fixed warnings

This commit is contained in:
Vladislav Vinogradov 2011-10-17 06:44:40 +00:00
parent 7106513b8a
commit 87f3451ec6
3 changed files with 81 additions and 44 deletions

View File

@ -43,6 +43,7 @@
#include "internal_shared.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/vec_distance.hpp"
#include "opencv2/gpu/device/datamov_utils.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
@ -235,7 +236,15 @@ namespace cv { namespace gpu { namespace bf_knnmatch
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = loadX < train.cols ? train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX] : 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < train.cols)
{
T val;
ForceGlob<T>::Load(train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();
@ -402,15 +411,18 @@ namespace cv { namespace gpu { namespace bf_knnmatch
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < query.cols)
{
T val;
ForceGlob<T>::Load(query.ptr(min(queryIdx, query.rows - 1)), loadX, val);
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
ForceGlob<T>::Load(train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();
@ -573,15 +585,18 @@ namespace cv { namespace gpu { namespace bf_knnmatch
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < query.cols)
{
T val;
ForceGlob<T>::Load(query.ptr(min(queryIdx, query.rows - 1)), loadX, val);
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
ForceGlob<T>::Load(train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();

View File

@ -43,6 +43,7 @@
#include "internal_shared.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/vec_distance.hpp"
#include "opencv2/gpu/device/datamov_utils.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
@ -110,7 +111,15 @@ namespace cv { namespace gpu { namespace bf_match
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = loadX < train.cols ? train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX] : 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < train.cols)
{
T val;
ForceGlob<T>::Load(train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();
@ -258,15 +267,18 @@ namespace cv { namespace gpu { namespace bf_match
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < query.cols)
{
T val;
ForceGlob<T>::Load(query.ptr(min(queryIdx, query.rows - 1)), loadX, val);
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
ForceGlob<T>::Load(train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();
@ -410,15 +422,18 @@ namespace cv { namespace gpu { namespace bf_match
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < query.cols)
{
T val;
ForceGlob<T>::Load(query.ptr(min(queryIdx, query.rows - 1)), loadX, val);
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
ForceGlob<T>::Load(train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();

View File

@ -43,6 +43,7 @@
#include "internal_shared.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/vec_distance.hpp"
#include "opencv2/gpu/device/datamov_utils.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
@ -73,15 +74,18 @@ namespace cv { namespace gpu { namespace bf_radius_match
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < query.cols)
{
T val;
ForceGlob<T>::Load(query.ptr(min(queryIdx, query.rows - 1)), loadX, val);
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
ForceGlob<T>::Load(train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();
@ -181,15 +185,18 @@ namespace cv { namespace gpu { namespace bf_radius_match
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < query.cols)
{
T val;
ForceGlob<T>::Load(query.ptr(min(queryIdx, query.rows - 1)), loadX, val);
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
ForceGlob<T>::Load(train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();