HAL moved back to core
This commit is contained in:
@@ -72,6 +72,7 @@
|
||||
@defgroup core_cluster Clustering
|
||||
@defgroup core_utils Utility and system functions and macros
|
||||
@{
|
||||
@defgroup core_utils_sse SSE utilities
|
||||
@defgroup core_utils_neon NEON utilities
|
||||
@}
|
||||
@defgroup core_opengl OpenGL interoperability
|
||||
@@ -80,6 +81,16 @@
|
||||
@defgroup core_directx DirectX interoperability
|
||||
@defgroup core_eigen Eigen support
|
||||
@defgroup core_opencl OpenCL support
|
||||
@defgroup core_va_intel Intel VA-API/OpenCL (CL-VA) interoperability
|
||||
@defgroup core_hal Hardware Acceleration Layer
|
||||
@{
|
||||
@defgroup core_hal_functions Functions
|
||||
@defgroup core_hal_interface Interface
|
||||
@defgroup core_hal_intrin Universal intrinsics
|
||||
@{
|
||||
@defgroup core_hal_intrin_impl Private implementation helpers
|
||||
@}
|
||||
@}
|
||||
@}
|
||||
*/
|
||||
|
||||
|
@@ -50,10 +50,10 @@
|
||||
#endif
|
||||
|
||||
#include <climits>
|
||||
#include <algorithm>
|
||||
|
||||
#include "opencv2/core/cvdef.h"
|
||||
#include "opencv2/core/cvstd.hpp"
|
||||
#include "opencv2/hal.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@@ -679,8 +679,11 @@ CV_EXPORTS void setUseIPP(bool flag);
|
||||
|
||||
//! @} core_utils
|
||||
|
||||
|
||||
|
||||
|
||||
} // cv
|
||||
|
||||
#include "opencv2/hal/neon_utils.hpp"
|
||||
#include "opencv2/core/neon_utils.hpp"
|
||||
|
||||
#endif //__OPENCV_CORE_BASE_HPP__
|
||||
|
@@ -45,6 +45,9 @@
|
||||
#ifndef __OPENCV_CORE_CVDEF_H__
|
||||
#define __OPENCV_CORE_CVDEF_H__
|
||||
|
||||
//! @addtogroup core_utils
|
||||
//! @{
|
||||
|
||||
#if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300
|
||||
# define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */
|
||||
#endif
|
||||
@@ -56,7 +59,265 @@
|
||||
#undef abs
|
||||
#undef Complex
|
||||
|
||||
#include "opencv2/hal/defs.h"
|
||||
#if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300
|
||||
# define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
#include "opencv2/core/hal/interface.h"
|
||||
|
||||
#if defined __ICL
|
||||
# define CV_ICC __ICL
|
||||
#elif defined __ICC
|
||||
# define CV_ICC __ICC
|
||||
#elif defined __ECL
|
||||
# define CV_ICC __ECL
|
||||
#elif defined __ECC
|
||||
# define CV_ICC __ECC
|
||||
#elif defined __INTEL_COMPILER
|
||||
# define CV_ICC __INTEL_COMPILER
|
||||
#endif
|
||||
|
||||
#ifndef CV_INLINE
|
||||
# if defined __cplusplus
|
||||
# define CV_INLINE static inline
|
||||
# elif defined _MSC_VER
|
||||
# define CV_INLINE __inline
|
||||
# else
|
||||
# define CV_INLINE static
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined CV_ICC && !defined CV_ENABLE_UNROLLED
|
||||
# define CV_ENABLE_UNROLLED 0
|
||||
#else
|
||||
# define CV_ENABLE_UNROLLED 1
|
||||
#endif
|
||||
|
||||
#ifdef __GNUC__
|
||||
# define CV_DECL_ALIGNED(x) __attribute__ ((aligned (x)))
|
||||
#elif defined _MSC_VER
|
||||
# define CV_DECL_ALIGNED(x) __declspec(align(x))
|
||||
#else
|
||||
# define CV_DECL_ALIGNED(x)
|
||||
#endif
|
||||
|
||||
/* CPU features and intrinsics support */
|
||||
#define CV_CPU_NONE 0
|
||||
#define CV_CPU_MMX 1
|
||||
#define CV_CPU_SSE 2
|
||||
#define CV_CPU_SSE2 3
|
||||
#define CV_CPU_SSE3 4
|
||||
#define CV_CPU_SSSE3 5
|
||||
#define CV_CPU_SSE4_1 6
|
||||
#define CV_CPU_SSE4_2 7
|
||||
#define CV_CPU_POPCNT 8
|
||||
|
||||
#define CV_CPU_AVX 10
|
||||
#define CV_CPU_AVX2 11
|
||||
#define CV_CPU_FMA3 12
|
||||
|
||||
#define CV_CPU_AVX_512F 13
|
||||
#define CV_CPU_AVX_512BW 14
|
||||
#define CV_CPU_AVX_512CD 15
|
||||
#define CV_CPU_AVX_512DQ 16
|
||||
#define CV_CPU_AVX_512ER 17
|
||||
#define CV_CPU_AVX_512IFMA512 18
|
||||
#define CV_CPU_AVX_512PF 19
|
||||
#define CV_CPU_AVX_512VBMI 20
|
||||
#define CV_CPU_AVX_512VL 21
|
||||
|
||||
#define CV_CPU_NEON 100
|
||||
|
||||
// when adding to this list remember to update the following enum
|
||||
#define CV_HARDWARE_MAX_FEATURE 255
|
||||
|
||||
/** @brief Available CPU features.
|
||||
*/
|
||||
enum CpuFeatures {
|
||||
CPU_MMX = 1,
|
||||
CPU_SSE = 2,
|
||||
CPU_SSE2 = 3,
|
||||
CPU_SSE3 = 4,
|
||||
CPU_SSSE3 = 5,
|
||||
CPU_SSE4_1 = 6,
|
||||
CPU_SSE4_2 = 7,
|
||||
CPU_POPCNT = 8,
|
||||
|
||||
CPU_AVX = 10,
|
||||
CPU_AVX2 = 11,
|
||||
CPU_FMA3 = 12,
|
||||
|
||||
CPU_AVX_512F = 13,
|
||||
CPU_AVX_512BW = 14,
|
||||
CPU_AVX_512CD = 15,
|
||||
CPU_AVX_512DQ = 16,
|
||||
CPU_AVX_512ER = 17,
|
||||
CPU_AVX_512IFMA512 = 18,
|
||||
CPU_AVX_512PF = 19,
|
||||
CPU_AVX_512VBMI = 20,
|
||||
CPU_AVX_512VL = 21,
|
||||
|
||||
CPU_NEON = 100
|
||||
};
|
||||
|
||||
// do not include SSE/AVX/NEON headers for NVCC compiler
|
||||
#ifndef __CUDACC__
|
||||
|
||||
#if defined __SSE2__ || defined _M_X64 || (defined _M_IX86_FP && _M_IX86_FP >= 2)
|
||||
# include <emmintrin.h>
|
||||
# define CV_MMX 1
|
||||
# define CV_SSE 1
|
||||
# define CV_SSE2 1
|
||||
# if defined __SSE3__ || (defined _MSC_VER && _MSC_VER >= 1500)
|
||||
# include <pmmintrin.h>
|
||||
# define CV_SSE3 1
|
||||
# endif
|
||||
# if defined __SSSE3__ || (defined _MSC_VER && _MSC_VER >= 1500)
|
||||
# include <tmmintrin.h>
|
||||
# define CV_SSSE3 1
|
||||
# endif
|
||||
# if defined __SSE4_1__ || (defined _MSC_VER && _MSC_VER >= 1500)
|
||||
# include <smmintrin.h>
|
||||
# define CV_SSE4_1 1
|
||||
# endif
|
||||
# if defined __SSE4_2__ || (defined _MSC_VER && _MSC_VER >= 1500)
|
||||
# include <nmmintrin.h>
|
||||
# define CV_SSE4_2 1
|
||||
# endif
|
||||
# if defined __POPCNT__ || (defined _MSC_VER && _MSC_VER >= 1500)
|
||||
# ifdef _MSC_VER
|
||||
# include <nmmintrin.h>
|
||||
# else
|
||||
# include <popcntintrin.h>
|
||||
# endif
|
||||
# define CV_POPCNT 1
|
||||
# endif
|
||||
# if defined __AVX__ || (defined _MSC_VER && _MSC_VER >= 1600 && 0)
|
||||
// MS Visual Studio 2010 (2012?) has no macro pre-defined to identify the use of /arch:AVX
|
||||
// See: http://connect.microsoft.com/VisualStudio/feedback/details/605858/arch-avx-should-define-a-predefined-macro-in-x64-and-set-a-unique-value-for-m-ix86-fp-in-win32
|
||||
# include <immintrin.h>
|
||||
# define CV_AVX 1
|
||||
# if defined(_XCR_XFEATURE_ENABLED_MASK)
|
||||
# define __xgetbv() _xgetbv(_XCR_XFEATURE_ENABLED_MASK)
|
||||
# else
|
||||
# define __xgetbv() 0
|
||||
# endif
|
||||
# endif
|
||||
# if defined __AVX2__ || (defined _MSC_VER && _MSC_VER >= 1800 && 0)
|
||||
# include <immintrin.h>
|
||||
# define CV_AVX2 1
|
||||
# if defined __FMA__
|
||||
# define CV_FMA3 1
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if (defined WIN32 || defined _WIN32) && defined(_M_ARM)
|
||||
# include <Intrin.h>
|
||||
# include "arm_neon.h"
|
||||
# define CV_NEON 1
|
||||
# define CPU_HAS_NEON_FEATURE (true)
|
||||
#elif defined(__ARM_NEON__) || (defined (__ARM_NEON) && defined(__aarch64__))
|
||||
# include <arm_neon.h>
|
||||
# define CV_NEON 1
|
||||
#endif
|
||||
|
||||
#if defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__ || defined __ARM_NEON__) && !defined __SOFTFP__
|
||||
# define CV_VFP 1
|
||||
#endif
|
||||
|
||||
#endif // __CUDACC__
|
||||
|
||||
#ifndef CV_POPCNT
|
||||
#define CV_POPCNT 0
|
||||
#endif
|
||||
#ifndef CV_MMX
|
||||
# define CV_MMX 0
|
||||
#endif
|
||||
#ifndef CV_SSE
|
||||
# define CV_SSE 0
|
||||
#endif
|
||||
#ifndef CV_SSE2
|
||||
# define CV_SSE2 0
|
||||
#endif
|
||||
#ifndef CV_SSE3
|
||||
# define CV_SSE3 0
|
||||
#endif
|
||||
#ifndef CV_SSSE3
|
||||
# define CV_SSSE3 0
|
||||
#endif
|
||||
#ifndef CV_SSE4_1
|
||||
# define CV_SSE4_1 0
|
||||
#endif
|
||||
#ifndef CV_SSE4_2
|
||||
# define CV_SSE4_2 0
|
||||
#endif
|
||||
#ifndef CV_AVX
|
||||
# define CV_AVX 0
|
||||
#endif
|
||||
#ifndef CV_AVX2
|
||||
# define CV_AVX2 0
|
||||
#endif
|
||||
#ifndef CV_FMA3
|
||||
# define CV_FMA3 0
|
||||
#endif
|
||||
#ifndef CV_AVX_512F
|
||||
# define CV_AVX_512F 0
|
||||
#endif
|
||||
#ifndef CV_AVX_512BW
|
||||
# define CV_AVX_512BW 0
|
||||
#endif
|
||||
#ifndef CV_AVX_512CD
|
||||
# define CV_AVX_512CD 0
|
||||
#endif
|
||||
#ifndef CV_AVX_512DQ
|
||||
# define CV_AVX_512DQ 0
|
||||
#endif
|
||||
#ifndef CV_AVX_512ER
|
||||
# define CV_AVX_512ER 0
|
||||
#endif
|
||||
#ifndef CV_AVX_512IFMA512
|
||||
# define CV_AVX_512IFMA512 0
|
||||
#endif
|
||||
#ifndef CV_AVX_512PF
|
||||
# define CV_AVX_512PF 0
|
||||
#endif
|
||||
#ifndef CV_AVX_512VBMI
|
||||
# define CV_AVX_512VBMI 0
|
||||
#endif
|
||||
#ifndef CV_AVX_512VL
|
||||
# define CV_AVX_512VL 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_NEON
|
||||
# define CV_NEON 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_VFP
|
||||
# define CV_VFP 0
|
||||
#endif
|
||||
|
||||
/* fundamental constants */
|
||||
#define CV_PI 3.1415926535897932384626433832795
|
||||
#define CV_2PI 6.283185307179586476925286766559
|
||||
#define CV_LOG2 0.69314718055994530941723212145818
|
||||
|
||||
typedef union Cv32suf
|
||||
{
|
||||
int i;
|
||||
unsigned u;
|
||||
float f;
|
||||
}
|
||||
Cv32suf;
|
||||
|
||||
typedef union Cv64suf
|
||||
{
|
||||
int64 i;
|
||||
uint64 u;
|
||||
double f;
|
||||
}
|
||||
Cv64suf;
|
||||
|
||||
#define OPENCV_ABI_COMPATIBILITY 300
|
||||
|
||||
@@ -169,12 +430,12 @@
|
||||
#define CV_SUBMAT_FLAG (1 << CV_SUBMAT_FLAG_SHIFT)
|
||||
#define CV_IS_SUBMAT(flags) ((flags) & CV_MAT_SUBMAT_FLAG)
|
||||
|
||||
/* Size of each channel item,
|
||||
/** Size of each channel item,
|
||||
0x124489 = 1000 0100 0100 0010 0010 0001 0001 ~ array of sizeof(arr_type_elem) */
|
||||
#define CV_ELEM_SIZE1(type) \
|
||||
((((sizeof(size_t)<<28)|0x8442211) >> CV_MAT_DEPTH(type)*4) & 15)
|
||||
|
||||
/* 0x3a50 = 11 10 10 01 01 00 00 ~ array of log2(sizeof(arr_type_elem)) */
|
||||
/** 0x3a50 = 11 10 10 01 01 00 00 ~ array of log2(sizeof(arr_type_elem)) */
|
||||
#define CV_ELEM_SIZE(type) \
|
||||
(CV_MAT_CN(type) << ((((sizeof(size_t)/4+1)*16384|0x3a50) >> CV_MAT_DEPTH(type)*2) & 3))
|
||||
|
||||
@@ -249,4 +510,6 @@
|
||||
# endif
|
||||
#endif
|
||||
|
||||
//! @}
|
||||
|
||||
#endif // __OPENCV_CORE_CVDEF_H__
|
||||
|
302
modules/core/include/opencv2/core/fast_math.hpp
Normal file
302
modules/core/include/opencv2/core/fast_math.hpp
Normal file
@@ -0,0 +1,302 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Copyright (C) 2015, Itseez Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_CORE_FAST_MATH_HPP__
|
||||
#define __OPENCV_CORE_FAST_MATH_HPP__
|
||||
|
||||
#include "opencv2/core/cvdef.h"
|
||||
|
||||
//! @addtogroup core_utils
|
||||
//! @{
|
||||
|
||||
/****************************************************************************************\
|
||||
* fast math *
|
||||
\****************************************************************************************/
|
||||
|
||||
#if defined __BORLANDC__
|
||||
# include <fastmath.h>
|
||||
#elif defined __cplusplus
|
||||
# include <cmath>
|
||||
#else
|
||||
# include <math.h>
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
# include "tegra_round.hpp"
|
||||
#endif
|
||||
|
||||
#if CV_VFP
|
||||
// 1. general scheme
|
||||
#define ARM_ROUND(_value, _asm_string) \
|
||||
int res; \
|
||||
float temp; \
|
||||
asm(_asm_string : [res] "=r" (res), [temp] "=w" (temp) : [value] "w" (_value)); \
|
||||
return res
|
||||
// 2. version for double
|
||||
#ifdef __clang__
|
||||
#define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %[value] \n vmov %[res], %[temp]")
|
||||
#else
|
||||
#define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %P[value] \n vmov %[res], %[temp]")
|
||||
#endif
|
||||
// 3. version for float
|
||||
#define ARM_ROUND_FLT(value) ARM_ROUND(value, "vcvtr.s32.f32 %[temp], %[value]\n vmov %[res], %[temp]")
|
||||
#endif // CV_VFP
|
||||
|
||||
/** @brief Rounds floating-point number to the nearest integer
|
||||
|
||||
@param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
|
||||
result is not defined.
|
||||
*/
|
||||
CV_INLINE int
|
||||
cvRound( double value )
|
||||
{
|
||||
#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ \
|
||||
&& defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
|
||||
__m128d t = _mm_set_sd( value );
|
||||
return _mm_cvtsd_si32(t);
|
||||
#elif defined _MSC_VER && defined _M_IX86
|
||||
int t;
|
||||
__asm
|
||||
{
|
||||
fld value;
|
||||
fistp t;
|
||||
}
|
||||
return t;
|
||||
#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \
|
||||
defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
|
||||
TEGRA_ROUND_DBL(value);
|
||||
#elif defined CV_ICC || defined __GNUC__
|
||||
# if CV_VFP
|
||||
ARM_ROUND_DBL(value);
|
||||
# else
|
||||
return (int)lrint(value);
|
||||
# endif
|
||||
#else
|
||||
/* it's ok if round does not comply with IEEE754 standard;
|
||||
the tests should allow +/-1 difference when the tested functions use round */
|
||||
return (int)(value + (value >= 0 ? 0.5 : -0.5));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/** @brief Rounds floating-point number to the nearest integer not larger than the original.
|
||||
|
||||
The function computes an integer i such that:
|
||||
\f[i \le \texttt{value} < i+1\f]
|
||||
@param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
|
||||
result is not defined.
|
||||
*/
|
||||
CV_INLINE int cvFloor( double value )
|
||||
{
|
||||
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
|
||||
__m128d t = _mm_set_sd( value );
|
||||
int i = _mm_cvtsd_si32(t);
|
||||
return i - _mm_movemask_pd(_mm_cmplt_sd(t, _mm_cvtsi32_sd(t,i)));
|
||||
#elif defined __GNUC__
|
||||
int i = (int)value;
|
||||
return i - (i > value);
|
||||
#else
|
||||
int i = cvRound(value);
|
||||
float diff = (float)(value - i);
|
||||
return i - (diff < 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** @brief Rounds floating-point number to the nearest integer not smaller than the original.
|
||||
|
||||
The function computes an integer i such that:
|
||||
\f[i \le \texttt{value} < i+1\f]
|
||||
@param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
|
||||
result is not defined.
|
||||
*/
|
||||
CV_INLINE int cvCeil( double value )
|
||||
{
|
||||
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__)
|
||||
__m128d t = _mm_set_sd( value );
|
||||
int i = _mm_cvtsd_si32(t);
|
||||
return i + _mm_movemask_pd(_mm_cmplt_sd(_mm_cvtsi32_sd(t,i), t));
|
||||
#elif defined __GNUC__
|
||||
int i = (int)value;
|
||||
return i + (i < value);
|
||||
#else
|
||||
int i = cvRound(value);
|
||||
float diff = (float)(i - value);
|
||||
return i + (diff < 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** @brief Determines if the argument is Not A Number.
|
||||
|
||||
@param value The input floating-point value
|
||||
|
||||
The function returns 1 if the argument is Not A Number (as defined by IEEE754 standard), 0
|
||||
otherwise. */
|
||||
CV_INLINE int cvIsNaN( double value )
|
||||
{
|
||||
Cv64suf ieee754;
|
||||
ieee754.f = value;
|
||||
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) +
|
||||
((unsigned)ieee754.u != 0) > 0x7ff00000;
|
||||
}
|
||||
|
||||
/** @brief Determines if the argument is Infinity.
|
||||
|
||||
@param value The input floating-point value
|
||||
|
||||
The function returns 1 if the argument is a plus or minus infinity (as defined by IEEE754 standard)
|
||||
and 0 otherwise. */
|
||||
CV_INLINE int cvIsInf( double value )
|
||||
{
|
||||
Cv64suf ieee754;
|
||||
ieee754.f = value;
|
||||
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
|
||||
(unsigned)ieee754.u == 0;
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvRound(float value)
|
||||
{
|
||||
#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ && \
|
||||
defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
|
||||
__m128 t = _mm_set_ss( value );
|
||||
return _mm_cvtss_si32(t);
|
||||
#elif defined _MSC_VER && defined _M_IX86
|
||||
int t;
|
||||
__asm
|
||||
{
|
||||
fld value;
|
||||
fistp t;
|
||||
}
|
||||
return t;
|
||||
#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \
|
||||
defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
|
||||
TEGRA_ROUND_FLT(value);
|
||||
#elif defined CV_ICC || defined __GNUC__
|
||||
# if CV_VFP
|
||||
ARM_ROUND_FLT(value);
|
||||
# else
|
||||
return (int)lrintf(value);
|
||||
# endif
|
||||
#else
|
||||
/* it's ok if round does not comply with IEEE754 standard;
|
||||
the tests should allow +/-1 difference when the tested functions use round */
|
||||
return (int)(value + (value >= 0 ? 0.5f : -0.5f));
|
||||
#endif
|
||||
}
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvRound( int value )
|
||||
{
|
||||
return value;
|
||||
}
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvFloor( float value )
|
||||
{
|
||||
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
|
||||
__m128 t = _mm_set_ss( value );
|
||||
int i = _mm_cvtss_si32(t);
|
||||
return i - _mm_movemask_ps(_mm_cmplt_ss(t, _mm_cvtsi32_ss(t,i)));
|
||||
#elif defined __GNUC__
|
||||
int i = (int)value;
|
||||
return i - (i > value);
|
||||
#else
|
||||
int i = cvRound(value);
|
||||
float diff = (float)(value - i);
|
||||
return i - (diff < 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvFloor( int value )
|
||||
{
|
||||
return value;
|
||||
}
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvCeil( float value )
|
||||
{
|
||||
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__)
|
||||
__m128 t = _mm_set_ss( value );
|
||||
int i = _mm_cvtss_si32(t);
|
||||
return i + _mm_movemask_ps(_mm_cmplt_ss(_mm_cvtsi32_ss(t,i), t));
|
||||
#elif defined __GNUC__
|
||||
int i = (int)value;
|
||||
return i + (i < value);
|
||||
#else
|
||||
int i = cvRound(value);
|
||||
float diff = (float)(i - value);
|
||||
return i + (diff < 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvCeil( int value )
|
||||
{
|
||||
return value;
|
||||
}
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvIsNaN( float value )
|
||||
{
|
||||
Cv32suf ieee754;
|
||||
ieee754.f = value;
|
||||
return (ieee754.u & 0x7fffffff) > 0x7f800000;
|
||||
}
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvIsInf( float value )
|
||||
{
|
||||
Cv32suf ieee754;
|
||||
ieee754.f = value;
|
||||
return (ieee754.u & 0x7fffffff) == 0x7f800000;
|
||||
}
|
||||
|
||||
#endif // __cplusplus
|
||||
|
||||
//! @} core_utils
|
||||
|
||||
#endif
|
218
modules/core/include/opencv2/core/hal/hal.hpp
Normal file
218
modules/core/include/opencv2/core/hal/hal.hpp
Normal file
@@ -0,0 +1,218 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Copyright (C) 2015, Itseez Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_HAL_HPP__
|
||||
#define __OPENCV_HAL_HPP__
|
||||
|
||||
#include "opencv2/core/cvdef.h"
|
||||
#include "opencv2/core/hal/interface.h"
|
||||
|
||||
//! @cond IGNORED
|
||||
#define CALL_HAL(name, fun, ...) \
|
||||
int res = fun(__VA_ARGS__); \
|
||||
if (res == CV_HAL_ERROR_OK) \
|
||||
return; \
|
||||
else if (res != CV_HAL_ERROR_NOT_IMPLEMENTED) \
|
||||
CV_Error_(cv::Error::StsInternal, \
|
||||
("HAL implementation " CVAUX_STR(name) " ==> " CVAUX_STR(fun) " returned %d (0x%08x)", res, res));
|
||||
//! @endcond
|
||||
|
||||
|
||||
namespace cv { namespace hal {
|
||||
|
||||
//! @addtogroup core_hal_functions
|
||||
//! @{
|
||||
|
||||
CV_EXPORTS int normHamming(const uchar* a, int n);
|
||||
CV_EXPORTS int normHamming(const uchar* a, const uchar* b, int n);
|
||||
|
||||
CV_EXPORTS int normHamming(const uchar* a, int n, int cellSize);
|
||||
CV_EXPORTS int normHamming(const uchar* a, const uchar* b, int n, int cellSize);
|
||||
|
||||
CV_EXPORTS int LU32f(float* A, size_t astep, int m, float* b, size_t bstep, int n);
|
||||
CV_EXPORTS int LU64f(double* A, size_t astep, int m, double* b, size_t bstep, int n);
|
||||
CV_EXPORTS bool Cholesky32f(float* A, size_t astep, int m, float* b, size_t bstep, int n);
|
||||
CV_EXPORTS bool Cholesky64f(double* A, size_t astep, int m, double* b, size_t bstep, int n);
|
||||
|
||||
CV_EXPORTS int normL1_(const uchar* a, const uchar* b, int n);
|
||||
CV_EXPORTS float normL1_(const float* a, const float* b, int n);
|
||||
CV_EXPORTS float normL2Sqr_(const float* a, const float* b, int n);
|
||||
|
||||
CV_EXPORTS void exp32f(const float* src, float* dst, int n);
|
||||
CV_EXPORTS void exp64f(const double* src, double* dst, int n);
|
||||
CV_EXPORTS void log32f(const float* src, float* dst, int n);
|
||||
CV_EXPORTS void log64f(const double* src, double* dst, int n);
|
||||
|
||||
CV_EXPORTS void fastAtan2(const float* y, const float* x, float* dst, int n, bool angleInDegrees);
|
||||
CV_EXPORTS void magnitude32f(const float* x, const float* y, float* dst, int n);
|
||||
CV_EXPORTS void magnitude64f(const double* x, const double* y, double* dst, int n);
|
||||
CV_EXPORTS void sqrt32f(const float* src, float* dst, int len);
|
||||
CV_EXPORTS void sqrt64f(const double* src, double* dst, int len);
|
||||
CV_EXPORTS void invSqrt32f(const float* src, float* dst, int len);
|
||||
CV_EXPORTS void invSqrt64f(const double* src, double* dst, int len);
|
||||
|
||||
CV_EXPORTS void split8u(const uchar* src, uchar** dst, int len, int cn );
|
||||
CV_EXPORTS void split16u(const ushort* src, ushort** dst, int len, int cn );
|
||||
CV_EXPORTS void split32s(const int* src, int** dst, int len, int cn );
|
||||
CV_EXPORTS void split64s(const int64* src, int64** dst, int len, int cn );
|
||||
|
||||
CV_EXPORTS void merge8u(const uchar** src, uchar* dst, int len, int cn );
|
||||
CV_EXPORTS void merge16u(const ushort** src, ushort* dst, int len, int cn );
|
||||
CV_EXPORTS void merge32s(const int** src, int* dst, int len, int cn );
|
||||
CV_EXPORTS void merge64s(const int64** src, int64* dst, int len, int cn );
|
||||
|
||||
CV_EXPORTS void add8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void add8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void add16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void add16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void add32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void add32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void add64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* );
|
||||
|
||||
CV_EXPORTS void sub8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void sub8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void sub16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void sub16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void sub32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void sub32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void sub64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* );
|
||||
|
||||
CV_EXPORTS void max8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void max8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void max16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void max16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void max32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void max32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void max64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* );
|
||||
|
||||
CV_EXPORTS void min8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void min8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void min16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void min16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void min32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void min32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void min64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* );
|
||||
|
||||
CV_EXPORTS void absdiff8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void absdiff8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void absdiff16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void absdiff16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void absdiff32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void absdiff32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void absdiff64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* );
|
||||
|
||||
CV_EXPORTS void and8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void or8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void xor8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* );
|
||||
CV_EXPORTS void not8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* );
|
||||
|
||||
CV_EXPORTS void cmp8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop);
|
||||
CV_EXPORTS void cmp8s(const schar* src1, size_t step1, const schar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop);
|
||||
CV_EXPORTS void cmp16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop);
|
||||
CV_EXPORTS void cmp16s(const short* src1, size_t step1, const short* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop);
|
||||
CV_EXPORTS void cmp32s(const int* src1, size_t step1, const int* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop);
|
||||
CV_EXPORTS void cmp32f(const float* src1, size_t step1, const float* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop);
|
||||
CV_EXPORTS void cmp64f(const double* src1, size_t step1, const double* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop);
|
||||
|
||||
CV_EXPORTS void mul8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void mul8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void mul16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void mul16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void mul32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void mul32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void mul64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scale);
|
||||
|
||||
CV_EXPORTS void div8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void div8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void div16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void div16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void div32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void div32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void div64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scale);
|
||||
|
||||
CV_EXPORTS void recip8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void recip8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void recip16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void recip16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void recip32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void recip32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scale);
|
||||
CV_EXPORTS void recip64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scale);
|
||||
|
||||
CV_EXPORTS void addWeighted8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _scalars );
|
||||
CV_EXPORTS void addWeighted8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scalars );
|
||||
CV_EXPORTS void addWeighted16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scalars );
|
||||
CV_EXPORTS void addWeighted16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scalars );
|
||||
CV_EXPORTS void addWeighted32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scalars );
|
||||
CV_EXPORTS void addWeighted32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scalars );
|
||||
CV_EXPORTS void addWeighted64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scalars );
|
||||
|
||||
//! @} core_hal
|
||||
|
||||
//=============================================================================
|
||||
// for binary compatibility with 3.0
|
||||
|
||||
//! @cond IGNORED
|
||||
|
||||
CV_EXPORTS int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n);
|
||||
CV_EXPORTS int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n);
|
||||
CV_EXPORTS bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n);
|
||||
CV_EXPORTS bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n);
|
||||
|
||||
CV_EXPORTS void exp(const float* src, float* dst, int n);
|
||||
CV_EXPORTS void exp(const double* src, double* dst, int n);
|
||||
CV_EXPORTS void log(const float* src, float* dst, int n);
|
||||
CV_EXPORTS void log(const double* src, double* dst, int n);
|
||||
|
||||
CV_EXPORTS void magnitude(const float* x, const float* y, float* dst, int n);
|
||||
CV_EXPORTS void magnitude(const double* x, const double* y, double* dst, int n);
|
||||
CV_EXPORTS void sqrt(const float* src, float* dst, int len);
|
||||
CV_EXPORTS void sqrt(const double* src, double* dst, int len);
|
||||
CV_EXPORTS void invSqrt(const float* src, float* dst, int len);
|
||||
CV_EXPORTS void invSqrt(const double* src, double* dst, int len);
|
||||
|
||||
//! @endcond
|
||||
|
||||
}} //cv::hal
|
||||
|
||||
#endif //__OPENCV_HAL_HPP__
|
69
modules/core/include/opencv2/core/hal/interface.h
Normal file
69
modules/core/include/opencv2/core/hal/interface.h
Normal file
@@ -0,0 +1,69 @@
|
||||
#ifndef _HAL_INTERFACE_HPP_INCLUDED_
|
||||
#define _HAL_INTERFACE_HPP_INCLUDED_
|
||||
|
||||
//! @addtogroup core_hal_interface
|
||||
//! @{
|
||||
|
||||
#define CV_HAL_ERROR_OK 0
|
||||
#define CV_HAL_ERROR_NOT_IMPLEMENTED 1
|
||||
#define CV_HAL_ERROR_UNKNOWN -1
|
||||
|
||||
#define CV_HAL_CMP_EQ 0
|
||||
#define CV_HAL_CMP_GT 1
|
||||
#define CV_HAL_CMP_GE 2
|
||||
#define CV_HAL_CMP_LT 3
|
||||
#define CV_HAL_CMP_LE 4
|
||||
#define CV_HAL_CMP_NE 5
|
||||
|
||||
#ifdef __cplusplus
|
||||
#include <cstddef>
|
||||
#else
|
||||
#include <stddef.h>
|
||||
#endif
|
||||
|
||||
/* primitive types */
|
||||
/*
|
||||
schar - signed 1 byte integer
|
||||
uchar - unsigned 1 byte integer
|
||||
short - signed 2 byte integer
|
||||
ushort - unsigned 2 byte integer
|
||||
int - signed 4 byte integer
|
||||
uint - unsigned 4 byte integer
|
||||
int64 - signed 8 byte integer
|
||||
uint64 - unsigned 8 byte integer
|
||||
*/
|
||||
|
||||
#if !defined _MSC_VER && !defined __BORLANDC__
|
||||
# if defined __cplusplus && __cplusplus >= 201103L && !defined __APPLE__
|
||||
# include <cstdint>
|
||||
typedef std::uint32_t uint;
|
||||
# else
|
||||
# include <stdint.h>
|
||||
typedef uint32_t uint;
|
||||
# endif
|
||||
#else
|
||||
typedef unsigned uint;
|
||||
#endif
|
||||
|
||||
typedef signed char schar;
|
||||
|
||||
#ifndef __IPL_H__
|
||||
typedef unsigned char uchar;
|
||||
typedef unsigned short ushort;
|
||||
#endif
|
||||
|
||||
#if defined _MSC_VER || defined __BORLANDC__
|
||||
typedef __int64 int64;
|
||||
typedef unsigned __int64 uint64;
|
||||
# define CV_BIG_INT(n) n##I64
|
||||
# define CV_BIG_UINT(n) n##UI64
|
||||
#else
|
||||
typedef int64_t int64;
|
||||
typedef uint64_t uint64;
|
||||
# define CV_BIG_INT(n) n##LL
|
||||
# define CV_BIG_UINT(n) n##ULL
|
||||
#endif
|
||||
|
||||
//! @}
|
||||
|
||||
#endif
|
320
modules/core/include/opencv2/core/hal/intrin.hpp
Normal file
320
modules/core/include/opencv2/core/hal/intrin.hpp
Normal file
@@ -0,0 +1,320 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Copyright (C) 2015, Itseez Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_HAL_INTRIN_HPP__
|
||||
#define __OPENCV_HAL_INTRIN_HPP__
|
||||
|
||||
#include <cmath>
|
||||
#include <float.h>
|
||||
#include <stdlib.h>
|
||||
#include "opencv2/core/cvdef.h"
|
||||
|
||||
#define OPENCV_HAL_ADD(a, b) ((a) + (b))
|
||||
#define OPENCV_HAL_AND(a, b) ((a) & (b))
|
||||
#define OPENCV_HAL_NOP(a) (a)
|
||||
#define OPENCV_HAL_1ST(a, b) (a)
|
||||
|
||||
// unlike HAL API, which is in cv::hal,
|
||||
// we put intrinsics into cv namespace to make its
|
||||
// access from within opencv code more accessible
|
||||
namespace cv {
|
||||
|
||||
//! @addtogroup core_hal_intrin
|
||||
//! @{
|
||||
|
||||
//! @cond IGNORED
|
||||
template<typename _Tp> struct V_TypeTraits
|
||||
{
|
||||
typedef _Tp int_type;
|
||||
typedef _Tp uint_type;
|
||||
typedef _Tp abs_type;
|
||||
typedef _Tp sum_type;
|
||||
|
||||
enum { delta = 0, shift = 0 };
|
||||
|
||||
static int_type reinterpret_int(_Tp x) { return x; }
|
||||
static uint_type reinterpet_uint(_Tp x) { return x; }
|
||||
static _Tp reinterpret_from_int(int_type x) { return (_Tp)x; }
|
||||
};
|
||||
|
||||
template<> struct V_TypeTraits<uchar>
|
||||
{
|
||||
typedef uchar value_type;
|
||||
typedef schar int_type;
|
||||
typedef uchar uint_type;
|
||||
typedef uchar abs_type;
|
||||
typedef int sum_type;
|
||||
|
||||
typedef ushort w_type;
|
||||
typedef unsigned q_type;
|
||||
|
||||
enum { delta = 128, shift = 8 };
|
||||
|
||||
static int_type reinterpret_int(value_type x) { return (int_type)x; }
|
||||
static uint_type reinterpret_uint(value_type x) { return (uint_type)x; }
|
||||
static value_type reinterpret_from_int(int_type x) { return (value_type)x; }
|
||||
};
|
||||
|
||||
template<> struct V_TypeTraits<schar>
|
||||
{
|
||||
typedef schar value_type;
|
||||
typedef schar int_type;
|
||||
typedef uchar uint_type;
|
||||
typedef uchar abs_type;
|
||||
typedef int sum_type;
|
||||
|
||||
typedef short w_type;
|
||||
typedef int q_type;
|
||||
|
||||
enum { delta = 128, shift = 8 };
|
||||
|
||||
static int_type reinterpret_int(value_type x) { return (int_type)x; }
|
||||
static uint_type reinterpret_uint(value_type x) { return (uint_type)x; }
|
||||
static value_type reinterpret_from_int(int_type x) { return (value_type)x; }
|
||||
};
|
||||
|
||||
template<> struct V_TypeTraits<ushort>
|
||||
{
|
||||
typedef ushort value_type;
|
||||
typedef short int_type;
|
||||
typedef ushort uint_type;
|
||||
typedef ushort abs_type;
|
||||
typedef int sum_type;
|
||||
|
||||
typedef unsigned w_type;
|
||||
typedef uchar nu_type;
|
||||
|
||||
enum { delta = 32768, shift = 16 };
|
||||
|
||||
static int_type reinterpret_int(value_type x) { return (int_type)x; }
|
||||
static uint_type reinterpret_uint(value_type x) { return (uint_type)x; }
|
||||
static value_type reinterpret_from_int(int_type x) { return (value_type)x; }
|
||||
};
|
||||
|
||||
template<> struct V_TypeTraits<short>
|
||||
{
|
||||
typedef short value_type;
|
||||
typedef short int_type;
|
||||
typedef ushort uint_type;
|
||||
typedef ushort abs_type;
|
||||
typedef int sum_type;
|
||||
|
||||
typedef int w_type;
|
||||
typedef uchar nu_type;
|
||||
typedef schar n_type;
|
||||
|
||||
enum { delta = 128, shift = 8 };
|
||||
|
||||
static int_type reinterpret_int(value_type x) { return (int_type)x; }
|
||||
static uint_type reinterpret_uint(value_type x) { return (uint_type)x; }
|
||||
static value_type reinterpret_from_int(int_type x) { return (value_type)x; }
|
||||
};
|
||||
|
||||
template<> struct V_TypeTraits<unsigned>
|
||||
{
|
||||
typedef unsigned value_type;
|
||||
typedef int int_type;
|
||||
typedef unsigned uint_type;
|
||||
typedef unsigned abs_type;
|
||||
typedef unsigned sum_type;
|
||||
|
||||
typedef uint64 w_type;
|
||||
typedef ushort nu_type;
|
||||
|
||||
static int_type reinterpret_int(value_type x) { return (int_type)x; }
|
||||
static uint_type reinterpret_uint(value_type x) { return (uint_type)x; }
|
||||
static value_type reinterpret_from_int(int_type x) { return (value_type)x; }
|
||||
};
|
||||
|
||||
template<> struct V_TypeTraits<int>
|
||||
{
|
||||
typedef int value_type;
|
||||
typedef int int_type;
|
||||
typedef unsigned uint_type;
|
||||
typedef unsigned abs_type;
|
||||
typedef int sum_type;
|
||||
|
||||
typedef int64 w_type;
|
||||
typedef short n_type;
|
||||
typedef ushort nu_type;
|
||||
|
||||
static int_type reinterpret_int(value_type x) { return (int_type)x; }
|
||||
static uint_type reinterpret_uint(value_type x) { return (uint_type)x; }
|
||||
static value_type reinterpret_from_int(int_type x) { return (value_type)x; }
|
||||
};
|
||||
|
||||
template<> struct V_TypeTraits<uint64>
|
||||
{
|
||||
typedef uint64 value_type;
|
||||
typedef int64 int_type;
|
||||
typedef uint64 uint_type;
|
||||
typedef uint64 abs_type;
|
||||
typedef uint64 sum_type;
|
||||
|
||||
typedef unsigned nu_type;
|
||||
|
||||
static int_type reinterpret_int(value_type x) { return (int_type)x; }
|
||||
static uint_type reinterpret_uint(value_type x) { return (uint_type)x; }
|
||||
static value_type reinterpret_from_int(int_type x) { return (value_type)x; }
|
||||
};
|
||||
|
||||
template<> struct V_TypeTraits<int64>
|
||||
{
|
||||
typedef int64 value_type;
|
||||
typedef int64 int_type;
|
||||
typedef uint64 uint_type;
|
||||
typedef uint64 abs_type;
|
||||
typedef int64 sum_type;
|
||||
|
||||
typedef int nu_type;
|
||||
|
||||
static int_type reinterpret_int(value_type x) { return (int_type)x; }
|
||||
static uint_type reinterpret_uint(value_type x) { return (uint_type)x; }
|
||||
static value_type reinterpret_from_int(int_type x) { return (value_type)x; }
|
||||
};
|
||||
|
||||
|
||||
template<> struct V_TypeTraits<float>
|
||||
{
|
||||
typedef float value_type;
|
||||
typedef int int_type;
|
||||
typedef unsigned uint_type;
|
||||
typedef float abs_type;
|
||||
typedef float sum_type;
|
||||
|
||||
typedef double w_type;
|
||||
|
||||
static int_type reinterpret_int(value_type x)
|
||||
{
|
||||
Cv32suf u;
|
||||
u.f = x;
|
||||
return u.i;
|
||||
}
|
||||
static uint_type reinterpet_uint(value_type x)
|
||||
{
|
||||
Cv32suf u;
|
||||
u.f = x;
|
||||
return u.u;
|
||||
}
|
||||
static value_type reinterpret_from_int(int_type x)
|
||||
{
|
||||
Cv32suf u;
|
||||
u.i = x;
|
||||
return u.f;
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct V_TypeTraits<double>
|
||||
{
|
||||
typedef double value_type;
|
||||
typedef int64 int_type;
|
||||
typedef uint64 uint_type;
|
||||
typedef double abs_type;
|
||||
typedef double sum_type;
|
||||
static int_type reinterpret_int(value_type x)
|
||||
{
|
||||
Cv64suf u;
|
||||
u.f = x;
|
||||
return u.i;
|
||||
}
|
||||
static uint_type reinterpet_uint(value_type x)
|
||||
{
|
||||
Cv64suf u;
|
||||
u.f = x;
|
||||
return u.u;
|
||||
}
|
||||
static value_type reinterpret_from_int(int_type x)
|
||||
{
|
||||
Cv64suf u;
|
||||
u.i = x;
|
||||
return u.f;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T> struct V_SIMD128Traits
|
||||
{
|
||||
enum { nlanes = 16 / sizeof(T) };
|
||||
};
|
||||
|
||||
//! @endcond
|
||||
|
||||
//! @}
|
||||
|
||||
}
|
||||
|
||||
#ifdef CV_DOXYGEN
|
||||
# undef CV_SSE2
|
||||
# undef CV_NEON
|
||||
#endif
|
||||
|
||||
#if CV_SSE2
|
||||
|
||||
#include "opencv2/core/hal/intrin_sse.hpp"
|
||||
|
||||
#elif CV_NEON
|
||||
|
||||
#include "opencv2/core/hal/intrin_neon.hpp"
|
||||
|
||||
#else
|
||||
|
||||
#include "opencv2/core/hal/intrin_cpp.hpp"
|
||||
|
||||
#endif
|
||||
|
||||
//! @addtogroup core_hal_intrin
|
||||
//! @{
|
||||
|
||||
#ifndef CV_SIMD128
|
||||
//! Set to 1 if current compiler supports vector extensions (NEON or SSE is enabled)
|
||||
#define CV_SIMD128 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD128_64F
|
||||
//! Set to 1 if current intrinsics implementation supports 64-bit float vectors
|
||||
#define CV_SIMD128_64F 0
|
||||
#endif
|
||||
|
||||
//! @}
|
||||
|
||||
#endif
|
1738
modules/core/include/opencv2/core/hal/intrin_cpp.hpp
Normal file
1738
modules/core/include/opencv2/core/hal/intrin_cpp.hpp
Normal file
File diff suppressed because it is too large
Load Diff
864
modules/core/include/opencv2/core/hal/intrin_neon.hpp
Normal file
864
modules/core/include/opencv2/core/hal/intrin_neon.hpp
Normal file
@@ -0,0 +1,864 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Copyright (C) 2015, Itseez Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_HAL_INTRIN_NEON_HPP__
|
||||
#define __OPENCV_HAL_INTRIN_NEON_HPP__
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @cond IGNORED
|
||||
|
||||
#define CV_SIMD128 1
|
||||
|
||||
struct v_uint8x16
|
||||
{
|
||||
typedef uchar lane_type;
|
||||
enum { nlanes = 16 };
|
||||
|
||||
v_uint8x16() {}
|
||||
explicit v_uint8x16(uint8x16_t v) : val(v) {}
|
||||
v_uint8x16(uchar v0, uchar v1, uchar v2, uchar v3, uchar v4, uchar v5, uchar v6, uchar v7,
|
||||
uchar v8, uchar v9, uchar v10, uchar v11, uchar v12, uchar v13, uchar v14, uchar v15)
|
||||
{
|
||||
uchar v[] = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15};
|
||||
val = vld1q_u8(v);
|
||||
}
|
||||
uchar get0() const
|
||||
{
|
||||
return vgetq_lane_u8(val, 0);
|
||||
}
|
||||
|
||||
uint8x16_t val;
|
||||
};
|
||||
|
||||
struct v_int8x16
|
||||
{
|
||||
typedef schar lane_type;
|
||||
enum { nlanes = 16 };
|
||||
|
||||
v_int8x16() {}
|
||||
explicit v_int8x16(int8x16_t v) : val(v) {}
|
||||
v_int8x16(schar v0, schar v1, schar v2, schar v3, schar v4, schar v5, schar v6, schar v7,
|
||||
schar v8, schar v9, schar v10, schar v11, schar v12, schar v13, schar v14, schar v15)
|
||||
{
|
||||
schar v[] = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15};
|
||||
val = vld1q_s8(v);
|
||||
}
|
||||
schar get0() const
|
||||
{
|
||||
return vgetq_lane_s8(val, 0);
|
||||
}
|
||||
|
||||
int8x16_t val;
|
||||
};
|
||||
|
||||
struct v_uint16x8
|
||||
{
|
||||
typedef ushort lane_type;
|
||||
enum { nlanes = 8 };
|
||||
|
||||
v_uint16x8() {}
|
||||
explicit v_uint16x8(uint16x8_t v) : val(v) {}
|
||||
v_uint16x8(ushort v0, ushort v1, ushort v2, ushort v3, ushort v4, ushort v5, ushort v6, ushort v7)
|
||||
{
|
||||
ushort v[] = {v0, v1, v2, v3, v4, v5, v6, v7};
|
||||
val = vld1q_u16(v);
|
||||
}
|
||||
ushort get0() const
|
||||
{
|
||||
return vgetq_lane_u16(val, 0);
|
||||
}
|
||||
|
||||
uint16x8_t val;
|
||||
};
|
||||
|
||||
struct v_int16x8
|
||||
{
|
||||
typedef short lane_type;
|
||||
enum { nlanes = 8 };
|
||||
|
||||
v_int16x8() {}
|
||||
explicit v_int16x8(int16x8_t v) : val(v) {}
|
||||
v_int16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7)
|
||||
{
|
||||
short v[] = {v0, v1, v2, v3, v4, v5, v6, v7};
|
||||
val = vld1q_s16(v);
|
||||
}
|
||||
short get0() const
|
||||
{
|
||||
return vgetq_lane_s16(val, 0);
|
||||
}
|
||||
|
||||
int16x8_t val;
|
||||
};
|
||||
|
||||
struct v_uint32x4
|
||||
{
|
||||
typedef unsigned lane_type;
|
||||
enum { nlanes = 4 };
|
||||
|
||||
v_uint32x4() {}
|
||||
explicit v_uint32x4(uint32x4_t v) : val(v) {}
|
||||
v_uint32x4(unsigned v0, unsigned v1, unsigned v2, unsigned v3)
|
||||
{
|
||||
unsigned v[] = {v0, v1, v2, v3};
|
||||
val = vld1q_u32(v);
|
||||
}
|
||||
unsigned get0() const
|
||||
{
|
||||
return vgetq_lane_u32(val, 0);
|
||||
}
|
||||
|
||||
uint32x4_t val;
|
||||
};
|
||||
|
||||
struct v_int32x4
|
||||
{
|
||||
typedef int lane_type;
|
||||
enum { nlanes = 4 };
|
||||
|
||||
v_int32x4() {}
|
||||
explicit v_int32x4(int32x4_t v) : val(v) {}
|
||||
v_int32x4(int v0, int v1, int v2, int v3)
|
||||
{
|
||||
int v[] = {v0, v1, v2, v3};
|
||||
val = vld1q_s32(v);
|
||||
}
|
||||
int get0() const
|
||||
{
|
||||
return vgetq_lane_s32(val, 0);
|
||||
}
|
||||
int32x4_t val;
|
||||
};
|
||||
|
||||
struct v_float32x4
|
||||
{
|
||||
typedef float lane_type;
|
||||
enum { nlanes = 4 };
|
||||
|
||||
v_float32x4() {}
|
||||
explicit v_float32x4(float32x4_t v) : val(v) {}
|
||||
v_float32x4(float v0, float v1, float v2, float v3)
|
||||
{
|
||||
float v[] = {v0, v1, v2, v3};
|
||||
val = vld1q_f32(v);
|
||||
}
|
||||
float get0() const
|
||||
{
|
||||
return vgetq_lane_f32(val, 0);
|
||||
}
|
||||
float32x4_t val;
|
||||
};
|
||||
|
||||
struct v_uint64x2
|
||||
{
|
||||
typedef uint64 lane_type;
|
||||
enum { nlanes = 2 };
|
||||
|
||||
v_uint64x2() {}
|
||||
explicit v_uint64x2(uint64x2_t v) : val(v) {}
|
||||
v_uint64x2(unsigned v0, unsigned v1)
|
||||
{
|
||||
uint64 v[] = {v0, v1};
|
||||
val = vld1q_u64(v);
|
||||
}
|
||||
uint64 get0() const
|
||||
{
|
||||
return vgetq_lane_u64(val, 0);
|
||||
}
|
||||
uint64x2_t val;
|
||||
};
|
||||
|
||||
struct v_int64x2
|
||||
{
|
||||
typedef int64 lane_type;
|
||||
enum { nlanes = 2 };
|
||||
|
||||
v_int64x2() {}
|
||||
explicit v_int64x2(int64x2_t v) : val(v) {}
|
||||
v_int64x2(int v0, int v1)
|
||||
{
|
||||
int64 v[] = {v0, v1};
|
||||
val = vld1q_s64(v);
|
||||
}
|
||||
int64 get0() const
|
||||
{
|
||||
return vgetq_lane_s64(val, 0);
|
||||
}
|
||||
int64x2_t val;
|
||||
};
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_INIT(_Tpv, _Tp, suffix) \
|
||||
inline v_##_Tpv v_setzero_##suffix() { return v_##_Tpv(vdupq_n_##suffix((_Tp)0)); } \
|
||||
inline v_##_Tpv v_setall_##suffix(_Tp v) { return v_##_Tpv(vdupq_n_##suffix(v)); } \
|
||||
inline _Tpv##_t vreinterpretq_##suffix##_##suffix(_Tpv##_t v) { return v; } \
|
||||
inline v_uint8x16 v_reinterpret_as_u8(const v_##_Tpv& v) { return v_uint8x16(vreinterpretq_u8_##suffix(v.val)); } \
|
||||
inline v_int8x16 v_reinterpret_as_s8(const v_##_Tpv& v) { return v_int8x16(vreinterpretq_s8_##suffix(v.val)); } \
|
||||
inline v_uint16x8 v_reinterpret_as_u16(const v_##_Tpv& v) { return v_uint16x8(vreinterpretq_u16_##suffix(v.val)); } \
|
||||
inline v_int16x8 v_reinterpret_as_s16(const v_##_Tpv& v) { return v_int16x8(vreinterpretq_s16_##suffix(v.val)); } \
|
||||
inline v_uint32x4 v_reinterpret_as_u32(const v_##_Tpv& v) { return v_uint32x4(vreinterpretq_u32_##suffix(v.val)); } \
|
||||
inline v_int32x4 v_reinterpret_as_s32(const v_##_Tpv& v) { return v_int32x4(vreinterpretq_s32_##suffix(v.val)); } \
|
||||
inline v_uint64x2 v_reinterpret_as_u64(const v_##_Tpv& v) { return v_uint64x2(vreinterpretq_u64_##suffix(v.val)); } \
|
||||
inline v_int64x2 v_reinterpret_as_s64(const v_##_Tpv& v) { return v_int64x2(vreinterpretq_s64_##suffix(v.val)); } \
|
||||
inline v_float32x4 v_reinterpret_as_f32(const v_##_Tpv& v) { return v_float32x4(vreinterpretq_f32_##suffix(v.val)); }
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_INIT(uint8x16, uchar, u8)
|
||||
OPENCV_HAL_IMPL_NEON_INIT(int8x16, schar, s8)
|
||||
OPENCV_HAL_IMPL_NEON_INIT(uint16x8, ushort, u16)
|
||||
OPENCV_HAL_IMPL_NEON_INIT(int16x8, short, s16)
|
||||
OPENCV_HAL_IMPL_NEON_INIT(uint32x4, unsigned, u32)
|
||||
OPENCV_HAL_IMPL_NEON_INIT(int32x4, int, s32)
|
||||
OPENCV_HAL_IMPL_NEON_INIT(uint64x2, uint64, u64)
|
||||
OPENCV_HAL_IMPL_NEON_INIT(int64x2, int64, s64)
|
||||
OPENCV_HAL_IMPL_NEON_INIT(float32x4, float, f32)
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_PACK(_Tpvec, _Tp, hreg, suffix, _Tpwvec, wsuffix, pack, op) \
|
||||
inline _Tpvec v_##pack(const _Tpwvec& a, const _Tpwvec& b) \
|
||||
{ \
|
||||
hreg a1 = vqmov##op##_##wsuffix(a.val), b1 = vqmov##op##_##wsuffix(b.val); \
|
||||
return _Tpvec(vcombine_##suffix(a1, b1)); \
|
||||
} \
|
||||
inline void v_##pack##_store(_Tp* ptr, const _Tpwvec& a) \
|
||||
{ \
|
||||
hreg a1 = vqmov##op##_##wsuffix(a.val); \
|
||||
vst1_##suffix(ptr, a1); \
|
||||
} \
|
||||
template<int n> inline \
|
||||
_Tpvec v_rshr_##pack(const _Tpwvec& a, const _Tpwvec& b) \
|
||||
{ \
|
||||
hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \
|
||||
hreg b1 = vqrshr##op##_n_##wsuffix(b.val, n); \
|
||||
return _Tpvec(vcombine_##suffix(a1, b1)); \
|
||||
} \
|
||||
template<int n> inline \
|
||||
void v_rshr_##pack##_store(_Tp* ptr, const _Tpwvec& a) \
|
||||
{ \
|
||||
hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \
|
||||
vst1_##suffix(ptr, a1); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_uint16x8, u16, pack, n)
|
||||
OPENCV_HAL_IMPL_NEON_PACK(v_int8x16, schar, int8x8_t, s8, v_int16x8, s16, pack, n)
|
||||
OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_uint32x4, u32, pack, n)
|
||||
OPENCV_HAL_IMPL_NEON_PACK(v_int16x8, short, int16x4_t, s16, v_int32x4, s32, pack, n)
|
||||
OPENCV_HAL_IMPL_NEON_PACK(v_uint32x4, unsigned, uint32x2_t, u32, v_uint64x2, u64, pack, n)
|
||||
OPENCV_HAL_IMPL_NEON_PACK(v_int32x4, int, int32x2_t, s32, v_int64x2, s64, pack, n)
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_int16x8, s16, pack_u, un)
|
||||
OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_int32x4, s32, pack_u, un)
|
||||
|
||||
inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0,
|
||||
const v_float32x4& m1, const v_float32x4& m2,
|
||||
const v_float32x4& m3)
|
||||
{
|
||||
float32x2_t vl = vget_low_f32(v.val), vh = vget_high_f32(v.val);
|
||||
float32x4_t res = vmulq_lane_f32(m0.val, vl, 0);
|
||||
res = vmlaq_lane_f32(res, m1.val, vl, 1);
|
||||
res = vmlaq_lane_f32(res, m2.val, vh, 0);
|
||||
res = vmlaq_lane_f32(res, m3.val, vh, 1);
|
||||
return v_float32x4(res);
|
||||
}
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_BIN_OP(bin_op, _Tpvec, intrin) \
|
||||
inline _Tpvec operator bin_op (const _Tpvec& a, const _Tpvec& b) \
|
||||
{ \
|
||||
return _Tpvec(intrin(a.val, b.val)); \
|
||||
} \
|
||||
inline _Tpvec& operator bin_op##= (_Tpvec& a, const _Tpvec& b) \
|
||||
{ \
|
||||
a.val = intrin(a.val, b.val); \
|
||||
return a; \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint8x16, vqaddq_u8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint8x16, vqsubq_u8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int8x16, vqaddq_s8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int8x16, vqsubq_s8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint16x8, vqaddq_u16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint16x8, vqsubq_u16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_uint16x8, vmulq_u16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int16x8, vqaddq_s16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int16x8, vqsubq_s16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int16x8, vmulq_s16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int32x4, vaddq_s32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int32x4, vsubq_s32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int32x4, vmulq_s32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint32x4, vaddq_u32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint32x4, vsubq_u32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_uint32x4, vmulq_u32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_float32x4, vaddq_f32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_float32x4, vsubq_f32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_float32x4, vmulq_f32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int64x2, vaddq_s64)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int64x2, vsubq_s64)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint64x2, vaddq_u64)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint64x2, vsubq_u64)
|
||||
|
||||
inline v_float32x4 operator / (const v_float32x4& a, const v_float32x4& b)
|
||||
{
|
||||
float32x4_t reciprocal = vrecpeq_f32(b.val);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal);
|
||||
return v_float32x4(vmulq_f32(a.val, reciprocal));
|
||||
}
|
||||
inline v_float32x4& operator /= (v_float32x4& a, const v_float32x4& b)
|
||||
{
|
||||
float32x4_t reciprocal = vrecpeq_f32(b.val);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal);
|
||||
a.val = vmulq_f32(a.val, reciprocal);
|
||||
return a;
|
||||
}
|
||||
|
||||
inline void v_mul_expand(const v_int16x8& a, const v_int16x8& b,
|
||||
v_int32x4& c, v_int32x4& d)
|
||||
{
|
||||
c.val = vmull_s16(vget_low_s16(a.val), vget_low_s16(b.val));
|
||||
d.val = vmull_s16(vget_high_s16(a.val), vget_high_s16(b.val));
|
||||
}
|
||||
|
||||
inline void v_mul_expand(const v_uint16x8& a, const v_uint16x8& b,
|
||||
v_uint32x4& c, v_uint32x4& d)
|
||||
{
|
||||
c.val = vmull_u16(vget_low_u16(a.val), vget_low_u16(b.val));
|
||||
d.val = vmull_u16(vget_high_u16(a.val), vget_high_u16(b.val));
|
||||
}
|
||||
|
||||
inline void v_mul_expand(const v_uint32x4& a, const v_uint32x4& b,
|
||||
v_uint64x2& c, v_uint64x2& d)
|
||||
{
|
||||
c.val = vmull_u32(vget_low_u32(a.val), vget_low_u32(b.val));
|
||||
d.val = vmull_u32(vget_high_u32(a.val), vget_high_u32(b.val));
|
||||
}
|
||||
|
||||
inline v_int32x4 v_dotprod(const v_int16x8& a, const v_int16x8& b)
|
||||
{
|
||||
int32x4_t c = vmull_s16(vget_low_s16(a.val), vget_low_s16(b.val));
|
||||
int32x4_t d = vmull_s16(vget_high_s16(a.val), vget_high_s16(b.val));
|
||||
int32x4x2_t cd = vuzpq_s32(c, d);
|
||||
return v_int32x4(vaddq_s32(cd.val[0], cd.val[1]));
|
||||
}
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_LOGIC_OP(_Tpvec, suffix) \
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(&, _Tpvec, vandq_##suffix) \
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(|, _Tpvec, vorrq_##suffix) \
|
||||
OPENCV_HAL_IMPL_NEON_BIN_OP(^, _Tpvec, veorq_##suffix) \
|
||||
inline _Tpvec operator ~ (const _Tpvec& a) \
|
||||
{ \
|
||||
return _Tpvec(vreinterpretq_##suffix##_u8(vmvnq_u8(vreinterpretq_u8_##suffix(a.val)))); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint8x16, u8)
|
||||
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int8x16, s8)
|
||||
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint16x8, u16)
|
||||
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int16x8, s16)
|
||||
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint32x4, u32)
|
||||
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int32x4, s32)
|
||||
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint64x2, u64)
|
||||
OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int64x2, s64)
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(bin_op, intrin) \
|
||||
inline v_float32x4 operator bin_op (const v_float32x4& a, const v_float32x4& b) \
|
||||
{ \
|
||||
return v_float32x4(vreinterpretq_f32_s32(intrin(vreinterpretq_s32_f32(a.val), vreinterpretq_s32_f32(b.val)))); \
|
||||
} \
|
||||
inline v_float32x4& operator bin_op##= (v_float32x4& a, const v_float32x4& b) \
|
||||
{ \
|
||||
a.val = vreinterpretq_f32_s32(intrin(vreinterpretq_s32_f32(a.val), vreinterpretq_s32_f32(b.val))); \
|
||||
return a; \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(&, vandq_s32)
|
||||
OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(|, vorrq_s32)
|
||||
OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(^, veorq_s32)
|
||||
|
||||
inline v_float32x4 operator ~ (const v_float32x4& a)
|
||||
{
|
||||
return v_float32x4(vreinterpretq_f32_s32(vmvnq_s32(vreinterpretq_s32_f32(a.val))));
|
||||
}
|
||||
|
||||
inline v_float32x4 v_sqrt(const v_float32x4& x)
|
||||
{
|
||||
float32x4_t x1 = vmaxq_f32(x.val, vdupq_n_f32(FLT_MIN));
|
||||
float32x4_t e = vrsqrteq_f32(x1);
|
||||
e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e);
|
||||
e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e);
|
||||
return v_float32x4(vmulq_f32(x.val, e));
|
||||
}
|
||||
|
||||
inline v_float32x4 v_invsqrt(const v_float32x4& x)
|
||||
{
|
||||
float32x4_t e = vrsqrteq_f32(x.val);
|
||||
e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x.val, e), e), e);
|
||||
e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x.val, e), e), e);
|
||||
return v_float32x4(e);
|
||||
}
|
||||
|
||||
inline v_float32x4 v_abs(v_float32x4 x)
|
||||
{ return v_float32x4(vabsq_f32(x.val)); }
|
||||
|
||||
// TODO: exp, log, sin, cos
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_BIN_FUNC(_Tpvec, func, intrin) \
|
||||
inline _Tpvec func(const _Tpvec& a, const _Tpvec& b) \
|
||||
{ \
|
||||
return _Tpvec(intrin(a.val, b.val)); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_min, vminq_u8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_max, vmaxq_u8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_min, vminq_s8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_max, vmaxq_s8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_min, vminq_u16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_max, vmaxq_u16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_min, vminq_s16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_max, vmaxq_s16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_min, vminq_u32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_max, vmaxq_u32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_min, vminq_s32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_max, vmaxq_s32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_min, vminq_f32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_max, vmaxq_f32)
|
||||
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_INT_CMP_OP(_Tpvec, cast, suffix, not_suffix) \
|
||||
inline _Tpvec operator == (const _Tpvec& a, const _Tpvec& b) \
|
||||
{ return _Tpvec(cast(vceqq_##suffix(a.val, b.val))); } \
|
||||
inline _Tpvec operator != (const _Tpvec& a, const _Tpvec& b) \
|
||||
{ return _Tpvec(cast(vmvnq_##not_suffix(vceqq_##suffix(a.val, b.val)))); } \
|
||||
inline _Tpvec operator < (const _Tpvec& a, const _Tpvec& b) \
|
||||
{ return _Tpvec(cast(vcltq_##suffix(a.val, b.val))); } \
|
||||
inline _Tpvec operator > (const _Tpvec& a, const _Tpvec& b) \
|
||||
{ return _Tpvec(cast(vcgtq_##suffix(a.val, b.val))); } \
|
||||
inline _Tpvec operator <= (const _Tpvec& a, const _Tpvec& b) \
|
||||
{ return _Tpvec(cast(vcleq_##suffix(a.val, b.val))); } \
|
||||
inline _Tpvec operator >= (const _Tpvec& a, const _Tpvec& b) \
|
||||
{ return _Tpvec(cast(vcgeq_##suffix(a.val, b.val))); }
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint8x16, OPENCV_HAL_NOP, u8, u8)
|
||||
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int8x16, vreinterpretq_s8_u8, s8, u8)
|
||||
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint16x8, OPENCV_HAL_NOP, u16, u16)
|
||||
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int16x8, vreinterpretq_s16_u16, s16, u16)
|
||||
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint32x4, OPENCV_HAL_NOP, u32, u32)
|
||||
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int32x4, vreinterpretq_s32_u32, s32, u32)
|
||||
OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float32x4, vreinterpretq_f32_u32, f32, u32)
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_add_wrap, vaddq_u8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_add_wrap, vaddq_s8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_add_wrap, vaddq_u16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_add_wrap, vaddq_s16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_sub_wrap, vsubq_u8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_sub_wrap, vsubq_s8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_sub_wrap, vsubq_u16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_sub_wrap, vsubq_s16)
|
||||
|
||||
// TODO: absdiff for signed integers
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_absdiff, vabdq_u8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_absdiff, vabdq_u16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_absdiff, vabdq_u32)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_absdiff, vabdq_f32)
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_BIN_FUNC2(_Tpvec, _Tpvec2, cast, func, intrin) \
|
||||
inline _Tpvec2 func(const _Tpvec& a, const _Tpvec& b) \
|
||||
{ \
|
||||
return _Tpvec2(cast(intrin(a.val, b.val))); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int8x16, v_uint8x16, vreinterpretq_u8_s8, v_absdiff, vabdq_s8)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int16x8, v_uint16x8, vreinterpretq_u16_s16, v_absdiff, vabdq_s16)
|
||||
OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int32x4, v_uint32x4, vreinterpretq_u32_s32, v_absdiff, vabdq_s32)
|
||||
|
||||
inline v_float32x4 v_magnitude(const v_float32x4& a, const v_float32x4& b)
|
||||
{
|
||||
v_float32x4 x(vmlaq_f32(vmulq_f32(a.val, a.val), b.val, b.val));
|
||||
return v_sqrt(x);
|
||||
}
|
||||
|
||||
inline v_float32x4 v_sqr_magnitude(const v_float32x4& a, const v_float32x4& b)
|
||||
{
|
||||
return v_float32x4(vmlaq_f32(vmulq_f32(a.val, a.val), b.val, b.val));
|
||||
}
|
||||
|
||||
inline v_float32x4 v_muladd(const v_float32x4& a, const v_float32x4& b, const v_float32x4& c)
|
||||
{
|
||||
return v_float32x4(vmlaq_f32(c.val, a.val, b.val));
|
||||
}
|
||||
|
||||
// trade efficiency for convenience
|
||||
#define OPENCV_HAL_IMPL_NEON_SHIFT_OP(_Tpvec, suffix, _Tps, ssuffix) \
|
||||
inline _Tpvec operator << (const _Tpvec& a, int n) \
|
||||
{ return _Tpvec(vshlq_##suffix(a.val, vdupq_n_##ssuffix((_Tps)n))); } \
|
||||
inline _Tpvec operator >> (const _Tpvec& a, int n) \
|
||||
{ return _Tpvec(vshlq_##suffix(a.val, vdupq_n_##ssuffix((_Tps)-n))); } \
|
||||
template<int n> inline _Tpvec v_shl(const _Tpvec& a) \
|
||||
{ return _Tpvec(vshlq_n_##suffix(a.val, n)); } \
|
||||
template<int n> inline _Tpvec v_shr(const _Tpvec& a) \
|
||||
{ return _Tpvec(vshrq_n_##suffix(a.val, n)); } \
|
||||
template<int n> inline _Tpvec v_rshr(const _Tpvec& a) \
|
||||
{ return _Tpvec(vrshrq_n_##suffix(a.val, n)); }
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint8x16, u8, schar, s8)
|
||||
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int8x16, s8, schar, s8)
|
||||
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint16x8, u16, short, s16)
|
||||
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int16x8, s16, short, s16)
|
||||
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint32x4, u32, int, s32)
|
||||
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int32x4, s32, int, s32)
|
||||
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint64x2, u64, int64, s64)
|
||||
OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int64x2, s64, int64, s64)
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(_Tpvec, _Tp, suffix) \
|
||||
inline _Tpvec v_load(const _Tp* ptr) \
|
||||
{ return _Tpvec(vld1q_##suffix(ptr)); } \
|
||||
inline _Tpvec v_load_aligned(const _Tp* ptr) \
|
||||
{ return _Tpvec(vld1q_##suffix(ptr)); } \
|
||||
inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \
|
||||
{ return _Tpvec(vcombine_##suffix(vld1_##suffix(ptr0), vld1_##suffix(ptr1))); } \
|
||||
inline void v_store(_Tp* ptr, const _Tpvec& a) \
|
||||
{ vst1q_##suffix(ptr, a.val); } \
|
||||
inline void v_store_aligned(_Tp* ptr, const _Tpvec& a) \
|
||||
{ vst1q_##suffix(ptr, a.val); } \
|
||||
inline void v_store_low(_Tp* ptr, const _Tpvec& a) \
|
||||
{ vst1_##suffix(ptr, vget_low_##suffix(a.val)); } \
|
||||
inline void v_store_high(_Tp* ptr, const _Tpvec& a) \
|
||||
{ vst1_##suffix(ptr, vget_high_##suffix(a.val)); }
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint8x16, uchar, u8)
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int8x16, schar, s8)
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint16x8, ushort, u16)
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int16x8, short, s16)
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint32x4, unsigned, u32)
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int32x4, int, s32)
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint64x2, uint64, u64)
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int64x2, int64, s64)
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float32x4, float, f32)
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(_Tpvec, scalartype, func, scalar_func) \
|
||||
inline scalartype v_reduce_##func(const _Tpvec& a) \
|
||||
{ \
|
||||
scalartype CV_DECL_ALIGNED(16) buf[4]; \
|
||||
v_store_aligned(buf, a); \
|
||||
scalartype s0 = scalar_func(buf[0], buf[1]); \
|
||||
scalartype s1 = scalar_func(buf[2], buf[3]); \
|
||||
return scalar_func(s0, s1); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, unsigned, sum, OPENCV_HAL_ADD)
|
||||
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, unsigned, max, std::max)
|
||||
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, unsigned, min, std::min)
|
||||
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int, sum, OPENCV_HAL_ADD)
|
||||
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int, max, std::max)
|
||||
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int, min, std::min)
|
||||
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float, sum, OPENCV_HAL_ADD)
|
||||
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float, max, std::max)
|
||||
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float, min, std::min)
|
||||
|
||||
inline int v_signmask(const v_uint8x16& a)
|
||||
{
|
||||
int8x8_t m0 = vcreate_s8(CV_BIG_UINT(0x0706050403020100));
|
||||
uint8x16_t v0 = vshlq_u8(vshrq_n_u8(a.val, 7), vcombine_s8(m0, m0));
|
||||
uint64x2_t v1 = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(v0)));
|
||||
return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 8);
|
||||
}
|
||||
inline int v_signmask(const v_int8x16& a)
|
||||
{ return v_signmask(v_reinterpret_as_u8(a)); }
|
||||
|
||||
inline int v_signmask(const v_uint16x8& a)
|
||||
{
|
||||
int16x4_t m0 = vcreate_s16(CV_BIG_UINT(0x0003000200010000));
|
||||
uint16x8_t v0 = vshlq_u16(vshrq_n_u16(a.val, 15), vcombine_s16(m0, m0));
|
||||
uint64x2_t v1 = vpaddlq_u32(vpaddlq_u16(v0));
|
||||
return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 4);
|
||||
}
|
||||
inline int v_signmask(const v_int16x8& a)
|
||||
{ return v_signmask(v_reinterpret_as_u16(a)); }
|
||||
|
||||
inline int v_signmask(const v_uint32x4& a)
|
||||
{
|
||||
int32x2_t m0 = vcreate_s32(CV_BIG_UINT(0x0000000100000000));
|
||||
uint32x4_t v0 = vshlq_u32(vshrq_n_u32(a.val, 31), vcombine_s32(m0, m0));
|
||||
uint64x2_t v1 = vpaddlq_u32(v0);
|
||||
return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 2);
|
||||
}
|
||||
inline int v_signmask(const v_int32x4& a)
|
||||
{ return v_signmask(v_reinterpret_as_u32(a)); }
|
||||
inline int v_signmask(const v_float32x4& a)
|
||||
{ return v_signmask(v_reinterpret_as_u32(a)); }
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(_Tpvec, suffix, shift) \
|
||||
inline bool v_check_all(const v_##_Tpvec& a) \
|
||||
{ \
|
||||
_Tpvec##_t v0 = vshrq_n_##suffix(vmvnq_##suffix(a.val), shift); \
|
||||
uint64x2_t v1 = vreinterpretq_u64_##suffix(v0); \
|
||||
return (vgetq_lane_u64(v1, 0) | vgetq_lane_u64(v1, 1)) == 0; \
|
||||
} \
|
||||
inline bool v_check_any(const v_##_Tpvec& a) \
|
||||
{ \
|
||||
_Tpvec##_t v0 = vshrq_n_##suffix(a.val, shift); \
|
||||
uint64x2_t v1 = vreinterpretq_u64_##suffix(v0); \
|
||||
return (vgetq_lane_u64(v1, 0) | vgetq_lane_u64(v1, 1)) != 0; \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint8x16, u8, 7)
|
||||
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint16x8, u16, 15)
|
||||
OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint32x4, u32, 31)
|
||||
|
||||
inline bool v_check_all(const v_int8x16& a)
|
||||
{ return v_check_all(v_reinterpret_as_u8(a)); }
|
||||
inline bool v_check_all(const v_int16x8& a)
|
||||
{ return v_check_all(v_reinterpret_as_u16(a)); }
|
||||
inline bool v_check_all(const v_int32x4& a)
|
||||
{ return v_check_all(v_reinterpret_as_u32(a)); }
|
||||
inline bool v_check_all(const v_float32x4& a)
|
||||
{ return v_check_all(v_reinterpret_as_u32(a)); }
|
||||
|
||||
inline bool v_check_any(const v_int8x16& a)
|
||||
{ return v_check_any(v_reinterpret_as_u8(a)); }
|
||||
inline bool v_check_any(const v_int16x8& a)
|
||||
{ return v_check_any(v_reinterpret_as_u16(a)); }
|
||||
inline bool v_check_any(const v_int32x4& a)
|
||||
{ return v_check_any(v_reinterpret_as_u32(a)); }
|
||||
inline bool v_check_any(const v_float32x4& a)
|
||||
{ return v_check_any(v_reinterpret_as_u32(a)); }
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_SELECT(_Tpvec, suffix, usuffix) \
|
||||
inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \
|
||||
{ \
|
||||
return _Tpvec(vbslq_##suffix(vreinterpretq_##usuffix##_##suffix(mask.val), a.val, b.val)); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_SELECT(v_uint8x16, u8, u8)
|
||||
OPENCV_HAL_IMPL_NEON_SELECT(v_int8x16, s8, u8)
|
||||
OPENCV_HAL_IMPL_NEON_SELECT(v_uint16x8, u16, u16)
|
||||
OPENCV_HAL_IMPL_NEON_SELECT(v_int16x8, s16, u16)
|
||||
OPENCV_HAL_IMPL_NEON_SELECT(v_uint32x4, u32, u32)
|
||||
OPENCV_HAL_IMPL_NEON_SELECT(v_int32x4, s32, u32)
|
||||
OPENCV_HAL_IMPL_NEON_SELECT(v_float32x4, f32, u32)
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_EXPAND(_Tpvec, _Tpwvec, _Tp, suffix) \
|
||||
inline void v_expand(const _Tpvec& a, _Tpwvec& b0, _Tpwvec& b1) \
|
||||
{ \
|
||||
b0.val = vmovl_##suffix(vget_low_##suffix(a.val)); \
|
||||
b1.val = vmovl_##suffix(vget_high_##suffix(a.val)); \
|
||||
} \
|
||||
inline _Tpwvec v_load_expand(const _Tp* ptr) \
|
||||
{ \
|
||||
return _Tpwvec(vmovl_##suffix(vld1_##suffix(ptr))); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_EXPAND(v_uint8x16, v_uint16x8, uchar, u8)
|
||||
OPENCV_HAL_IMPL_NEON_EXPAND(v_int8x16, v_int16x8, schar, s8)
|
||||
OPENCV_HAL_IMPL_NEON_EXPAND(v_uint16x8, v_uint32x4, ushort, u16)
|
||||
OPENCV_HAL_IMPL_NEON_EXPAND(v_int16x8, v_int32x4, short, s16)
|
||||
OPENCV_HAL_IMPL_NEON_EXPAND(v_uint32x4, v_uint64x2, uint, u32)
|
||||
OPENCV_HAL_IMPL_NEON_EXPAND(v_int32x4, v_int64x2, int, s32)
|
||||
|
||||
inline v_uint32x4 v_load_expand_q(const uchar* ptr)
|
||||
{
|
||||
uint8x8_t v0 = vcreate_u8(*(unsigned*)ptr);
|
||||
uint16x4_t v1 = vget_low_u16(vmovl_u8(v0));
|
||||
return v_uint32x4(vmovl_u16(v1));
|
||||
}
|
||||
|
||||
inline v_int32x4 v_load_expand_q(const schar* ptr)
|
||||
{
|
||||
int8x8_t v0 = vcreate_s8(*(unsigned*)ptr);
|
||||
int16x4_t v1 = vget_low_s16(vmovl_s8(v0));
|
||||
return v_int32x4(vmovl_s16(v1));
|
||||
}
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_UNPACKS(_Tpvec, suffix) \
|
||||
inline void v_zip(const v_##_Tpvec& a0, const v_##_Tpvec& a1, v_##_Tpvec& b0, v_##_Tpvec& b1) \
|
||||
{ \
|
||||
_Tpvec##x2_t p = vzipq_##suffix(a0.val, a1.val); \
|
||||
b0.val = p.val[0]; \
|
||||
b1.val = p.val[1]; \
|
||||
} \
|
||||
inline v_##_Tpvec v_combine_low(const v_##_Tpvec& a, const v_##_Tpvec& b) \
|
||||
{ \
|
||||
return v_##_Tpvec(vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val))); \
|
||||
} \
|
||||
inline v_##_Tpvec v_combine_high(const v_##_Tpvec& a, const v_##_Tpvec& b) \
|
||||
{ \
|
||||
return v_##_Tpvec(vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val))); \
|
||||
} \
|
||||
inline void v_recombine(const v_##_Tpvec& a, const v_##_Tpvec& b, v_##_Tpvec& c, v_##_Tpvec& d) \
|
||||
{ \
|
||||
c.val = vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val)); \
|
||||
d.val = vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val)); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_UNPACKS(uint8x16, u8)
|
||||
OPENCV_HAL_IMPL_NEON_UNPACKS(int8x16, s8)
|
||||
OPENCV_HAL_IMPL_NEON_UNPACKS(uint16x8, u16)
|
||||
OPENCV_HAL_IMPL_NEON_UNPACKS(int16x8, s16)
|
||||
OPENCV_HAL_IMPL_NEON_UNPACKS(uint32x4, u32)
|
||||
OPENCV_HAL_IMPL_NEON_UNPACKS(int32x4, s32)
|
||||
OPENCV_HAL_IMPL_NEON_UNPACKS(float32x4, f32)
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_EXTRACT(_Tpvec, suffix) \
|
||||
template <int s> \
|
||||
inline v_##_Tpvec v_extract(const v_##_Tpvec& a, const v_##_Tpvec& b) \
|
||||
{ \
|
||||
return v_##_Tpvec(vextq_##suffix(a.val, b.val, s)); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_EXTRACT(uint8x16, u8)
|
||||
OPENCV_HAL_IMPL_NEON_EXTRACT(int8x16, s8)
|
||||
OPENCV_HAL_IMPL_NEON_EXTRACT(uint16x8, u16)
|
||||
OPENCV_HAL_IMPL_NEON_EXTRACT(int16x8, s16)
|
||||
OPENCV_HAL_IMPL_NEON_EXTRACT(uint32x4, u32)
|
||||
OPENCV_HAL_IMPL_NEON_EXTRACT(int32x4, s32)
|
||||
OPENCV_HAL_IMPL_NEON_EXTRACT(uint64x2, u64)
|
||||
OPENCV_HAL_IMPL_NEON_EXTRACT(int64x2, s64)
|
||||
OPENCV_HAL_IMPL_NEON_EXTRACT(float32x4, f32)
|
||||
|
||||
inline v_int32x4 v_round(const v_float32x4& a)
|
||||
{
|
||||
static const int32x4_t v_sign = vdupq_n_s32(1 << 31),
|
||||
v_05 = vreinterpretq_s32_f32(vdupq_n_f32(0.5f));
|
||||
|
||||
int32x4_t v_addition = vorrq_s32(v_05, vandq_s32(v_sign, vreinterpretq_s32_f32(a.val)));
|
||||
return v_int32x4(vcvtq_s32_f32(vaddq_f32(a.val, vreinterpretq_f32_s32(v_addition))));
|
||||
}
|
||||
|
||||
inline v_int32x4 v_floor(const v_float32x4& a)
|
||||
{
|
||||
int32x4_t a1 = vcvtq_s32_f32(a.val);
|
||||
uint32x4_t mask = vcgtq_f32(vcvtq_f32_s32(a1), a.val);
|
||||
return v_int32x4(vaddq_s32(a1, vreinterpretq_s32_u32(mask)));
|
||||
}
|
||||
|
||||
inline v_int32x4 v_ceil(const v_float32x4& a)
|
||||
{
|
||||
int32x4_t a1 = vcvtq_s32_f32(a.val);
|
||||
uint32x4_t mask = vcgtq_f32(a.val, vcvtq_f32_s32(a1));
|
||||
return v_int32x4(vsubq_s32(a1, vreinterpretq_s32_u32(mask)));
|
||||
}
|
||||
|
||||
inline v_int32x4 v_trunc(const v_float32x4& a)
|
||||
{ return v_int32x4(vcvtq_s32_f32(a.val)); }
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(_Tpvec, suffix) \
|
||||
inline void v_transpose4x4(const v_##_Tpvec& a0, const v_##_Tpvec& a1, \
|
||||
const v_##_Tpvec& a2, const v_##_Tpvec& a3, \
|
||||
v_##_Tpvec& b0, v_##_Tpvec& b1, \
|
||||
v_##_Tpvec& b2, v_##_Tpvec& b3) \
|
||||
{ \
|
||||
/* m00 m01 m02 m03 */ \
|
||||
/* m10 m11 m12 m13 */ \
|
||||
/* m20 m21 m22 m23 */ \
|
||||
/* m30 m31 m32 m33 */ \
|
||||
_Tpvec##x2_t t0 = vtrnq_##suffix(a0.val, a1.val); \
|
||||
_Tpvec##x2_t t1 = vtrnq_##suffix(a2.val, a3.val); \
|
||||
/* m00 m10 m02 m12 */ \
|
||||
/* m01 m11 m03 m13 */ \
|
||||
/* m20 m30 m22 m32 */ \
|
||||
/* m21 m31 m23 m33 */ \
|
||||
b0.val = vcombine_##suffix(vget_low_##suffix(t0.val[0]), vget_low_##suffix(t1.val[0])); \
|
||||
b1.val = vcombine_##suffix(vget_low_##suffix(t0.val[1]), vget_low_##suffix(t1.val[1])); \
|
||||
b2.val = vcombine_##suffix(vget_high_##suffix(t0.val[0]), vget_high_##suffix(t1.val[0])); \
|
||||
b3.val = vcombine_##suffix(vget_high_##suffix(t0.val[1]), vget_high_##suffix(t1.val[1])); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(uint32x4, u32)
|
||||
OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(int32x4, s32)
|
||||
OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(float32x4, f32)
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_INTERLEAVED(_Tpvec, _Tp, suffix) \
|
||||
inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, v_##_Tpvec& c) \
|
||||
{ \
|
||||
_Tpvec##x3_t v = vld3q_##suffix(ptr); \
|
||||
a.val = v.val[0]; \
|
||||
b.val = v.val[1]; \
|
||||
c.val = v.val[2]; \
|
||||
} \
|
||||
inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, \
|
||||
v_##_Tpvec& c, v_##_Tpvec& d) \
|
||||
{ \
|
||||
_Tpvec##x4_t v = vld4q_##suffix(ptr); \
|
||||
a.val = v.val[0]; \
|
||||
b.val = v.val[1]; \
|
||||
c.val = v.val[2]; \
|
||||
d.val = v.val[3]; \
|
||||
} \
|
||||
inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b, const v_##_Tpvec& c) \
|
||||
{ \
|
||||
_Tpvec##x3_t v; \
|
||||
v.val[0] = a.val; \
|
||||
v.val[1] = b.val; \
|
||||
v.val[2] = c.val; \
|
||||
vst3q_##suffix(ptr, v); \
|
||||
} \
|
||||
inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b, \
|
||||
const v_##_Tpvec& c, const v_##_Tpvec& d) \
|
||||
{ \
|
||||
_Tpvec##x4_t v; \
|
||||
v.val[0] = a.val; \
|
||||
v.val[1] = b.val; \
|
||||
v.val[2] = c.val; \
|
||||
v.val[3] = d.val; \
|
||||
vst4q_##suffix(ptr, v); \
|
||||
}
|
||||
|
||||
OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint8x16, uchar, u8)
|
||||
OPENCV_HAL_IMPL_NEON_INTERLEAVED(int8x16, schar, s8)
|
||||
OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint16x8, ushort, u16)
|
||||
OPENCV_HAL_IMPL_NEON_INTERLEAVED(int16x8, short, s16)
|
||||
OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint32x4, unsigned, u32)
|
||||
OPENCV_HAL_IMPL_NEON_INTERLEAVED(int32x4, int, s32)
|
||||
OPENCV_HAL_IMPL_NEON_INTERLEAVED(float32x4, float, f32)
|
||||
|
||||
inline v_float32x4 v_cvt_f32(const v_int32x4& a)
|
||||
{
|
||||
return v_float32x4(vcvtq_f32_s32(a.val));
|
||||
}
|
||||
|
||||
//! @endcond
|
||||
|
||||
}
|
||||
|
||||
#endif
|
1599
modules/core/include/opencv2/core/hal/intrin_sse.hpp
Normal file
1599
modules/core/include/opencv2/core/hal/intrin_sse.hpp
Normal file
File diff suppressed because it is too large
Load Diff
@@ -51,6 +51,7 @@
|
||||
#include "opencv2/core/cvdef.h"
|
||||
#include "opencv2/core/base.hpp"
|
||||
#include "opencv2/core/traits.hpp"
|
||||
#include "opencv2/core/saturate.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
128
modules/core/include/opencv2/core/neon_utils.hpp
Normal file
128
modules/core/include/opencv2/core/neon_utils.hpp
Normal file
@@ -0,0 +1,128 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2015, Itseez Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_HAL_NEON_UTILS_HPP__
|
||||
#define __OPENCV_HAL_NEON_UTILS_HPP__
|
||||
|
||||
#include "opencv2/core/cvdef.h"
|
||||
|
||||
//! @addtogroup core_utils_neon
|
||||
//! @{
|
||||
|
||||
#if CV_NEON
|
||||
|
||||
inline int32x2_t cv_vrnd_s32_f32(float32x2_t v)
|
||||
{
|
||||
static int32x2_t v_sign = vdup_n_s32(1 << 31),
|
||||
v_05 = vreinterpret_s32_f32(vdup_n_f32(0.5f));
|
||||
|
||||
int32x2_t v_addition = vorr_s32(v_05, vand_s32(v_sign, vreinterpret_s32_f32(v)));
|
||||
return vcvt_s32_f32(vadd_f32(v, vreinterpret_f32_s32(v_addition)));
|
||||
}
|
||||
|
||||
inline int32x4_t cv_vrndq_s32_f32(float32x4_t v)
|
||||
{
|
||||
static int32x4_t v_sign = vdupq_n_s32(1 << 31),
|
||||
v_05 = vreinterpretq_s32_f32(vdupq_n_f32(0.5f));
|
||||
|
||||
int32x4_t v_addition = vorrq_s32(v_05, vandq_s32(v_sign, vreinterpretq_s32_f32(v)));
|
||||
return vcvtq_s32_f32(vaddq_f32(v, vreinterpretq_f32_s32(v_addition)));
|
||||
}
|
||||
|
||||
inline uint32x2_t cv_vrnd_u32_f32(float32x2_t v)
|
||||
{
|
||||
static float32x2_t v_05 = vdup_n_f32(0.5f);
|
||||
return vcvt_u32_f32(vadd_f32(v, v_05));
|
||||
}
|
||||
|
||||
inline uint32x4_t cv_vrndq_u32_f32(float32x4_t v)
|
||||
{
|
||||
static float32x4_t v_05 = vdupq_n_f32(0.5f);
|
||||
return vcvtq_u32_f32(vaddq_f32(v, v_05));
|
||||
}
|
||||
|
||||
inline float32x4_t cv_vrecpq_f32(float32x4_t val)
|
||||
{
|
||||
float32x4_t reciprocal = vrecpeq_f32(val);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(val, reciprocal), reciprocal);
|
||||
reciprocal = vmulq_f32(vrecpsq_f32(val, reciprocal), reciprocal);
|
||||
return reciprocal;
|
||||
}
|
||||
|
||||
inline float32x2_t cv_vrecp_f32(float32x2_t val)
|
||||
{
|
||||
float32x2_t reciprocal = vrecpe_f32(val);
|
||||
reciprocal = vmul_f32(vrecps_f32(val, reciprocal), reciprocal);
|
||||
reciprocal = vmul_f32(vrecps_f32(val, reciprocal), reciprocal);
|
||||
return reciprocal;
|
||||
}
|
||||
|
||||
inline float32x4_t cv_vrsqrtq_f32(float32x4_t val)
|
||||
{
|
||||
float32x4_t e = vrsqrteq_f32(val);
|
||||
e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(e, e), val), e);
|
||||
e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(e, e), val), e);
|
||||
return e;
|
||||
}
|
||||
|
||||
inline float32x2_t cv_vrsqrt_f32(float32x2_t val)
|
||||
{
|
||||
float32x2_t e = vrsqrte_f32(val);
|
||||
e = vmul_f32(vrsqrts_f32(vmul_f32(e, e), val), e);
|
||||
e = vmul_f32(vrsqrts_f32(vmul_f32(e, e), val), e);
|
||||
return e;
|
||||
}
|
||||
|
||||
inline float32x4_t cv_vsqrtq_f32(float32x4_t val)
|
||||
{
|
||||
return cv_vrecpq_f32(cv_vrsqrtq_f32(val));
|
||||
}
|
||||
|
||||
inline float32x2_t cv_vsqrt_f32(float32x2_t val)
|
||||
{
|
||||
return cv_vrecp_f32(cv_vrsqrt_f32(val));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
//! @}
|
||||
|
||||
#endif // __OPENCV_HAL_NEON_UTILS_HPP__
|
150
modules/core/include/opencv2/core/saturate.hpp
Normal file
150
modules/core/include/opencv2/core/saturate.hpp
Normal file
@@ -0,0 +1,150 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Copyright (C) 2014, Itseez Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_CORE_SATURATE_HPP__
|
||||
#define __OPENCV_CORE_SATURATE_HPP__
|
||||
|
||||
#include "opencv2/core/cvdef.h"
|
||||
#include "opencv2/core/fast_math.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup core_utils
|
||||
//! @{
|
||||
|
||||
/////////////// saturate_cast (used in image & signal processing) ///////////////////
|
||||
|
||||
/** @brief Template function for accurate conversion from one primitive type to another.
|
||||
|
||||
The functions saturate_cast resemble the standard C++ cast operations, such as static_cast\<T\>()
|
||||
and others. They perform an efficient and accurate conversion from one primitive type to another
|
||||
(see the introduction chapter). saturate in the name means that when the input value v is out of the
|
||||
range of the target type, the result is not formed just by taking low bits of the input, but instead
|
||||
the value is clipped. For example:
|
||||
@code
|
||||
uchar a = saturate_cast<uchar>(-100); // a = 0 (UCHAR_MIN)
|
||||
short b = saturate_cast<short>(33333.33333); // b = 32767 (SHRT_MAX)
|
||||
@endcode
|
||||
Such clipping is done when the target type is unsigned char , signed char , unsigned short or
|
||||
signed short . For 32-bit integers, no clipping is done.
|
||||
|
||||
When the parameter is a floating-point value and the target type is an integer (8-, 16- or 32-bit),
|
||||
the floating-point value is first rounded to the nearest integer and then clipped if needed (when
|
||||
the target type is 8- or 16-bit).
|
||||
|
||||
This operation is used in the simplest or most complex image processing functions in OpenCV.
|
||||
|
||||
@param v Function parameter.
|
||||
@sa add, subtract, multiply, divide, Mat::convertTo
|
||||
*/
|
||||
template<typename _Tp> static inline _Tp saturate_cast(uchar v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(schar v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(ushort v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(short v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(unsigned v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(int v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(float v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(double v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(int64 v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(uint64 v) { return _Tp(v); }
|
||||
|
||||
template<> inline uchar saturate_cast<uchar>(schar v) { return (uchar)std::max((int)v, 0); }
|
||||
template<> inline uchar saturate_cast<uchar>(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); }
|
||||
template<> inline uchar saturate_cast<uchar>(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
|
||||
template<> inline uchar saturate_cast<uchar>(short v) { return saturate_cast<uchar>((int)v); }
|
||||
template<> inline uchar saturate_cast<uchar>(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); }
|
||||
template<> inline uchar saturate_cast<uchar>(float v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
|
||||
template<> inline uchar saturate_cast<uchar>(double v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
|
||||
template<> inline uchar saturate_cast<uchar>(int64 v) { return (uchar)((uint64)v <= (uint64)UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
|
||||
template<> inline uchar saturate_cast<uchar>(uint64 v) { return (uchar)std::min(v, (uint64)UCHAR_MAX); }
|
||||
|
||||
template<> inline schar saturate_cast<schar>(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); }
|
||||
template<> inline schar saturate_cast<schar>(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); }
|
||||
template<> inline schar saturate_cast<schar>(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
|
||||
template<> inline schar saturate_cast<schar>(short v) { return saturate_cast<schar>((int)v); }
|
||||
template<> inline schar saturate_cast<schar>(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); }
|
||||
template<> inline schar saturate_cast<schar>(float v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
|
||||
template<> inline schar saturate_cast<schar>(double v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
|
||||
template<> inline schar saturate_cast<schar>(int64 v) { return (schar)((uint64)((int64)v-SCHAR_MIN) <= (uint64)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
|
||||
template<> inline schar saturate_cast<schar>(uint64 v) { return (schar)std::min(v, (uint64)SCHAR_MAX); }
|
||||
|
||||
template<> inline ushort saturate_cast<ushort>(schar v) { return (ushort)std::max((int)v, 0); }
|
||||
template<> inline ushort saturate_cast<ushort>(short v) { return (ushort)std::max((int)v, 0); }
|
||||
template<> inline ushort saturate_cast<ushort>(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
|
||||
template<> inline ushort saturate_cast<ushort>(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); }
|
||||
template<> inline ushort saturate_cast<ushort>(float v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
|
||||
template<> inline ushort saturate_cast<ushort>(double v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
|
||||
template<> inline ushort saturate_cast<ushort>(int64 v) { return (ushort)((uint64)v <= (uint64)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
|
||||
template<> inline ushort saturate_cast<ushort>(uint64 v) { return (ushort)std::min(v, (uint64)USHRT_MAX); }
|
||||
|
||||
template<> inline short saturate_cast<short>(ushort v) { return (short)std::min((int)v, SHRT_MAX); }
|
||||
template<> inline short saturate_cast<short>(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
|
||||
template<> inline short saturate_cast<short>(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); }
|
||||
template<> inline short saturate_cast<short>(float v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
|
||||
template<> inline short saturate_cast<short>(double v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
|
||||
template<> inline short saturate_cast<short>(int64 v) { return (short)((uint64)((int64)v - SHRT_MIN) <= (uint64)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
|
||||
template<> inline short saturate_cast<short>(uint64 v) { return (short)std::min(v, (uint64)SHRT_MAX); }
|
||||
|
||||
template<> inline int saturate_cast<int>(float v) { return cvRound(v); }
|
||||
template<> inline int saturate_cast<int>(double v) { return cvRound(v); }
|
||||
|
||||
// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc.
|
||||
template<> inline unsigned saturate_cast<unsigned>(float v) { return cvRound(v); }
|
||||
template<> inline unsigned saturate_cast<unsigned>(double v) { return cvRound(v); }
|
||||
|
||||
//! @}
|
||||
|
||||
} // cv
|
||||
|
||||
#endif // __OPENCV_CORE_SATURATE_HPP__
|
652
modules/core/include/opencv2/core/sse_utils.hpp
Normal file
652
modules/core/include/opencv2/core/sse_utils.hpp
Normal file
@@ -0,0 +1,652 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2015, Itseez Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_CORE_SSE_UTILS_HPP__
|
||||
#define __OPENCV_CORE_SSE_UTILS_HPP__
|
||||
|
||||
#ifndef __cplusplus
|
||||
# error sse_utils.hpp header must be compiled as C++
|
||||
#endif
|
||||
|
||||
#include "opencv2/core/cvdef.h"
|
||||
|
||||
//! @addtogroup core_utils_sse
|
||||
//! @{
|
||||
|
||||
#if CV_SSE2
|
||||
|
||||
inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_g0);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_g0);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_g1);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_g1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk2);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk2);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk3);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk3);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk2);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk2);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk3);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk3);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk2);
|
||||
__m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk2);
|
||||
__m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk3);
|
||||
__m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk3);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk2);
|
||||
v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk2);
|
||||
v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk3);
|
||||
v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk3);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0,
|
||||
__m128i & v_g1, __m128i & v_b0, __m128i & v_b1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_g1);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_g1);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_b0);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_b0);
|
||||
__m128i layer1_chunk4 = _mm_unpacklo_epi8(v_g0, v_b1);
|
||||
__m128i layer1_chunk5 = _mm_unpackhi_epi8(v_g0, v_b1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk3);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk3);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk4);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk4);
|
||||
__m128i layer2_chunk4 = _mm_unpacklo_epi8(layer1_chunk2, layer1_chunk5);
|
||||
__m128i layer2_chunk5 = _mm_unpackhi_epi8(layer1_chunk2, layer1_chunk5);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk3);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk3);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk4);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk4);
|
||||
__m128i layer3_chunk4 = _mm_unpacklo_epi8(layer2_chunk2, layer2_chunk5);
|
||||
__m128i layer3_chunk5 = _mm_unpackhi_epi8(layer2_chunk2, layer2_chunk5);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk3);
|
||||
__m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk3);
|
||||
__m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk4);
|
||||
__m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk4);
|
||||
__m128i layer4_chunk4 = _mm_unpacklo_epi8(layer3_chunk2, layer3_chunk5);
|
||||
__m128i layer4_chunk5 = _mm_unpackhi_epi8(layer3_chunk2, layer3_chunk5);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk3);
|
||||
v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk3);
|
||||
v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk4);
|
||||
v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk4);
|
||||
v_b0 = _mm_unpacklo_epi8(layer4_chunk2, layer4_chunk5);
|
||||
v_b1 = _mm_unpackhi_epi8(layer4_chunk2, layer4_chunk5);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1,
|
||||
__m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_b0);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_b0);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_b1);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_b1);
|
||||
__m128i layer1_chunk4 = _mm_unpacklo_epi8(v_g0, v_a0);
|
||||
__m128i layer1_chunk5 = _mm_unpackhi_epi8(v_g0, v_a0);
|
||||
__m128i layer1_chunk6 = _mm_unpacklo_epi8(v_g1, v_a1);
|
||||
__m128i layer1_chunk7 = _mm_unpackhi_epi8(v_g1, v_a1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk4);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk4);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk5);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk5);
|
||||
__m128i layer2_chunk4 = _mm_unpacklo_epi8(layer1_chunk2, layer1_chunk6);
|
||||
__m128i layer2_chunk5 = _mm_unpackhi_epi8(layer1_chunk2, layer1_chunk6);
|
||||
__m128i layer2_chunk6 = _mm_unpacklo_epi8(layer1_chunk3, layer1_chunk7);
|
||||
__m128i layer2_chunk7 = _mm_unpackhi_epi8(layer1_chunk3, layer1_chunk7);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk4);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk4);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk5);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk5);
|
||||
__m128i layer3_chunk4 = _mm_unpacklo_epi8(layer2_chunk2, layer2_chunk6);
|
||||
__m128i layer3_chunk5 = _mm_unpackhi_epi8(layer2_chunk2, layer2_chunk6);
|
||||
__m128i layer3_chunk6 = _mm_unpacklo_epi8(layer2_chunk3, layer2_chunk7);
|
||||
__m128i layer3_chunk7 = _mm_unpackhi_epi8(layer2_chunk3, layer2_chunk7);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk4);
|
||||
__m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk4);
|
||||
__m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk5);
|
||||
__m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk5);
|
||||
__m128i layer4_chunk4 = _mm_unpacklo_epi8(layer3_chunk2, layer3_chunk6);
|
||||
__m128i layer4_chunk5 = _mm_unpackhi_epi8(layer3_chunk2, layer3_chunk6);
|
||||
__m128i layer4_chunk6 = _mm_unpacklo_epi8(layer3_chunk3, layer3_chunk7);
|
||||
__m128i layer4_chunk7 = _mm_unpackhi_epi8(layer3_chunk3, layer3_chunk7);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk4);
|
||||
v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk4);
|
||||
v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk5);
|
||||
v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk5);
|
||||
v_b0 = _mm_unpacklo_epi8(layer4_chunk2, layer4_chunk6);
|
||||
v_b1 = _mm_unpackhi_epi8(layer4_chunk2, layer4_chunk6);
|
||||
v_a0 = _mm_unpacklo_epi8(layer4_chunk3, layer4_chunk7);
|
||||
v_a1 = _mm_unpackhi_epi8(layer4_chunk3, layer4_chunk7);
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi16(0x00ff);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer4_chunk2 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8));
|
||||
__m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer4_chunk3 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8));
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8));
|
||||
|
||||
v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_g0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8));
|
||||
v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_g1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8));
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0,
|
||||
__m128i & v_g1, __m128i & v_b0, __m128i & v_b1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi16(0x00ff);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer4_chunk3 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8));
|
||||
__m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer4_chunk4 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8));
|
||||
__m128i layer4_chunk2 = _mm_packus_epi16(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask));
|
||||
__m128i layer4_chunk5 = _mm_packus_epi16(_mm_srli_epi16(v_b0, 8), _mm_srli_epi16(v_b1, 8));
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask));
|
||||
__m128i layer3_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi16(_mm_and_si128(layer4_chunk4, v_mask), _mm_and_si128(layer4_chunk5, v_mask));
|
||||
__m128i layer3_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk4, 8), _mm_srli_epi16(layer4_chunk5, 8));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi16(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask));
|
||||
__m128i layer2_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk4, 8), _mm_srli_epi16(layer3_chunk5, 8));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi16(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask));
|
||||
__m128i layer1_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk4, 8), _mm_srli_epi16(layer2_chunk5, 8));
|
||||
|
||||
v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_g1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8));
|
||||
v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_b0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8));
|
||||
v_g0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask));
|
||||
v_b1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk4, 8), _mm_srli_epi16(layer1_chunk5, 8));
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1,
|
||||
__m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi16(0x00ff);
|
||||
|
||||
__m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer4_chunk4 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8));
|
||||
__m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer4_chunk5 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8));
|
||||
__m128i layer4_chunk2 = _mm_packus_epi16(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask));
|
||||
__m128i layer4_chunk6 = _mm_packus_epi16(_mm_srli_epi16(v_b0, 8), _mm_srli_epi16(v_b1, 8));
|
||||
__m128i layer4_chunk3 = _mm_packus_epi16(_mm_and_si128(v_a0, v_mask), _mm_and_si128(v_a1, v_mask));
|
||||
__m128i layer4_chunk7 = _mm_packus_epi16(_mm_srli_epi16(v_a0, 8), _mm_srli_epi16(v_a1, 8));
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask));
|
||||
__m128i layer3_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask));
|
||||
__m128i layer3_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi16(_mm_and_si128(layer4_chunk4, v_mask), _mm_and_si128(layer4_chunk5, v_mask));
|
||||
__m128i layer3_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk4, 8), _mm_srli_epi16(layer4_chunk5, 8));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi16(_mm_and_si128(layer4_chunk6, v_mask), _mm_and_si128(layer4_chunk7, v_mask));
|
||||
__m128i layer3_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk6, 8), _mm_srli_epi16(layer4_chunk7, 8));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi16(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask));
|
||||
__m128i layer2_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk4, 8), _mm_srli_epi16(layer3_chunk5, 8));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi16(_mm_and_si128(layer3_chunk6, v_mask), _mm_and_si128(layer3_chunk7, v_mask));
|
||||
__m128i layer2_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk6, 8), _mm_srli_epi16(layer3_chunk7, 8));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi16(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask));
|
||||
__m128i layer1_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk4, 8), _mm_srli_epi16(layer2_chunk5, 8));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi16(_mm_and_si128(layer2_chunk6, v_mask), _mm_and_si128(layer2_chunk7, v_mask));
|
||||
__m128i layer1_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk6, 8), _mm_srli_epi16(layer2_chunk7, 8));
|
||||
|
||||
v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_b0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8));
|
||||
v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_b1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8));
|
||||
v_g0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask));
|
||||
v_a0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk4, 8), _mm_srli_epi16(layer1_chunk5, 8));
|
||||
v_g1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk6, v_mask), _mm_and_si128(layer1_chunk7, v_mask));
|
||||
v_a1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk6, 8), _mm_srli_epi16(layer1_chunk7, 8));
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_g0);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_g0);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_g1);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_g1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk2);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk2);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk3);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk3);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk2);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk2);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk3);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk3);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk2);
|
||||
v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk2);
|
||||
v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk3);
|
||||
v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk3);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0,
|
||||
__m128i & v_g1, __m128i & v_b0, __m128i & v_b1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_g1);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_g1);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_b0);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_b0);
|
||||
__m128i layer1_chunk4 = _mm_unpacklo_epi16(v_g0, v_b1);
|
||||
__m128i layer1_chunk5 = _mm_unpackhi_epi16(v_g0, v_b1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk3);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk3);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk4);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk4);
|
||||
__m128i layer2_chunk4 = _mm_unpacklo_epi16(layer1_chunk2, layer1_chunk5);
|
||||
__m128i layer2_chunk5 = _mm_unpackhi_epi16(layer1_chunk2, layer1_chunk5);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk3);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk3);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk4);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk4);
|
||||
__m128i layer3_chunk4 = _mm_unpacklo_epi16(layer2_chunk2, layer2_chunk5);
|
||||
__m128i layer3_chunk5 = _mm_unpackhi_epi16(layer2_chunk2, layer2_chunk5);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk3);
|
||||
v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk3);
|
||||
v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk4);
|
||||
v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk4);
|
||||
v_b0 = _mm_unpacklo_epi16(layer3_chunk2, layer3_chunk5);
|
||||
v_b1 = _mm_unpackhi_epi16(layer3_chunk2, layer3_chunk5);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1,
|
||||
__m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1)
|
||||
{
|
||||
__m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_b0);
|
||||
__m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_b0);
|
||||
__m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_b1);
|
||||
__m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_b1);
|
||||
__m128i layer1_chunk4 = _mm_unpacklo_epi16(v_g0, v_a0);
|
||||
__m128i layer1_chunk5 = _mm_unpackhi_epi16(v_g0, v_a0);
|
||||
__m128i layer1_chunk6 = _mm_unpacklo_epi16(v_g1, v_a1);
|
||||
__m128i layer1_chunk7 = _mm_unpackhi_epi16(v_g1, v_a1);
|
||||
|
||||
__m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk4);
|
||||
__m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk4);
|
||||
__m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk5);
|
||||
__m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk5);
|
||||
__m128i layer2_chunk4 = _mm_unpacklo_epi16(layer1_chunk2, layer1_chunk6);
|
||||
__m128i layer2_chunk5 = _mm_unpackhi_epi16(layer1_chunk2, layer1_chunk6);
|
||||
__m128i layer2_chunk6 = _mm_unpacklo_epi16(layer1_chunk3, layer1_chunk7);
|
||||
__m128i layer2_chunk7 = _mm_unpackhi_epi16(layer1_chunk3, layer1_chunk7);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk4);
|
||||
__m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk4);
|
||||
__m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk5);
|
||||
__m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk5);
|
||||
__m128i layer3_chunk4 = _mm_unpacklo_epi16(layer2_chunk2, layer2_chunk6);
|
||||
__m128i layer3_chunk5 = _mm_unpackhi_epi16(layer2_chunk2, layer2_chunk6);
|
||||
__m128i layer3_chunk6 = _mm_unpacklo_epi16(layer2_chunk3, layer2_chunk7);
|
||||
__m128i layer3_chunk7 = _mm_unpackhi_epi16(layer2_chunk3, layer2_chunk7);
|
||||
|
||||
v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk4);
|
||||
v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk4);
|
||||
v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk5);
|
||||
v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk5);
|
||||
v_b0 = _mm_unpacklo_epi16(layer3_chunk2, layer3_chunk6);
|
||||
v_b1 = _mm_unpackhi_epi16(layer3_chunk2, layer3_chunk6);
|
||||
v_a0 = _mm_unpacklo_epi16(layer3_chunk3, layer3_chunk7);
|
||||
v_a1 = _mm_unpackhi_epi16(layer3_chunk3, layer3_chunk7);
|
||||
}
|
||||
|
||||
#if CV_SSE4_1
|
||||
|
||||
inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi32(0x0000ffff);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16));
|
||||
|
||||
v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_g0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16));
|
||||
v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_g1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16));
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0,
|
||||
__m128i & v_g1, __m128i & v_b0, __m128i & v_b1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi32(0x0000ffff);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer3_chunk4 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi32(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask));
|
||||
__m128i layer3_chunk5 = _mm_packus_epi32(_mm_srli_epi32(v_b0, 16), _mm_srli_epi32(v_b1, 16));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi32(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask));
|
||||
__m128i layer2_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk4, 16), _mm_srli_epi32(layer3_chunk5, 16));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi32(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask));
|
||||
__m128i layer1_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk4, 16), _mm_srli_epi32(layer2_chunk5, 16));
|
||||
|
||||
v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_g1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16));
|
||||
v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_b0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16));
|
||||
v_g0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask));
|
||||
v_b1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk4, 16), _mm_srli_epi32(layer1_chunk5, 16));
|
||||
}
|
||||
|
||||
inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1,
|
||||
__m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1)
|
||||
{
|
||||
__m128i v_mask = _mm_set1_epi32(0x0000ffff);
|
||||
|
||||
__m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask));
|
||||
__m128i layer3_chunk4 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16));
|
||||
__m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask));
|
||||
__m128i layer3_chunk5 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16));
|
||||
__m128i layer3_chunk2 = _mm_packus_epi32(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask));
|
||||
__m128i layer3_chunk6 = _mm_packus_epi32(_mm_srli_epi32(v_b0, 16), _mm_srli_epi32(v_b1, 16));
|
||||
__m128i layer3_chunk3 = _mm_packus_epi32(_mm_and_si128(v_a0, v_mask), _mm_and_si128(v_a1, v_mask));
|
||||
__m128i layer3_chunk7 = _mm_packus_epi32(_mm_srli_epi32(v_a0, 16), _mm_srli_epi32(v_a1, 16));
|
||||
|
||||
__m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask));
|
||||
__m128i layer2_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16));
|
||||
__m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask));
|
||||
__m128i layer2_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16));
|
||||
__m128i layer2_chunk2 = _mm_packus_epi32(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask));
|
||||
__m128i layer2_chunk6 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk4, 16), _mm_srli_epi32(layer3_chunk5, 16));
|
||||
__m128i layer2_chunk3 = _mm_packus_epi32(_mm_and_si128(layer3_chunk6, v_mask), _mm_and_si128(layer3_chunk7, v_mask));
|
||||
__m128i layer2_chunk7 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk6, 16), _mm_srli_epi32(layer3_chunk7, 16));
|
||||
|
||||
__m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask));
|
||||
__m128i layer1_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16));
|
||||
__m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask));
|
||||
__m128i layer1_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16));
|
||||
__m128i layer1_chunk2 = _mm_packus_epi32(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask));
|
||||
__m128i layer1_chunk6 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk4, 16), _mm_srli_epi32(layer2_chunk5, 16));
|
||||
__m128i layer1_chunk3 = _mm_packus_epi32(_mm_and_si128(layer2_chunk6, v_mask), _mm_and_si128(layer2_chunk7, v_mask));
|
||||
__m128i layer1_chunk7 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk6, 16), _mm_srli_epi32(layer2_chunk7, 16));
|
||||
|
||||
v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask));
|
||||
v_b0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16));
|
||||
v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask));
|
||||
v_b1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16));
|
||||
v_g0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask));
|
||||
v_a0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk4, 16), _mm_srli_epi32(layer1_chunk5, 16));
|
||||
v_g1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk6, v_mask), _mm_and_si128(layer1_chunk7, v_mask));
|
||||
v_a1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk6, 16), _mm_srli_epi32(layer1_chunk7, 16));
|
||||
}
|
||||
|
||||
#endif // CV_SSE4_1
|
||||
|
||||
inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1)
|
||||
{
|
||||
__m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_g0);
|
||||
__m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_g0);
|
||||
__m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_g1);
|
||||
__m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_g1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk2);
|
||||
__m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk2);
|
||||
__m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk3);
|
||||
__m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk3);
|
||||
|
||||
v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk2);
|
||||
v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk2);
|
||||
v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk3);
|
||||
v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk3);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0,
|
||||
__m128 & v_g1, __m128 & v_b0, __m128 & v_b1)
|
||||
{
|
||||
__m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_g1);
|
||||
__m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_g1);
|
||||
__m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_b0);
|
||||
__m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_b0);
|
||||
__m128 layer1_chunk4 = _mm_unpacklo_ps(v_g0, v_b1);
|
||||
__m128 layer1_chunk5 = _mm_unpackhi_ps(v_g0, v_b1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk3);
|
||||
__m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk3);
|
||||
__m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk4);
|
||||
__m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk4);
|
||||
__m128 layer2_chunk4 = _mm_unpacklo_ps(layer1_chunk2, layer1_chunk5);
|
||||
__m128 layer2_chunk5 = _mm_unpackhi_ps(layer1_chunk2, layer1_chunk5);
|
||||
|
||||
v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk3);
|
||||
v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk3);
|
||||
v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk4);
|
||||
v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk4);
|
||||
v_b0 = _mm_unpacklo_ps(layer2_chunk2, layer2_chunk5);
|
||||
v_b1 = _mm_unpackhi_ps(layer2_chunk2, layer2_chunk5);
|
||||
}
|
||||
|
||||
inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1,
|
||||
__m128 & v_b0, __m128 & v_b1, __m128 & v_a0, __m128 & v_a1)
|
||||
{
|
||||
__m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_b0);
|
||||
__m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_b0);
|
||||
__m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_b1);
|
||||
__m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_b1);
|
||||
__m128 layer1_chunk4 = _mm_unpacklo_ps(v_g0, v_a0);
|
||||
__m128 layer1_chunk5 = _mm_unpackhi_ps(v_g0, v_a0);
|
||||
__m128 layer1_chunk6 = _mm_unpacklo_ps(v_g1, v_a1);
|
||||
__m128 layer1_chunk7 = _mm_unpackhi_ps(v_g1, v_a1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk4);
|
||||
__m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk4);
|
||||
__m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk5);
|
||||
__m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk5);
|
||||
__m128 layer2_chunk4 = _mm_unpacklo_ps(layer1_chunk2, layer1_chunk6);
|
||||
__m128 layer2_chunk5 = _mm_unpackhi_ps(layer1_chunk2, layer1_chunk6);
|
||||
__m128 layer2_chunk6 = _mm_unpacklo_ps(layer1_chunk3, layer1_chunk7);
|
||||
__m128 layer2_chunk7 = _mm_unpackhi_ps(layer1_chunk3, layer1_chunk7);
|
||||
|
||||
v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk4);
|
||||
v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk4);
|
||||
v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk5);
|
||||
v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk5);
|
||||
v_b0 = _mm_unpacklo_ps(layer2_chunk2, layer2_chunk6);
|
||||
v_b1 = _mm_unpackhi_ps(layer2_chunk2, layer2_chunk6);
|
||||
v_a0 = _mm_unpacklo_ps(layer2_chunk3, layer2_chunk7);
|
||||
v_a1 = _mm_unpackhi_ps(layer2_chunk3, layer2_chunk7);
|
||||
}
|
||||
|
||||
inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1)
|
||||
{
|
||||
const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo);
|
||||
__m128 layer2_chunk2 = _mm_shuffle_ps(v_r0, v_r1, mask_hi);
|
||||
__m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo);
|
||||
__m128 layer2_chunk3 = _mm_shuffle_ps(v_g0, v_g1, mask_hi);
|
||||
|
||||
__m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo);
|
||||
__m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi);
|
||||
__m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo);
|
||||
__m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi);
|
||||
|
||||
v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo);
|
||||
v_g0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi);
|
||||
v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo);
|
||||
v_g1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi);
|
||||
}
|
||||
|
||||
inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0,
|
||||
__m128 & v_g1, __m128 & v_b0, __m128 & v_b1)
|
||||
{
|
||||
const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo);
|
||||
__m128 layer2_chunk3 = _mm_shuffle_ps(v_r0, v_r1, mask_hi);
|
||||
__m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo);
|
||||
__m128 layer2_chunk4 = _mm_shuffle_ps(v_g0, v_g1, mask_hi);
|
||||
__m128 layer2_chunk2 = _mm_shuffle_ps(v_b0, v_b1, mask_lo);
|
||||
__m128 layer2_chunk5 = _mm_shuffle_ps(v_b0, v_b1, mask_hi);
|
||||
|
||||
__m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo);
|
||||
__m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi);
|
||||
__m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo);
|
||||
__m128 layer1_chunk4 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi);
|
||||
__m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_lo);
|
||||
__m128 layer1_chunk5 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_hi);
|
||||
|
||||
v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo);
|
||||
v_g1 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi);
|
||||
v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo);
|
||||
v_b0 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi);
|
||||
v_g0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_lo);
|
||||
v_b1 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_hi);
|
||||
}
|
||||
|
||||
inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1,
|
||||
__m128 & v_b0, __m128 & v_b1, __m128 & v_a0, __m128 & v_a1)
|
||||
{
|
||||
const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1);
|
||||
|
||||
__m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo);
|
||||
__m128 layer2_chunk4 = _mm_shuffle_ps(v_r0, v_r1, mask_hi);
|
||||
__m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo);
|
||||
__m128 layer2_chunk5 = _mm_shuffle_ps(v_g0, v_g1, mask_hi);
|
||||
__m128 layer2_chunk2 = _mm_shuffle_ps(v_b0, v_b1, mask_lo);
|
||||
__m128 layer2_chunk6 = _mm_shuffle_ps(v_b0, v_b1, mask_hi);
|
||||
__m128 layer2_chunk3 = _mm_shuffle_ps(v_a0, v_a1, mask_lo);
|
||||
__m128 layer2_chunk7 = _mm_shuffle_ps(v_a0, v_a1, mask_hi);
|
||||
|
||||
__m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo);
|
||||
__m128 layer1_chunk4 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi);
|
||||
__m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo);
|
||||
__m128 layer1_chunk5 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi);
|
||||
__m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_lo);
|
||||
__m128 layer1_chunk6 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_hi);
|
||||
__m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk6, layer2_chunk7, mask_lo);
|
||||
__m128 layer1_chunk7 = _mm_shuffle_ps(layer2_chunk6, layer2_chunk7, mask_hi);
|
||||
|
||||
v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo);
|
||||
v_b0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi);
|
||||
v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo);
|
||||
v_b1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi);
|
||||
v_g0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_lo);
|
||||
v_a0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_hi);
|
||||
v_g1 = _mm_shuffle_ps(layer1_chunk6, layer1_chunk7, mask_lo);
|
||||
v_a1 = _mm_shuffle_ps(layer1_chunk6, layer1_chunk7, mask_hi);
|
||||
}
|
||||
|
||||
#endif // CV_SSE2
|
||||
|
||||
//! @}
|
||||
|
||||
#endif //__OPENCV_CORE_SSE_UTILS_HPP__
|
Reference in New Issue
Block a user