added cv::EM, moved CvEM to legacy, added/updated tests

This commit is contained in:
Maria Dimashova
2012-04-06 09:26:11 +00:00
parent cdc5bbc0bc
commit 85fa0e7763
13 changed files with 1726 additions and 1449 deletions

View File

@@ -46,6 +46,7 @@
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/ml/ml.hpp"
#ifdef __cplusplus
extern "C" {
@@ -1761,10 +1762,106 @@ protected:
IplImage* m_mask;
};
/****************************************************************************************\
* Expectation - Maximization *
\****************************************************************************************/
struct CV_EXPORTS_W_MAP CvEMParams
{
CvEMParams();
CvEMParams( int nclusters, int cov_mat_type=1/*CvEM::COV_MAT_DIAGONAL*/,
int start_step=0/*CvEM::START_AUTO_STEP*/,
CvTermCriteria term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON),
const CvMat* probs=0, const CvMat* weights=0, const CvMat* means=0, const CvMat** covs=0 );
CV_PROP_RW int nclusters;
CV_PROP_RW int cov_mat_type;
CV_PROP_RW int start_step;
const CvMat* probs;
const CvMat* weights;
const CvMat* means;
const CvMat** covs;
CV_PROP_RW CvTermCriteria term_crit;
};
class CV_EXPORTS_W CvEM : public CvStatModel
{
public:
// Type of covariation matrices
enum { COV_MAT_SPHERICAL=cv::EM::COV_MAT_SPHERICAL,
COV_MAT_DIAGONAL =cv::EM::COV_MAT_DIAGONAL,
COV_MAT_GENERIC =cv::EM::COV_MAT_GENERIC };
// The initial step
enum { START_E_STEP=cv::EM::START_E_STEP,
START_M_STEP=cv::EM::START_M_STEP,
START_AUTO_STEP=cv::EM::START_AUTO_STEP };
CV_WRAP CvEM();
CvEM( const CvMat* samples, const CvMat* sampleIdx=0,
CvEMParams params=CvEMParams(), CvMat* labels=0 );
virtual ~CvEM();
virtual bool train( const CvMat* samples, const CvMat* sampleIdx=0,
CvEMParams params=CvEMParams(), CvMat* labels=0 );
virtual float predict( const CvMat* sample, CV_OUT CvMat* probs, bool isNormalize=true ) const;
#ifndef SWIG
CV_WRAP CvEM( const cv::Mat& samples, const cv::Mat& sampleIdx=cv::Mat(),
CvEMParams params=CvEMParams() );
CV_WRAP virtual bool train( const cv::Mat& samples,
const cv::Mat& sampleIdx=cv::Mat(),
CvEMParams params=CvEMParams(),
CV_OUT cv::Mat* labels=0 );
CV_WRAP virtual float predict( const cv::Mat& sample, CV_OUT cv::Mat* probs=0, bool isNormalize=true ) const;
CV_WRAP virtual double calcLikelihood( const cv::Mat &sample ) const;
CV_WRAP int getNClusters() const;
CV_WRAP const cv::Mat& getMeans() const;
CV_WRAP void getCovs(CV_OUT std::vector<cv::Mat>& covs) const;
CV_WRAP const cv::Mat& getWeights() const;
CV_WRAP const cv::Mat& getProbs() const;
CV_WRAP inline double getLikelihood() const { return emObj.isTrained() ? likelihood : DBL_MAX; }
#endif
CV_WRAP virtual void clear();
int get_nclusters() const;
const CvMat* get_means() const;
const CvMat** get_covs() const;
const CvMat* get_weights() const;
const CvMat* get_probs() const;
inline double get_log_likelihood() const { return getLikelihood(); }
virtual void read( CvFileStorage* fs, CvFileNode* node );
virtual void write( CvFileStorage* fs, const char* name ) const;
protected:
void set_mat_hdrs();
cv::EM emObj;
cv::Mat probs;
double likelihood;
CvMat meansHdr;
std::vector<CvMat> covsHdrs;
std::vector<CvMat*> covsPtrs;
CvMat weightsHdr;
CvMat probsHdr;
};
namespace cv
{
typedef CvEMParams EMParams;
typedef CvEM ExpectationMaximization;
/*!
The Patch Generator class
*/