Intel(R) HD Graphics") != std::string::npos)
|
||||
{
|
||||
std::cout << " Intel HD GPU device unsupported " << std::endl;
|
||||
return;
|
||||
}
|
||||
SURF_OCL_Invoker surf(*this, img, mask);
|
||||
|
||||
surf.detectKeypoints(keypoints);
|
||||
@@ -377,11 +378,6 @@ void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, oclMat
|
||||
{
|
||||
if (!img.empty())
|
||||
{
|
||||
if (img.clCxt->impl->devName.find("Intel(R) HD Graphics") != std::string::npos)
|
||||
{
|
||||
std::cout << " Intel HD GPU device unsupported " << std::endl;
|
||||
return;
|
||||
}
|
||||
SURF_OCL_Invoker surf(*this, img, mask);
|
||||
|
||||
if (!useProvidedKeypoints)
|
||||
@@ -442,74 +438,11 @@ void cv::ocl::SURF_OCL::releaseMemory()
|
||||
// bind source buffer to image oject.
|
||||
void SURF_OCL_Invoker::bindImgTex(const oclMat &img, cl_mem &texture)
|
||||
{
|
||||
cl_image_format format;
|
||||
int err;
|
||||
int depth = img.depth();
|
||||
int channels = img.channels();
|
||||
|
||||
switch(depth)
|
||||
{
|
||||
case CV_8U:
|
||||
format.image_channel_data_type = CL_UNSIGNED_INT8;
|
||||
break;
|
||||
case CV_32S:
|
||||
format.image_channel_data_type = CL_UNSIGNED_INT32;
|
||||
break;
|
||||
case CV_32F:
|
||||
format.image_channel_data_type = CL_FLOAT;
|
||||
break;
|
||||
default:
|
||||
throw std::exception();
|
||||
break;
|
||||
}
|
||||
switch(channels)
|
||||
{
|
||||
case 1:
|
||||
format.image_channel_order = CL_R;
|
||||
break;
|
||||
case 3:
|
||||
format.image_channel_order = CL_RGB;
|
||||
break;
|
||||
case 4:
|
||||
format.image_channel_order = CL_RGBA;
|
||||
break;
|
||||
default:
|
||||
throw std::exception();
|
||||
break;
|
||||
}
|
||||
if(texture)
|
||||
{
|
||||
openCLFree(texture);
|
||||
}
|
||||
|
||||
#ifdef CL_VERSION_1_2
|
||||
cl_image_desc desc;
|
||||
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
|
||||
desc.image_width = img.step / img.elemSize();
|
||||
desc.image_height = img.rows;
|
||||
desc.image_depth = 0;
|
||||
desc.image_array_size = 1;
|
||||
desc.image_row_pitch = 0;
|
||||
desc.image_slice_pitch = 0;
|
||||
desc.buffer = NULL;
|
||||
desc.num_mip_levels = 0;
|
||||
desc.num_samples = 0;
|
||||
texture = clCreateImage(Context::getContext()->impl->clContext, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
|
||||
#else
|
||||
texture = clCreateImage2D(
|
||||
Context::getContext()->impl->clContext,
|
||||
CL_MEM_READ_WRITE,
|
||||
&format,
|
||||
img.step / img.elemSize(),
|
||||
img.rows,
|
||||
0,
|
||||
NULL,
|
||||
&err);
|
||||
#endif
|
||||
size_t origin[] = { 0, 0, 0 };
|
||||
size_t region[] = { img.step / img.elemSize(), img.rows, 1 };
|
||||
clEnqueueCopyBufferToImage(img.clCxt->impl->clCmdQueue, (cl_mem)img.data, texture, 0, origin, region, 0, NULL, 0);
|
||||
openCLSafeCall(err);
|
||||
texture = bindTexture(img);
|
||||
}
|
||||
|
||||
////////////////////////////
|
||||
@@ -524,7 +457,14 @@ void SURF_OCL_Invoker::icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, i
|
||||
std::string kernelName = "icvCalcLayerDetAndTrace";
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&sumTex));
|
||||
if(sumTex)
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&sumTex));
|
||||
}
|
||||
else
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&surf_.sum.data)); // if image2d is not supported
|
||||
}
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&det.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&trace.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&det.step));
|
||||
@@ -534,6 +474,7 @@ void SURF_OCL_Invoker::icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, i
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&nOctaveLayers));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&octave));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&c_layer_rows));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&surf_.sum.step));
|
||||
|
||||
size_t localThreads[3] = {16, 16, 1};
|
||||
size_t globalThreads[3] =
|
||||
@@ -542,8 +483,15 @@ void SURF_OCL_Invoker::icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, i
|
||||
divUp(max_samples_i, localThreads[1]) *localThreads[1] *(nOctaveLayers + 2),
|
||||
1
|
||||
};
|
||||
if(support_image2d())
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
|
||||
}
|
||||
}
|
||||
|
||||
void SURF_OCL_Invoker::icvFindMaximaInLayer_gpu(const oclMat &det, const oclMat &trace, oclMat &maxPosBuffer, oclMat &maxCounter, int counterOffset,
|
||||
int octave, bool use_mask, int nLayers, int layer_rows, int layer_cols)
|
||||
@@ -572,17 +520,31 @@ void SURF_OCL_Invoker::icvFindMaximaInLayer_gpu(const oclMat &det, const oclMat
|
||||
|
||||
if(use_mask)
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&maskSumTex));
|
||||
if(maskSumTex)
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&maskSumTex));
|
||||
}
|
||||
else
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&surf_.maskSum.data));
|
||||
}
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&surf_.maskSum.step));
|
||||
}
|
||||
|
||||
size_t localThreads[3] = {16, 16, 1};
|
||||
size_t globalThreads[3] = {divUp(layer_cols - 2 * min_margin, localThreads[0] - 2) *localThreads[0],
|
||||
divUp(layer_rows - 2 * min_margin, localThreads[1] - 2) *nLayers *localThreads[1],
|
||||
1
|
||||
};
|
||||
|
||||
if(support_image2d())
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
|
||||
}
|
||||
}
|
||||
|
||||
void SURF_OCL_Invoker::icvInterpolateKeypoint_gpu(const oclMat &det, const oclMat &maxPosBuffer, unsigned int maxCounter,
|
||||
oclMat &keypoints, oclMat &counters, int octave, int layer_rows, int maxFeatures)
|
||||
@@ -606,8 +568,15 @@ void SURF_OCL_Invoker::icvInterpolateKeypoint_gpu(const oclMat &det, const oclMa
|
||||
size_t localThreads[3] = {3, 3, 3};
|
||||
size_t globalThreads[3] = {maxCounter *localThreads[0], localThreads[1], 1};
|
||||
|
||||
if(support_image2d())
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
|
||||
}
|
||||
}
|
||||
|
||||
void SURF_OCL_Invoker::icvCalcOrientation_gpu(const oclMat &keypoints, int nFeatures)
|
||||
{
|
||||
@@ -616,17 +585,32 @@ void SURF_OCL_Invoker::icvCalcOrientation_gpu(const oclMat &keypoints, int nFeat
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
|
||||
if(sumTex)
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&sumTex));
|
||||
}
|
||||
else
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&surf_.sum.data)); // if image2d is not supported
|
||||
}
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_rows));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_cols));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&surf_.sum.step));
|
||||
|
||||
size_t localThreads[3] = {32, 4, 1};
|
||||
size_t globalThreads[3] = {nFeatures *localThreads[0], localThreads[1], 1};
|
||||
|
||||
if(support_image2d())
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
|
||||
}
|
||||
}
|
||||
|
||||
void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const oclMat &keypoints, int nFeatures)
|
||||
{
|
||||
@@ -648,12 +632,29 @@ void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const
|
||||
globalThreads[1] = 16 * localThreads[1];
|
||||
|
||||
args.clear();
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&imgTex));
|
||||
if(imgTex)
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&imgTex));
|
||||
}
|
||||
else
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&_img.data));
|
||||
}
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.rows));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.cols));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.step));
|
||||
if(support_image2d())
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
|
||||
}
|
||||
|
||||
kernelName = "normalize_descriptors64";
|
||||
|
||||
@@ -666,9 +667,16 @@ void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const
|
||||
args.clear();
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
||||
if(support_image2d())
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
kernelName = "compute_descriptors128";
|
||||
|
||||
@@ -679,12 +687,29 @@ void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const
|
||||
globalThreads[1] = 16 * localThreads[1];
|
||||
|
||||
args.clear();
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&imgTex));
|
||||
if(imgTex)
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&imgTex));
|
||||
}
|
||||
else
|
||||
{
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&_img.data));
|
||||
}
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.rows));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.cols));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.step));
|
||||
if(support_image2d())
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
|
||||
}
|
||||
|
||||
kernelName = "normalize_descriptors128";
|
||||
|
||||
@@ -697,7 +722,14 @@ void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const
|
||||
args.clear();
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
if(support_image2d())
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &nonfree_surf, kernelName, globalThreads, localThreads, args, -1, -1, noImage2dOption);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user