Doxygen tutorials: python basic
This commit is contained in:
@@ -0,0 +1,232 @@
|
||||
Image Thresholding {#tutorial_py_thresholding}
|
||||
==================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
- In this tutorial, you will learn Simple thresholding, Adaptive thresholding, Otsu's thresholding
|
||||
etc.
|
||||
- You will learn these functions : **cv2.threshold**, **cv2.adaptiveThreshold** etc.
|
||||
|
||||
Simple Thresholding
|
||||
-------------------
|
||||
|
||||
Here, the matter is straight forward. If pixel value is greater than a threshold value, it is
|
||||
assigned one value (may be white), else it is assigned another value (may be black). The function
|
||||
used is **cv2.threshold**. First argument is the source image, which **should be a grayscale
|
||||
image**. Second argument is the threshold value which is used to classify the pixel values. Third
|
||||
argument is the maxVal which represents the value to be given if pixel value is more than (sometimes
|
||||
less than) the threshold value. OpenCV provides different styles of thresholding and it is decided
|
||||
by the fourth parameter of the function. Different types are:
|
||||
|
||||
- cv2.THRESH_BINARY
|
||||
- cv2.THRESH_BINARY_INV
|
||||
- cv2.THRESH_TRUNC
|
||||
- cv2.THRESH_TOZERO
|
||||
- cv2.THRESH_TOZERO_INV
|
||||
|
||||
Documentation clearly explain what each type is meant for. Please check out the documentation.
|
||||
|
||||
Two outputs are obtained. First one is a **retval** which will be explained later. Second output is
|
||||
our **thresholded image**.
|
||||
|
||||
Code :
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('gradient.png',0)
|
||||
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
||||
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
|
||||
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
|
||||
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
|
||||
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)
|
||||
|
||||
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
|
||||
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
|
||||
|
||||
for i in xrange(6):
|
||||
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
|
||||
plt.title(titles[i])
|
||||
plt.xticks([]),plt.yticks([])
|
||||
|
||||
plt.show()
|
||||
@endcode
|
||||
@note To plot multiple images, we have used plt.subplot() function. Please checkout Matplotlib docs
|
||||
for more details. Result is given below :
|
||||
|
||||

|
||||
|
||||
Adaptive Thresholding
|
||||
---------------------
|
||||
|
||||
In the previous section, we used a global value as threshold value. But it may not be good in all
|
||||
the conditions where image has different lighting conditions in different areas. In that case, we go
|
||||
for adaptive thresholding. In this, the algorithm calculate the threshold for a small regions of the
|
||||
image. So we get different thresholds for different regions of the same image and it gives us better
|
||||
results for images with varying illumination.
|
||||
|
||||
It has three ‘special’ input params and only one output argument.
|
||||
|
||||
**Adaptive Method** - It decides how thresholding value is calculated.
|
||||
- cv2.ADAPTIVE_THRESH_MEAN_C : threshold value is the mean of neighbourhood area.
|
||||
- cv2.ADAPTIVE_THRESH_GAUSSIAN_C : threshold value is the weighted sum of neighbourhood
|
||||
values where weights are a gaussian window.
|
||||
|
||||
**Block Size** - It decides the size of neighbourhood area.
|
||||
|
||||
**C** - It is just a constant which is subtracted from the mean or weighted mean calculated.
|
||||
|
||||
Below piece of code compares global thresholding and adaptive thresholding for an image with varying
|
||||
illumination:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('dave.jpg',0)
|
||||
img = cv2.medianBlur(img,5)
|
||||
|
||||
ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
||||
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
|
||||
cv2.THRESH_BINARY,11,2)
|
||||
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
|
||||
cv2.THRESH_BINARY,11,2)
|
||||
|
||||
titles = ['Original Image', 'Global Thresholding (v = 127)',
|
||||
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
|
||||
images = [img, th1, th2, th3]
|
||||
|
||||
for i in xrange(4):
|
||||
plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
|
||||
plt.title(titles[i])
|
||||
plt.xticks([]),plt.yticks([])
|
||||
plt.show()
|
||||
@endcode
|
||||
Result :
|
||||
|
||||

|
||||
|
||||
Otsu’s Binarization
|
||||
-------------------
|
||||
|
||||
In the first section, I told you there is a second parameter **retVal**. Its use comes when we go
|
||||
for Otsu’s Binarization. So what is it?
|
||||
|
||||
In global thresholding, we used an arbitrary value for threshold value, right? So, how can we know a
|
||||
value we selected is good or not? Answer is, trial and error method. But consider a **bimodal
|
||||
image** (*In simple words, bimodal image is an image whose histogram has two peaks*). For that
|
||||
image, we can approximately take a value in the middle of those peaks as threshold value, right ?
|
||||
That is what Otsu binarization does. So in simple words, it automatically calculates a threshold
|
||||
value from image histogram for a bimodal image. (For images which are not bimodal, binarization
|
||||
won’t be accurate.)
|
||||
|
||||
For this, our cv2.threshold() function is used, but pass an extra flag, cv2.THRESH_OTSU. **For
|
||||
threshold value, simply pass zero**. Then the algorithm finds the optimal threshold value and
|
||||
returns you as the second output, retVal. If Otsu thresholding is not used, retVal is same as the
|
||||
threshold value you used.
|
||||
|
||||
Check out below example. Input image is a noisy image. In first case, I applied global thresholding
|
||||
for a value of 127. In second case, I applied Otsu’s thresholding directly. In third case, I
|
||||
filtered image with a 5x5 gaussian kernel to remove the noise, then applied Otsu thresholding. See
|
||||
how noise filtering improves the result.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('noisy2.png',0)
|
||||
|
||||
# global thresholding
|
||||
ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
||||
|
||||
# Otsu's thresholding
|
||||
ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
||||
|
||||
# Otsu's thresholding after Gaussian filtering
|
||||
blur = cv2.GaussianBlur(img,(5,5),0)
|
||||
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
||||
|
||||
# plot all the images and their histograms
|
||||
images = [img, 0, th1,
|
||||
img, 0, th2,
|
||||
blur, 0, th3]
|
||||
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)',
|
||||
'Original Noisy Image','Histogram',"Otsu's Thresholding",
|
||||
'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]
|
||||
|
||||
for i in xrange(3):
|
||||
plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
|
||||
plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])
|
||||
plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
|
||||
plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])
|
||||
plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
|
||||
plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])
|
||||
plt.show()
|
||||
@endcode
|
||||
Result :
|
||||
|
||||

|
||||
|
||||
### How Otsu's Binarization Works?
|
||||
|
||||
This section demonstrates a Python implementation of Otsu's binarization to show how it works
|
||||
actually. If you are not interested, you can skip this.
|
||||
|
||||
Since we are working with bimodal images, Otsu's algorithm tries to find a threshold value (t) which
|
||||
minimizes the **weighted within-class variance** given by the relation :
|
||||
|
||||
\f[\sigma_w^2(t) = q_1(t)\sigma_1^2(t)+q_2(t)\sigma_2^2(t)\f]
|
||||
|
||||
where
|
||||
|
||||
\f[q_1(t) = \sum_{i=1}^{t} P(i) \quad \& \quad q_1(t) = \sum_{i=t+1}^{I} P(i)\f]\f[\mu_1(t) = \sum_{i=1}^{t} \frac{iP(i)}{q_1(t)} \quad \& \quad \mu_2(t) = \sum_{i=t+1}^{I} \frac{iP(i)}{q_2(t)}\f]\f[\sigma_1^2(t) = \sum_{i=1}^{t} [i-\mu_1(t)]^2 \frac{P(i)}{q_1(t)} \quad \& \quad \sigma_2^2(t) = \sum_{i=t+1}^{I} [i-\mu_1(t)]^2 \frac{P(i)}{q_2(t)}\f]
|
||||
|
||||
It actually finds a value of t which lies in between two peaks such that variances to both classes
|
||||
are minimum. It can be simply implemented in Python as follows:
|
||||
@code{.py}
|
||||
img = cv2.imread('noisy2.png',0)
|
||||
blur = cv2.GaussianBlur(img,(5,5),0)
|
||||
|
||||
# find normalized_histogram, and its cumulative distribution function
|
||||
hist = cv2.calcHist([blur],[0],None,[256],[0,256])
|
||||
hist_norm = hist.ravel()/hist.max()
|
||||
Q = hist_norm.cumsum()
|
||||
|
||||
bins = np.arange(256)
|
||||
|
||||
fn_min = np.inf
|
||||
thresh = -1
|
||||
|
||||
for i in xrange(1,256):
|
||||
p1,p2 = np.hsplit(hist_norm,[i]) # probabilities
|
||||
q1,q2 = Q[i],Q[255]-Q[i] # cum sum of classes
|
||||
b1,b2 = np.hsplit(bins,[i]) # weights
|
||||
|
||||
# finding means and variances
|
||||
m1,m2 = np.sum(p1*b1)/q1, np.sum(p2*b2)/q2
|
||||
v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2
|
||||
|
||||
# calculates the minimization function
|
||||
fn = v1*q1 + v2*q2
|
||||
if fn < fn_min:
|
||||
fn_min = fn
|
||||
thresh = i
|
||||
|
||||
# find otsu's threshold value with OpenCV function
|
||||
ret, otsu = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
||||
print thresh,ret
|
||||
@endcode
|
||||
*(Some of the functions may be new here, but we will cover them in coming chapters)*
|
||||
|
||||
Additional Resources
|
||||
--------------------
|
||||
|
||||
-# Digital Image Processing, Rafael C. Gonzalez
|
||||
|
||||
Exercises
|
||||
---------
|
||||
|
||||
-# There are some optimizations available for Otsu's binarization. You can search and implement it.
|
||||
|
Reference in New Issue
Block a user