Doxygen tutorials: python basic

This commit is contained in:
Maksim Shabunin
2014-11-28 17:18:32 +03:00
parent 36a04ef8de
commit 875f922332
80 changed files with 9240 additions and 2 deletions

View File

@@ -0,0 +1,115 @@
Drawing Functions in OpenCV {#tutorial_py_drawing_functions}
===========================
Goal
----
- Learn to draw different geometric shapes with OpenCV
- You will learn these functions : **cv2.line()**, **cv2.circle()** , **cv2.rectangle()**,
**cv2.ellipse()**, **cv2.putText()** etc.
Code
----
In all the above functions, you will see some common arguments as given below:
- img : The image where you want to draw the shapes
- color : Color of the shape. for BGR, pass it as a tuple, eg: (255,0,0) for blue. For
grayscale, just pass the scalar value.
- thickness : Thickness of the line or circle etc. If **-1** is passed for closed figures like
circles, it will fill the shape. *default thickness = 1*
- lineType : Type of line, whether 8-connected, anti-aliased line etc. *By default, it is
8-connected.* cv2.LINE_AA gives anti-aliased line which looks great for curves.
### Drawing Line
To draw a line, you need to pass starting and ending coordinates of line. We will create a black
image and draw a blue line on it from top-left to bottom-right corners.
@code{.py}
import numpy as np
import cv2
# Create a black image
img = np.zeros((512,512,3), np.uint8)
# Draw a diagonal blue line with thickness of 5 px
cv2.line(img,(0,0),(511,511),(255,0,0),5)
@endcode
### Drawing Rectangle
To draw a rectangle, you need top-left corner and bottom-right corner of rectangle. This time we
will draw a green rectangle at the top-right corner of image.
@code{.py}
cv2.rectangle(img,(384,0),(510,128),(0,255,0),3)
@endcode
### Drawing Circle
To draw a circle, you need its center coordinates and radius. We will draw a circle inside the
rectangle drawn above.
@code{.py}
cv2.circle(img,(447,63), 63, (0,0,255), -1)
@endcode
### Drawing Ellipse
To draw the ellipse, we need to pass several arguments. One argument is the center location (x,y).
Next argument is axes lengths (major axis length, minor axis length). angle is the angle of rotation
of ellipse in anti-clockwise direction. startAngle and endAngle denotes the starting and ending of
ellipse arc measured in clockwise direction from major axis. i.e. giving values 0 and 360 gives the
full ellipse. For more details, check the documentation of **cv2.ellipse()**. Below example draws a
half ellipse at the center of the image.
@code{.py}
cv2.ellipse(img,(256,256),(100,50),0,0,180,255,-1)
@endcode
### Drawing Polygon
To draw a polygon, first you need coordinates of vertices. Make those points into an array of shape
ROWSx1x2 where ROWS are number of vertices and it should be of type int32. Here we draw a small
polygon of with four vertices in yellow color.
@code{.py}
pts = np.array([[10,5],[20,30],[70,20],[50,10]], np.int32)
pts = pts.reshape((-1,1,2))
cv2.polylines(img,[pts],True,(0,255,255))
@endcode
**note**
If third argument is False, you will get a polylines joining all the points, not a closed shape.
**note**
cv2.polylines() can be used to draw multiple lines. Just create a list of all the lines you want
to draw and pass it to the function. All lines will be drawn individually. It is a much better and
faster way to draw a group of lines than calling cv2.line() for each line.
### Adding Text to Images:
To put texts in images, you need specify following things.
- Text data that you want to write
- Position coordinates of where you want put it (i.e. bottom-left corner where data starts).
- Font type (Check **cv2.putText()** docs for supported fonts)
- Font Scale (specifies the size of font)
- regular things like color, thickness, lineType etc. For better look, lineType = cv2.LINE_AA
is recommended.
We will write **OpenCV** on our image in white color.
@code{.py}
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'OpenCV',(10,500), font, 4,(255,255,255),2,cv2.LINE_AA)
@endcode
### Result
So it is time to see the final result of our drawing. As you studied in previous articles, display
the image to see it.
![image](images/drawing.jpg)
Additional Resources
--------------------
-# The angles used in ellipse function is not our circular angles. For more details, visit [this
discussion](http://answers.opencv.org/question/14541/angles-in-ellipse-function/).
Exercises
---------
-# Try to create the logo of OpenCV using drawing functions available in OpenCV.

View File

@@ -0,0 +1,143 @@
Getting Started with Images {#tutorial_py_image_display}
===========================
Goals
-----
- Here, you will learn how to read an image, how to display it and how to save it back
- You will learn these functions : **cv2.imread()**, **cv2.imshow()** , **cv2.imwrite()**
- Optionally, you will learn how to display images with Matplotlib
Using OpenCV
------------
### Read an image
Use the function **cv2.imread()** to read an image. The image should be in the working directory or
a full path of image should be given.
Second argument is a flag which specifies the way image should be read.
- cv2.IMREAD_COLOR : Loads a color image. Any transparency of image will be neglected. It is the
default flag.
- cv2.IMREAD_GRAYSCALE : Loads image in grayscale mode
- cv2.IMREAD_UNCHANGED : Loads image as such including alpha channel
@note Instead of these three flags, you can simply pass integers 1, 0 or -1 respectively. See the
code below:
@code{.py}
import numpy as np
import cv2
# Load an color image in grayscale
img = cv2.imread('messi5.jpg',0)
@endcode
**warning**
Even if the image path is wrong, it won't throw any error, but print img will give you None
### Display an image
Use the function **cv2.imshow()** to display an image in a window. The window automatically fits to
the image size.
First argument is a window name which is a string. second argument is our image. You can create as
many windows as you wish, but with different window names.
@code{.py}
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
@endcode
A screenshot of the window will look like this (in Fedora-Gnome machine):
![image](images/opencv_screenshot.jpg)
**cv2.waitKey()** is a keyboard binding function. Its argument is the time in milliseconds. The
function waits for specified milliseconds for any keyboard event. If you press any key in that time,
the program continues. If **0** is passed, it waits indefinitely for a key stroke. It can also be
set to detect specific key strokes like, if key a is pressed etc which we will discuss below.
@note Besides binding keyboard events this function also processes many other GUI events, so you
MUST use it to actually display the image. **cv2.destroyAllWindows()** simply destroys all the
windows we created. If you want to destroy any specific window, use the function
**cv2.destroyWindow()** where you pass the exact window name as the argument.
@note There is a special case where you can already create a window and load image to it later. In
that case, you can specify whether window is resizable or not. It is done with the function
**cv2.namedWindow()**. By default, the flag is cv2.WINDOW_AUTOSIZE. But if you specify flag to be
cv2.WINDOW_NORMAL, you can resize window. It will be helpful when image is too large in dimension
and adding track bar to windows. See the code below:
@code{.py}
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
@endcode
### Write an image
Use the function **cv2.imwrite()** to save an image.
First argument is the file name, second argument is the image you want to save.
@code{.py}
cv2.imwrite('messigray.png',img)
@endcode
This will save the image in PNG format in the working directory.
### Sum it up
Below program loads an image in grayscale, displays it, save the image if you press 's' and exit, or
simply exit without saving if you press ESC key.
@code{.py}
import numpy as np
import cv2
img = cv2.imread('messi5.jpg',0)
cv2.imshow('image',img)
k = cv2.waitKey(0)
if k == 27: # wait for ESC key to exit
cv2.destroyAllWindows()
elif k == ord('s'): # wait for 's' key to save and exit
cv2.imwrite('messigray.png',img)
cv2.destroyAllWindows()
@endcode
**warning**
If you are using a 64-bit machine, you will have to modify k = cv2.waitKey(0) line as follows :
k = cv2.waitKey(0) & 0xFF
Using Matplotlib
----------------
Matplotlib is a plotting library for Python which gives you wide variety of plotting methods. You
will see them in coming articles. Here, you will learn how to display image with Matplotlib. You can
zoom images, save it etc using Matplotlib.
@code{.py}
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('messi5.jpg',0)
plt.imshow(img, cmap = 'gray', interpolation = 'bicubic')
plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
plt.show()
@endcode
A screen-shot of the window will look like this :
![image](images/matplotlib_screenshot.jpg)
@sa Plenty of plotting options are available in Matplotlib. Please refer to Matplotlib docs for more
details. Some, we will see on the way. .. warning:: Color image loaded by OpenCV is in BGR mode. But
Matplotlib displays in RGB mode. So color images will not be displayed correctly in Matplotlib if
image is read with OpenCV. Please see the exercises for more details.
Additional Resources
--------------------
-# [Matplotlib Plotting Styles and Features](http://matplotlib.org/api/pyplot_api.html)
Exercises
---------
-# There is some problem when you try to load color image in OpenCV and display it in Matplotlib.
Read [this discussion](http://stackoverflow.com/a/15074748/1134940) and understand it.

View File

@@ -0,0 +1,112 @@
Mouse as a Paint-Brush {#tutorial_py_mouse_handling}
======================
Goal
----
- Learn to handle mouse events in OpenCV
- You will learn these functions : **cv2.setMouseCallback()**
Simple Demo
-----------
Here, we create a simple application which draws a circle on an image wherever we double-click on
it.
First we create a mouse callback function which is executed when a mouse event take place. Mouse
event can be anything related to mouse like left-button down, left-button up, left-button
double-click etc. It gives us the coordinates (x,y) for every mouse event. With this event and
location, we can do whatever we like. To list all available events available, run the following code
in Python terminal:
@code{.py}
import cv2
events = [i for i in dir(cv2) if 'EVENT' in i]
print events
@endcode
Creating mouse callback function has a specific format which is same everywhere. It differs only in
what the function does. So our mouse callback function does one thing, it draws a circle where we
double-click. So see the code below. Code is self-explanatory from comments :
@code{.py}
import cv2
import numpy as np
# mouse callback function
def draw_circle(event,x,y,flags,param):
if event == cv2.EVENT_LBUTTONDBLCLK:
cv2.circle(img,(x,y),100,(255,0,0),-1)
# Create a black image, a window and bind the function to window
img = np.zeros((512,512,3), np.uint8)
cv2.namedWindow('image')
cv2.setMouseCallback('image',draw_circle)
while(1):
cv2.imshow('image',img)
if cv2.waitKey(20) & 0xFF == 27:
break
cv2.destroyAllWindows()
@endcode
More Advanced Demo
------------------
Now we go for a much better application. In this, we draw either rectangles or circles (depending on
the mode we select) by dragging the mouse like we do in Paint application. So our mouse callback
function has two parts, one to draw rectangle and other to draw the circles. This specific example
will be really helpful in creating and understanding some interactive applications like object
tracking, image segmentation etc.
@code{.py}
import cv2
import numpy as np
drawing = False # true if mouse is pressed
mode = True # if True, draw rectangle. Press 'm' to toggle to curve
ix,iy = -1,-1
# mouse callback function
def draw_circle(event,x,y,flags,param):
global ix,iy,drawing,mode
if event == cv2.EVENT_LBUTTONDOWN:
drawing = True
ix,iy = x,y
elif event == cv2.EVENT_MOUSEMOVE:
if drawing == True:
if mode == True:
cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1)
else:
cv2.circle(img,(x,y),5,(0,0,255),-1)
elif event == cv2.EVENT_LBUTTONUP:
drawing = False
if mode == True:
cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1)
else:
cv2.circle(img,(x,y),5,(0,0,255),-1)
@endcode
Next we have to bind this mouse callback function to OpenCV window. In the main loop, we should set
a keyboard binding for key 'm' to toggle between rectangle and circle.
@code{.py}
img = np.zeros((512,512,3), np.uint8)
cv2.namedWindow('image')
cv2.setMouseCallback('image',draw_circle)
while(1):
cv2.imshow('image',img)
k = cv2.waitKey(1) & 0xFF
if k == ord('m'):
mode = not mode
elif k == 27:
break
cv2.destroyAllWindows()
@endcode
Additional Resources
--------------------
Exercises
---------
-# In our last example, we drew filled rectangle. You modify the code to draw an unfilled
rectangle.

View File

@@ -0,0 +1,27 @@
Gui Features in OpenCV {#tutorial_py_table_of_contents_gui}
======================
- @subpage tutorial_py_image_display
Learn to load an
image, display it and save it back
- @subpage tutorial_py_video_display
Learn to play videos,
capture videos from Camera and write it as a video
- @subpage tutorial_py_drawing_functions
Learn to draw lines,
rectangles, ellipses, circles etc with OpenCV
- @subpage tutorial_py_mouse_handling
Draw stuffs with your
mouse
- @subpage tutorial_py_trackbar
Create trackbar to
control certain parameters

View File

@@ -0,0 +1,75 @@
Trackbar as the Color Palette {#tutorial_py_trackbar}
=============================
Goal
----
- Learn to bind trackbar to OpenCV windows
- You will learn these functions : **cv2.getTrackbarPos()**, **cv2.createTrackbar()** etc.
Code Demo
---------
Here we will create a simple application which shows the color you specify. You have a window which
shows the color and three trackbars to specify each of B,G,R colors. You slide the trackbar and
correspondingly window color changes. By default, initial color will be set to Black.
For cv2.getTrackbarPos() function, first argument is the trackbar name, second one is the window
name to which it is attached, third argument is the default value, fourth one is the maximum value
and fifth one is the callback function which is executed everytime trackbar value changes. The
callback function always has a default argument which is the trackbar position. In our case,
function does nothing, so we simply pass.
Another important application of trackbar is to use it as a button or switch. OpenCV, by default,
doesn't have button functionality. So you can use trackbar to get such functionality. In our
application, we have created one switch in which application works only if switch is ON, otherwise
screen is always black.
@code{.py}
import cv2
import numpy as np
def nothing(x):
pass
# Create a black image, a window
img = np.zeros((300,512,3), np.uint8)
cv2.namedWindow('image')
# create trackbars for color change
cv2.createTrackbar('R','image',0,255,nothing)
cv2.createTrackbar('G','image',0,255,nothing)
cv2.createTrackbar('B','image',0,255,nothing)
# create switch for ON/OFF functionality
switch = '0 : OFF \n1 : ON'
cv2.createTrackbar(switch, 'image',0,1,nothing)
while(1):
cv2.imshow('image',img)
k = cv2.waitKey(1) & 0xFF
if k == 27:
break
# get current positions of four trackbars
r = cv2.getTrackbarPos('R','image')
g = cv2.getTrackbarPos('G','image')
b = cv2.getTrackbarPos('B','image')
s = cv2.getTrackbarPos(switch,'image')
if s == 0:
img[:] = 0
else:
img[:] = [b,g,r]
cv2.destroyAllWindows()
@endcode
The screenshot of the application looks like below :
![image](images/trackbar_screenshot.jpg)
Exercises
---------
-# Create a Paint application with adjustable colors and brush radius using trackbars. For drawing,
refer previous tutorial on mouse handling.

View File

@@ -0,0 +1,155 @@
Getting Started with Videos {#tutorial_py_video_display}
===========================
Goal
----
- Learn to read video, display video and save video.
- Learn to capture from Camera and display it.
- You will learn these functions : **cv2.VideoCapture()**, **cv2.VideoWriter()**
Capture Video from Camera
-------------------------
Often, we have to capture live stream with camera. OpenCV provides a very simple interface to this.
Let's capture a video from the camera (I am using the in-built webcam of my laptop), convert it into
grayscale video and display it. Just a simple task to get started.
To capture a video, you need to create a **VideoCapture** object. Its argument can be either the
device index or the name of a video file. Device index is just the number to specify which camera.
Normally one camera will be connected (as in my case). So I simply pass 0 (or -1). You can select
the second camera by passing 1 and so on. After that, you can capture frame-by-frame. But at the
end, don't forget to release the capture.
@code{.py}
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Display the resulting frame
cv2.imshow('frame',gray)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
@endcode
cap.read() returns a bool (True/False). If frame is read correctly, it will be True. So you can
check end of the video by checking this return value.
Sometimes, cap may not have initialized the capture. In that case, this code shows error. You can
check whether it is initialized or not by the method **cap.isOpened()**. If it is True, OK.
Otherwise open it using **cap.open()**.
You can also access some of the features of this video using **cap.get(propId)** method where propId
is a number from 0 to 18. Each number denotes a property of the video (if it is applicable to that
video) and full details can be seen here: [Property
Identifier](http://docs.opencv.org/modules/highgui/doc/reading_and_writing_video.html#videocapture-get).
Some of these values can be modified using **cap.set(propId, value)**. Value is the new value you
want.
For example, I can check the frame width and height by cap.get(3) and cap.get(4). It gives me
640x480 by default. But I want to modify it to 320x240. Just use ret = cap.set(3,320) and
ret = cap.set(4,240).
**note**
If you are getting error, make sure camera is working fine using any other camera application
(like Cheese in Linux).
Playing Video from file
-----------------------
It is same as capturing from Camera, just change camera index with video file name. Also while
displaying the frame, use appropriate time for cv2.waitKey(). If it is too less, video will be very
fast and if it is too high, video will be slow (Well, that is how you can display videos in slow
motion). 25 milliseconds will be OK in normal cases.
@code{.py}
import numpy as np
import cv2
cap = cv2.VideoCapture('vtest.avi')
while(cap.isOpened()):
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('frame',gray)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
@endcode
**note**
Make sure proper versions of ffmpeg or gstreamer is installed. Sometimes, it is a headache to work
with Video Capture mostly due to wrong installation of ffmpeg/gstreamer.
Saving a Video
--------------
So we capture a video, process it frame-by-frame and we want to save that video. For images, it is
very simple, just use cv2.imwrite(). Here a little more work is required.
This time we create a **VideoWriter** object. We should specify the output file name (eg:
output.avi). Then we should specify the **FourCC** code (details in next paragraph). Then number of
frames per second (fps) and frame size should be passed. And last one is **isColor** flag. If it is
True, encoder expect color frame, otherwise it works with grayscale frame.
[FourCC](http://en.wikipedia.org/wiki/FourCC) is a 4-byte code used to specify the video codec. The
list of available codes can be found in [fourcc.org](http://www.fourcc.org/codecs.php). It is
platform dependent. Following codecs works fine for me.
- In Fedora: DIVX, XVID, MJPG, X264, WMV1, WMV2. (XVID is more preferable. MJPG results in high
size video. X264 gives very small size video)
- In Windows: DIVX (More to be tested and added)
- In OSX : *(I don't have access to OSX. Can some one fill this?)*
FourCC code is passed as cv2.VideoWriter_fourcc('M','J','P','G') or
cv2.VideoWriter_fourcc(\*'MJPG) for MJPG.
Below code capture from a Camera, flip every frame in vertical direction and saves it.
@code{.py}
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
while(cap.isOpened()):
ret, frame = cap.read()
if ret==True:
frame = cv2.flip(frame,0)
# write the flipped frame
out.write(frame)
cv2.imshow('frame',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
# Release everything if job is finished
cap.release()
out.release()
cv2.destroyAllWindows()
@endcode
Additional Resources
--------------------
Exercises
---------