fixed build in gpu module (SURF and ORB)
This commit is contained in:
parent
46248851bf
commit
85c904a4ba
@ -3,7 +3,7 @@ if(ANDROID OR IOS)
|
||||
endif()
|
||||
|
||||
set(the_description "GPU-accelerated Computer Vision")
|
||||
ocv_add_module(gpu opencv_imgproc opencv_calib3d opencv_objdetect opencv_video)
|
||||
ocv_add_module(gpu opencv_imgproc opencv_calib3d opencv_objdetect opencv_video opencv_nonfree)
|
||||
|
||||
ocv_module_include_directories("${CMAKE_CURRENT_SOURCE_DIR}/src/cuda")
|
||||
|
||||
|
@ -1566,13 +1566,12 @@ public:
|
||||
|
||||
void releaseMemory();
|
||||
|
||||
// SURF parameters;
|
||||
int extended;
|
||||
int upright;
|
||||
// SURF parameters
|
||||
double hessianThreshold;
|
||||
|
||||
int nOctaves;
|
||||
int nOctaveLayers;
|
||||
int nOctaves;
|
||||
int nOctaveLayers;
|
||||
bool extended;
|
||||
bool upright;
|
||||
|
||||
//! max keypoints = min(keypointsRatio * img.size().area(), 65535)
|
||||
float keypointsRatio;
|
||||
@ -1662,9 +1661,8 @@ public:
|
||||
};
|
||||
|
||||
//! Constructor
|
||||
//! n_features - the number of desired features
|
||||
//! detector_params - parameters to use
|
||||
explicit ORB_GPU(size_t n_features = 500, float scaleFactor = 1.2f, int nlevels = 3);
|
||||
explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 3, int edgeThreshold = 31,
|
||||
int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);
|
||||
|
||||
//! Compute the ORB features on an image
|
||||
//! image - the image to compute the features (supports only CV_8UC1 images)
|
||||
@ -1690,7 +1688,6 @@ public:
|
||||
//! returns the descriptor size in bytes
|
||||
inline int descriptorSize() const { return kBytes; }
|
||||
|
||||
void setParams(size_t n_features, float scaleFactor, int nlevels);
|
||||
inline void setFastParams(int threshold, bool nonmaxSupression = true)
|
||||
{
|
||||
fastDetector_.threshold = threshold;
|
||||
@ -1714,7 +1711,14 @@ private:
|
||||
|
||||
void mergeKeyPoints(GpuMat& keypoints);
|
||||
|
||||
ORB params_;
|
||||
int nFeatures_;
|
||||
float scaleFactor_;
|
||||
int nLevels_;
|
||||
int edgeThreshold_;
|
||||
int firstLevel_;
|
||||
int WTA_K_;
|
||||
int scoreType_;
|
||||
int patchSize_;
|
||||
|
||||
// The number of desired features per scale
|
||||
std::vector<size_t> n_features_per_level_;
|
||||
|
@ -48,14 +48,13 @@ using namespace cv::gpu;
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
cv::gpu::ORB_GPU::ORB_GPU(size_t, float, int) : fastDetector_(0) { throw_nogpu(); }
|
||||
cv::gpu::ORB_GPU::ORB_GPU(int, float, int, int, int, int, int, int) { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::operator()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::downloadKeyPoints(GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::convertKeyPoints(Mat&, std::vector<KeyPoint>&) { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::setParams(size_t, float, int) { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::release() { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat&, const GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::ORB_GPU::computeKeyPointsPyramid() { throw_nogpu(); }
|
||||
@ -83,16 +82,6 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
}}}
|
||||
|
||||
cv::gpu::ORB_GPU::ORB_GPU(size_t n_features, float scaleFactor, int nlevels) :
|
||||
fastDetector_(DEFAULT_FAST_THRESHOLD)
|
||||
{
|
||||
setParams(n_features, scaleFactor, nlevels);
|
||||
|
||||
blurFilter = createGaussianFilter_GPU(CV_8UC1, Size(7, 7), 2, 2, BORDER_REFLECT_101);
|
||||
|
||||
blurForDescriptor = false;
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
const float HARRIS_K = 0.04f;
|
||||
@ -407,27 +396,27 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::ORB_GPU::setParams(size_t n_features, float scaleFactor, int nlevels)
|
||||
{
|
||||
params_ = ORB((int)n_features, scaleFactor, nlevels);
|
||||
|
||||
cv::gpu::ORB_GPU::ORB_GPU(int nFeatures, float scaleFactor, int nLevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize) :
|
||||
nFeatures_(nFeatures), scaleFactor_(scaleFactor), nLevels_(nLevels), edgeThreshold_(edgeThreshold), firstLevel_(firstLevel), WTA_K_(WTA_K),
|
||||
scoreType_(scoreType), patchSize_(patchSize),
|
||||
fastDetector_(DEFAULT_FAST_THRESHOLD)
|
||||
{
|
||||
// fill the extractors and descriptors for the corresponding scales
|
||||
int n_levels = static_cast<int>(params_.n_levels_);
|
||||
float factor = 1.0f / params_.scale_factor_;
|
||||
float n_desired_features_per_scale = n_features * (1.0f - factor) / (1.0f - std::pow(factor, n_levels));
|
||||
float factor = 1.0f / scaleFactor_;
|
||||
float n_desired_features_per_scale = nFeatures_ * (1.0f - factor) / (1.0f - std::pow(factor, nLevels_));
|
||||
|
||||
n_features_per_level_.resize(n_levels);
|
||||
n_features_per_level_.resize(nLevels_);
|
||||
int sum_n_features = 0;
|
||||
for (int level = 0; level < n_levels - 1; ++level)
|
||||
for (int level = 0; level < nLevels_ - 1; ++level)
|
||||
{
|
||||
n_features_per_level_[level] = cvRound(n_desired_features_per_scale);
|
||||
sum_n_features += n_features_per_level_[level];
|
||||
n_desired_features_per_scale *= factor;
|
||||
}
|
||||
n_features_per_level_[n_levels - 1] = n_features - sum_n_features;
|
||||
n_features_per_level_[nLevels_ - 1] = nFeatures - sum_n_features;
|
||||
|
||||
// pre-compute the end of a row in a circular patch
|
||||
int half_patch_size = params_.patch_size_ / 2;
|
||||
int half_patch_size = patchSize_ / 2;
|
||||
vector<int> u_max(half_patch_size + 1);
|
||||
for (int v = 0; v <= half_patch_size * std::sqrt(2.f) / 2 + 1; ++v)
|
||||
u_max[v] = cvRound(std::sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v)));
|
||||
@ -447,17 +436,17 @@ void cv::gpu::ORB_GPU::setParams(size_t n_features, float scaleFactor, int nleve
|
||||
const int npoints = 512;
|
||||
Point pattern_buf[npoints];
|
||||
const Point* pattern0 = (const Point*)bit_pattern_31_;
|
||||
if (params_.patch_size_ != 31)
|
||||
if (patchSize_ != 31)
|
||||
{
|
||||
pattern0 = pattern_buf;
|
||||
makeRandomPattern(params_.patch_size_, pattern_buf, npoints);
|
||||
makeRandomPattern(patchSize_, pattern_buf, npoints);
|
||||
}
|
||||
|
||||
CV_Assert(params_.WTA_K_ == 2 || params_.WTA_K_ == 3 || params_.WTA_K_ == 4);
|
||||
CV_Assert(WTA_K_ == 2 || WTA_K_ == 3 || WTA_K_ == 4);
|
||||
|
||||
Mat h_pattern;
|
||||
|
||||
if (params_.WTA_K_ == 2)
|
||||
if (WTA_K_ == 2)
|
||||
{
|
||||
h_pattern.create(2, npoints, CV_32SC1);
|
||||
|
||||
@ -473,17 +462,21 @@ void cv::gpu::ORB_GPU::setParams(size_t n_features, float scaleFactor, int nleve
|
||||
else
|
||||
{
|
||||
int ntuples = descriptorSize() * 4;
|
||||
initializeOrbPattern(pattern0, h_pattern, ntuples, params_.WTA_K_, npoints);
|
||||
initializeOrbPattern(pattern0, h_pattern, ntuples, WTA_K_, npoints);
|
||||
}
|
||||
|
||||
pattern_.upload(h_pattern);
|
||||
|
||||
blurFilter = createGaussianFilter_GPU(CV_8UC1, Size(7, 7), 2, 2, BORDER_REFLECT_101);
|
||||
|
||||
blurForDescriptor = false;
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
inline float getScale(const ORB::CommonParams& params, int level)
|
||||
inline float getScale(float scaleFactor, int firstLevel, int level)
|
||||
{
|
||||
return pow(params.scale_factor_, level - static_cast<int>(params.first_level_));
|
||||
return pow(scaleFactor, level - firstLevel);
|
||||
}
|
||||
}
|
||||
|
||||
@ -492,12 +485,12 @@ void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat& image, const GpuMat& mas
|
||||
CV_Assert(image.type() == CV_8UC1);
|
||||
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));
|
||||
|
||||
imagePyr_.resize(params_.n_levels_);
|
||||
maskPyr_.resize(params_.n_levels_);
|
||||
imagePyr_.resize(nLevels_);
|
||||
maskPyr_.resize(nLevels_);
|
||||
|
||||
for (int level = 0; level < static_cast<int>(params_.n_levels_); ++level)
|
||||
for (int level = 0; level < nLevels_; ++level)
|
||||
{
|
||||
float scale = 1.0f / getScale(params_, level);
|
||||
float scale = 1.0f / getScale(scaleFactor_, firstLevel_, level);
|
||||
|
||||
Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale));
|
||||
|
||||
@ -506,9 +499,9 @@ void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat& image, const GpuMat& mas
|
||||
maskPyr_[level].setTo(Scalar::all(255));
|
||||
|
||||
// Compute the resized image
|
||||
if (level != static_cast<int>(params_.first_level_))
|
||||
if (level != firstLevel_)
|
||||
{
|
||||
if (level < static_cast<int>(params_.first_level_))
|
||||
if (level < firstLevel_)
|
||||
{
|
||||
resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR);
|
||||
|
||||
@ -534,7 +527,7 @@ void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat& image, const GpuMat& mas
|
||||
// Filter keypoints by image border
|
||||
ensureSizeIsEnough(sz, CV_8UC1, buf_);
|
||||
buf_.setTo(Scalar::all(0));
|
||||
Rect inner(params_.edge_threshold_, params_.edge_threshold_, sz.width - 2 * params_.edge_threshold_, sz.height - 2 * params_.edge_threshold_);
|
||||
Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_);
|
||||
buf_(inner).setTo(Scalar::all(255));
|
||||
|
||||
bitwise_and(maskPyr_[level], buf_, maskPyr_[level]);
|
||||
@ -566,12 +559,12 @@ void cv::gpu::ORB_GPU::computeKeyPointsPyramid()
|
||||
{
|
||||
using namespace cv::gpu::device::orb;
|
||||
|
||||
int half_patch_size = params_.patch_size_ / 2;
|
||||
int half_patch_size = patchSize_ / 2;
|
||||
|
||||
keyPointsPyr_.resize(params_.n_levels_);
|
||||
keyPointsCount_.resize(params_.n_levels_);
|
||||
keyPointsPyr_.resize(nLevels_);
|
||||
keyPointsCount_.resize(nLevels_);
|
||||
|
||||
for (int level = 0; level < static_cast<int>(params_.n_levels_); ++level)
|
||||
for (int level = 0; level < nLevels_; ++level)
|
||||
{
|
||||
keyPointsCount_[level] = fastDetector_.calcKeyPointsLocation(imagePyr_[level], maskPyr_[level]);
|
||||
|
||||
@ -582,7 +575,7 @@ void cv::gpu::ORB_GPU::computeKeyPointsPyramid()
|
||||
|
||||
int n_features = n_features_per_level_[level];
|
||||
|
||||
if (params_.score_type_ == ORB::CommonParams::HARRIS_SCORE)
|
||||
if (scoreType_ == ORB::HARRIS_SCORE)
|
||||
{
|
||||
// Keep more points than necessary as FAST does not give amazing corners
|
||||
cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features);
|
||||
@ -605,7 +598,7 @@ void cv::gpu::ORB_GPU::computeDescriptors(GpuMat& descriptors)
|
||||
|
||||
int nAllkeypoints = 0;
|
||||
|
||||
for (size_t level = 0; level < params_.n_levels_; ++level)
|
||||
for (int level = 0; level < nLevels_; ++level)
|
||||
nAllkeypoints += keyPointsCount_[level];
|
||||
|
||||
if (nAllkeypoints == 0)
|
||||
@ -618,7 +611,7 @@ void cv::gpu::ORB_GPU::computeDescriptors(GpuMat& descriptors)
|
||||
|
||||
int offset = 0;
|
||||
|
||||
for (size_t level = 0; level < params_.n_levels_; ++level)
|
||||
for (int level = 0; level < nLevels_; ++level)
|
||||
{
|
||||
GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);
|
||||
|
||||
@ -630,7 +623,7 @@ void cv::gpu::ORB_GPU::computeDescriptors(GpuMat& descriptors)
|
||||
}
|
||||
|
||||
computeOrbDescriptor_gpu(blurForDescriptor ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
|
||||
keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), params_.WTA_K_, 0);
|
||||
keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), WTA_K_, 0);
|
||||
|
||||
offset += keyPointsCount_[level];
|
||||
}
|
||||
@ -642,7 +635,7 @@ void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat& keypoints)
|
||||
|
||||
int nAllkeypoints = 0;
|
||||
|
||||
for (size_t level = 0; level < params_.n_levels_; ++level)
|
||||
for (int level = 0; level < nLevels_; ++level)
|
||||
nAllkeypoints += keyPointsCount_[level];
|
||||
|
||||
if (nAllkeypoints == 0)
|
||||
@ -655,13 +648,13 @@ void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat& keypoints)
|
||||
|
||||
int offset = 0;
|
||||
|
||||
for (int level = 0; level < static_cast<int>(params_.n_levels_); ++level)
|
||||
for (int level = 0; level < nLevels_; ++level)
|
||||
{
|
||||
float sf = getScale(params_, level);
|
||||
float sf = getScale(scaleFactor_, firstLevel_, level);
|
||||
|
||||
GpuMat keyPointsRange = keypoints.colRange(offset, offset + keyPointsCount_[level]);
|
||||
|
||||
float locScale = level != static_cast<int>(params_.first_level_) ? sf : 1.0f;
|
||||
float locScale = level != firstLevel_ ? sf : 1.0f;
|
||||
|
||||
mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, 0);
|
||||
|
||||
@ -669,7 +662,7 @@ void cv::gpu::ORB_GPU::mergeKeyPoints(GpuMat& keypoints)
|
||||
keyPointsPyr_[level](Range(1, 3), Range(0, keyPointsCount_[level])).copyTo(range);
|
||||
|
||||
keyPointsRange.row(4).setTo(Scalar::all(level));
|
||||
keyPointsRange.row(5).setTo(Scalar::all(params_.patch_size_ * sf));
|
||||
keyPointsRange.row(5).setTo(Scalar::all(patchSize_ * sf));
|
||||
|
||||
offset += keyPointsCount_[level];
|
||||
}
|
||||
|
@ -109,32 +109,26 @@ namespace
|
||||
return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
|
||||
}
|
||||
|
||||
class SURF_GPU_Invoker : private CvSURFParams
|
||||
class SURF_GPU_Invoker
|
||||
{
|
||||
public:
|
||||
SURF_GPU_Invoker(SURF_GPU& surf, const GpuMat& img, const GpuMat& mask) :
|
||||
CvSURFParams(surf),
|
||||
|
||||
sum(surf.sum), mask1(surf.mask1), maskSum(surf.maskSum), intBuffer(surf.intBuffer), det(surf.det), trace(surf.trace),
|
||||
|
||||
maxPosBuffer(surf.maxPosBuffer),
|
||||
|
||||
surf_(surf),
|
||||
img_cols(img.cols), img_rows(img.rows),
|
||||
|
||||
use_mask(!mask.empty())
|
||||
{
|
||||
CV_Assert(!img.empty() && img.type() == CV_8UC1);
|
||||
CV_Assert(mask.empty() || (mask.size() == img.size() && mask.type() == CV_8UC1));
|
||||
CV_Assert(nOctaves > 0 && nOctaveLayers > 0);
|
||||
CV_Assert(surf_.nOctaves > 0 && surf_.nOctaveLayers > 0);
|
||||
CV_Assert(TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS));
|
||||
|
||||
const int min_size = calcSize(nOctaves - 1, 0);
|
||||
const int min_size = calcSize(surf_.nOctaves - 1, 0);
|
||||
CV_Assert(img_rows - min_size >= 0);
|
||||
CV_Assert(img_cols - min_size >= 0);
|
||||
|
||||
const int layer_rows = img_rows >> (nOctaves - 1);
|
||||
const int layer_cols = img_cols >> (nOctaves - 1);
|
||||
const int min_margin = ((calcSize((nOctaves - 1), 2) >> 1) >> (nOctaves - 1)) + 1;
|
||||
const int layer_rows = img_rows >> (surf_.nOctaves - 1);
|
||||
const int layer_cols = img_cols >> (surf_.nOctaves - 1);
|
||||
const int min_margin = ((calcSize((surf_.nOctaves - 1), 2) >> 1) >> (surf_.nOctaves - 1)) + 1;
|
||||
CV_Assert(layer_rows - 2 * min_margin > 0);
|
||||
CV_Assert(layer_cols - 2 * min_margin > 0);
|
||||
|
||||
@ -143,44 +137,44 @@ namespace
|
||||
|
||||
CV_Assert(maxFeatures > 0);
|
||||
|
||||
counters.create(1, nOctaves + 1, CV_32SC1);
|
||||
counters.create(1, surf_.nOctaves + 1, CV_32SC1);
|
||||
counters.setTo(Scalar::all(0));
|
||||
|
||||
loadGlobalConstants(maxCandidates, maxFeatures, img_rows, img_cols, nOctaveLayers, static_cast<float>(hessianThreshold));
|
||||
loadGlobalConstants(maxCandidates, maxFeatures, img_rows, img_cols, surf_.nOctaveLayers, static_cast<float>(surf_.hessianThreshold));
|
||||
|
||||
bindImgTex(img);
|
||||
|
||||
integralBuffered(img, sum, intBuffer);
|
||||
bindSumTex(sum);
|
||||
integralBuffered(img, surf_.sum, surf_.intBuffer);
|
||||
bindSumTex(surf_.sum);
|
||||
|
||||
if (use_mask)
|
||||
{
|
||||
min(mask, 1.0, mask1);
|
||||
integralBuffered(mask1, maskSum, intBuffer);
|
||||
bindMaskSumTex(maskSum);
|
||||
min(mask, 1.0, surf_.mask1);
|
||||
integralBuffered(surf_.mask1, surf_.maskSum, surf_.intBuffer);
|
||||
bindMaskSumTex(surf_.maskSum);
|
||||
}
|
||||
}
|
||||
|
||||
void detectKeypoints(GpuMat& keypoints)
|
||||
{
|
||||
ensureSizeIsEnough(img_rows * (nOctaveLayers + 2), img_cols, CV_32FC1, det);
|
||||
ensureSizeIsEnough(img_rows * (nOctaveLayers + 2), img_cols, CV_32FC1, trace);
|
||||
ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.det);
|
||||
ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.trace);
|
||||
|
||||
ensureSizeIsEnough(1, maxCandidates, CV_32SC4, maxPosBuffer);
|
||||
ensureSizeIsEnough(1, maxCandidates, CV_32SC4, surf_.maxPosBuffer);
|
||||
ensureSizeIsEnough(SURF_GPU::SF_FEATURE_STRIDE, maxFeatures, CV_32FC1, keypoints);
|
||||
keypoints.setTo(Scalar::all(0));
|
||||
|
||||
for (int octave = 0; octave < nOctaves; ++octave)
|
||||
for (int octave = 0; octave < surf_.nOctaves; ++octave)
|
||||
{
|
||||
const int layer_rows = img_rows >> octave;
|
||||
const int layer_cols = img_cols >> octave;
|
||||
|
||||
loadOctaveConstants(octave, layer_rows, layer_cols);
|
||||
|
||||
icvCalcLayerDetAndTrace_gpu(det, trace, img_rows, img_cols, octave, nOctaveLayers);
|
||||
icvCalcLayerDetAndTrace_gpu(surf_.det, surf_.trace, img_rows, img_cols, octave, surf_.nOctaveLayers);
|
||||
|
||||
icvFindMaximaInLayer_gpu(det, trace, maxPosBuffer.ptr<int4>(), counters.ptr<unsigned int>() + 1 + octave,
|
||||
img_rows, img_cols, octave, use_mask, nOctaveLayers);
|
||||
icvFindMaximaInLayer_gpu(surf_.det, surf_.trace, surf_.maxPosBuffer.ptr<int4>(), counters.ptr<unsigned int>() + 1 + octave,
|
||||
img_rows, img_cols, octave, use_mask, surf_.nOctaveLayers);
|
||||
|
||||
unsigned int maxCounter;
|
||||
cudaSafeCall( cudaMemcpy(&maxCounter, counters.ptr<unsigned int>() + 1 + octave, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
@ -188,7 +182,7 @@ namespace
|
||||
|
||||
if (maxCounter > 0)
|
||||
{
|
||||
icvInterpolateKeypoint_gpu(det, maxPosBuffer.ptr<int4>(), maxCounter,
|
||||
icvInterpolateKeypoint_gpu(surf_.det, surf_.maxPosBuffer.ptr<int4>(), maxCounter,
|
||||
keypoints.ptr<float>(SURF_GPU::SF_X), keypoints.ptr<float>(SURF_GPU::SF_Y),
|
||||
keypoints.ptr<int>(SURF_GPU::SF_LAPLACIAN), keypoints.ptr<float>(SURF_GPU::SF_SIZE),
|
||||
keypoints.ptr<float>(SURF_GPU::SF_HESSIAN), counters.ptr<unsigned int>());
|
||||
@ -200,7 +194,7 @@ namespace
|
||||
|
||||
keypoints.cols = featureCounter;
|
||||
|
||||
if (upright)
|
||||
if (surf_.upright)
|
||||
keypoints.row(SURF_GPU::SF_DIR).setTo(Scalar::all(90.0));
|
||||
else
|
||||
findOrientation(keypoints);
|
||||
@ -228,15 +222,7 @@ namespace
|
||||
}
|
||||
|
||||
private:
|
||||
GpuMat& sum;
|
||||
GpuMat& mask1;
|
||||
GpuMat& maskSum;
|
||||
GpuMat& intBuffer;
|
||||
|
||||
GpuMat& det;
|
||||
GpuMat& trace;
|
||||
|
||||
GpuMat& maxPosBuffer;
|
||||
SURF_GPU& surf_;
|
||||
|
||||
int img_cols, img_rows;
|
||||
|
||||
@ -306,7 +292,7 @@ void cv::gpu::SURF_GPU::uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMa
|
||||
|
||||
namespace
|
||||
{
|
||||
int getPointOctave(float size, const CvSURFParams& params)
|
||||
int getPointOctave(float size, const SURF_GPU& params)
|
||||
{
|
||||
int best_octave = 0;
|
||||
float min_diff = numeric_limits<float>::max();
|
||||
|
@ -61,6 +61,7 @@
|
||||
#include "opencv2/ts/ts.hpp"
|
||||
#include "opencv2/ts/ts_perf.hpp"
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
|
||||
#include "utility.hpp"
|
||||
#include "interpolation.hpp"
|
||||
|
@ -385,7 +385,7 @@ TEST_P(Sqrt, Array)
|
||||
|
||||
gpuRes.download(dst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 1e-6);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Arithm, Sqrt, Combine(
|
||||
|
@ -96,16 +96,16 @@ struct SURF : TestWithParam<cv::gpu::DeviceInfo>
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
|
||||
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
mask = cv::Mat(image.size(), CV_8UC1, cv::Scalar::all(1));
|
||||
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
|
||||
|
||||
cv::SURF fdetector_gold;
|
||||
|
||||
cv::SURF fdetector_gold;
|
||||
fdetector_gold.extended = false;
|
||||
fdetector_gold(image, mask, keypoints_gold, descriptors_gold);
|
||||
fdetector_gold(image, mask, keypoints_gold, descriptors_gold);
|
||||
}
|
||||
};
|
||||
|
||||
@ -135,7 +135,7 @@ TEST_P(SURF, Accuracy)
|
||||
|
||||
dev_descriptors.download(descriptors);
|
||||
|
||||
cv::BruteForceMatcher< cv::L2<float> > matcher;
|
||||
cv::BFMatcher matcher(cv::NORM_L2);
|
||||
std::vector<cv::DMatch> matches;
|
||||
|
||||
matcher.match(cv::Mat(static_cast<int>(keypoints_gold.size()), 64, CV_32FC1, &descriptors_gold[0]), descriptors, matches);
|
||||
@ -696,7 +696,7 @@ TEST_P(ORB, Accuracy)
|
||||
|
||||
d_descriptors.download(descriptors);
|
||||
|
||||
cv::BruteForceMatcher<cv::Hamming> matcher;
|
||||
cv::BFMatcher matcher(cv::NORM_HAMMING);
|
||||
std::vector<cv::DMatch> matches;
|
||||
|
||||
matcher.match(descriptors_gold, descriptors, matches);
|
||||
|
@ -334,6 +334,9 @@ PARAM_TEST_CASE(GaussianBlur, cv::gpu::DeviceInfo, cv::Size, UseRoi)
|
||||
|
||||
TEST_P(GaussianBlur, Rgba)
|
||||
{
|
||||
if (!devInfo.supports(cv::gpu::FEATURE_SET_COMPUTE_20) && ksize.height > 16)
|
||||
return;
|
||||
|
||||
cv::Mat dst_rgba;
|
||||
|
||||
cv::gpu::GpuMat dev_dst_rgba;
|
||||
@ -347,6 +350,9 @@ TEST_P(GaussianBlur, Rgba)
|
||||
|
||||
TEST_P(GaussianBlur, Gray)
|
||||
{
|
||||
if (!devInfo.supports(cv::gpu::FEATURE_SET_COMPUTE_20) && ksize.height > 16)
|
||||
return;
|
||||
|
||||
cv::Mat dst_gray;
|
||||
|
||||
cv::gpu::GpuMat dev_dst_gray;
|
||||
|
Loading…
x
Reference in New Issue
Block a user