refactored gpu::convolve function:
* converted it to Algorithm * old API still can be used for source compatibility (marked as deprecated)
This commit is contained in:
parent
26a4be89b1
commit
8461cb3f4b
@ -374,7 +374,23 @@ CV_EXPORTS void mulAndScaleSpectrums(InputArray src1, InputArray src2, OutputArr
|
||||
//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format.
|
||||
CV_EXPORTS void dft(InputArray src, OutputArray dst, Size dft_size, int flags=0, Stream& stream = Stream::Null());
|
||||
|
||||
struct CV_EXPORTS ConvolveBuf
|
||||
//! computes convolution (or cross-correlation) of two images using discrete Fourier transform
|
||||
//! supports source images of 32FC1 type only
|
||||
//! result matrix will have 32FC1 type
|
||||
class CV_EXPORTS Convolution : public Algorithm
|
||||
{
|
||||
public:
|
||||
virtual void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
CV_EXPORTS Ptr<Convolution> createConvolution(Size user_block_size = Size());
|
||||
|
||||
__OPENCV_GPUARITHM_DEPR_BEFORE__ void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null()) __OPENCV_GPUARITHM_DEPR_AFTER__;
|
||||
inline void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr , Stream& stream)
|
||||
{
|
||||
createConvolution()->convolve(image, templ, result, ccorr, stream);
|
||||
}
|
||||
|
||||
struct ConvolveBuf
|
||||
{
|
||||
Size result_size;
|
||||
Size block_size;
|
||||
@ -385,15 +401,15 @@ struct CV_EXPORTS ConvolveBuf
|
||||
GpuMat image_spect, templ_spect, result_spect;
|
||||
GpuMat image_block, templ_block, result_data;
|
||||
|
||||
void create(Size image_size, Size templ_size);
|
||||
static Size estimateBlockSize(Size result_size, Size templ_size);
|
||||
void create(Size, Size){}
|
||||
static Size estimateBlockSize(Size, Size){ return Size(); }
|
||||
};
|
||||
|
||||
//! computes convolution (or cross-correlation) of two images using discrete Fourier transform
|
||||
//! supports source images of 32FC1 type only
|
||||
//! result matrix will have 32FC1 type
|
||||
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr = false);
|
||||
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream = Stream::Null());
|
||||
__OPENCV_GPUARITHM_DEPR_BEFORE__ void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr, ConvolveBuf& buf, Stream& stream = Stream::Null()) __OPENCV_GPUARITHM_DEPR_AFTER__;
|
||||
inline void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr, ConvolveBuf& buf, Stream& stream)
|
||||
{
|
||||
createConvolution(buf.user_block_size)->convolve(image, templ, result, ccorr, stream);
|
||||
}
|
||||
|
||||
}} // namespace cv { namespace gpu {
|
||||
|
||||
|
@ -228,10 +228,11 @@ PERF_TEST_P(Sz_KernelSz_Ccorr, Convolve,
|
||||
cv::gpu::GpuMat d_templ = cv::gpu::createContinuous(templ_size, templ_size, CV_32FC1);
|
||||
d_templ.upload(templ);
|
||||
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::ConvolveBuf d_buf;
|
||||
cv::Ptr<cv::gpu::Convolution> convolution = cv::gpu::createConvolution();
|
||||
|
||||
TEST_CYCLE() cv::gpu::convolve(d_image, d_templ, dst, ccorr, d_buf);
|
||||
cv::gpu::GpuMat dst;
|
||||
|
||||
TEST_CYCLE() convolution->convolve(d_image, d_templ, dst, ccorr);
|
||||
|
||||
GPU_SANITY_CHECK(dst);
|
||||
}
|
||||
|
@ -54,9 +54,7 @@ void cv::gpu::mulAndScaleSpectrums(InputArray, InputArray, OutputArray, int, flo
|
||||
|
||||
void cv::gpu::dft(InputArray, OutputArray, Size, int, Stream&) { throw_no_cuda(); }
|
||||
|
||||
void cv::gpu::ConvolveBuf::create(Size, Size) { throw_no_cuda(); }
|
||||
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_no_cuda(); }
|
||||
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&, Stream&) { throw_no_cuda(); }
|
||||
Ptr<Convolution> cv::gpu::createConvolution(Size) { throw_no_cuda(); return Ptr<Convolution>(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
@ -486,136 +484,152 @@ void cv::gpu::dft(InputArray _src, OutputArray _dst, Size dft_size, int flags, S
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// convolve
|
||||
// Convolution
|
||||
|
||||
void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size)
|
||||
#ifdef HAVE_CUFFT
|
||||
|
||||
namespace
|
||||
{
|
||||
result_size = Size(image_size.width - templ_size.width + 1,
|
||||
image_size.height - templ_size.height + 1);
|
||||
|
||||
block_size = user_block_size;
|
||||
if (user_block_size.width == 0 || user_block_size.height == 0)
|
||||
block_size = estimateBlockSize(result_size, templ_size);
|
||||
|
||||
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
|
||||
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
|
||||
|
||||
// CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192),
|
||||
// see CUDA Toolkit 4.1 CUFFT Library Programming Guide
|
||||
if (dft_size.width > 8192)
|
||||
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
|
||||
if (dft_size.height > 8192)
|
||||
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
|
||||
|
||||
// To avoid wasting time doing small DFTs
|
||||
dft_size.width = std::max(dft_size.width, 512);
|
||||
dft_size.height = std::max(dft_size.height, 512);
|
||||
|
||||
createContinuous(dft_size, CV_32F, image_block);
|
||||
createContinuous(dft_size, CV_32F, templ_block);
|
||||
createContinuous(dft_size, CV_32F, result_data);
|
||||
|
||||
spect_len = dft_size.height * (dft_size.width / 2 + 1);
|
||||
createContinuous(1, spect_len, CV_32FC2, image_spect);
|
||||
createContinuous(1, spect_len, CV_32FC2, templ_spect);
|
||||
createContinuous(1, spect_len, CV_32FC2, result_spect);
|
||||
|
||||
// Use maximum result matrix block size for the estimated DFT block size
|
||||
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
|
||||
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
|
||||
}
|
||||
|
||||
|
||||
Size cv::gpu::ConvolveBuf::estimateBlockSize(Size result_size, Size /*templ_size*/)
|
||||
{
|
||||
int width = (result_size.width + 2) / 3;
|
||||
int height = (result_size.height + 2) / 3;
|
||||
width = std::min(width, result_size.width);
|
||||
height = std::min(height, result_size.height);
|
||||
return Size(width, height);
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr)
|
||||
{
|
||||
ConvolveBuf buf;
|
||||
gpu::convolve(image, templ, result, ccorr, buf);
|
||||
}
|
||||
|
||||
void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream)
|
||||
{
|
||||
#ifndef HAVE_CUFFT
|
||||
(void) image;
|
||||
(void) templ;
|
||||
(void) result;
|
||||
(void) ccorr;
|
||||
(void) buf;
|
||||
(void) stream;
|
||||
throw_no_cuda();
|
||||
#else
|
||||
CV_Assert(image.type() == CV_32F);
|
||||
CV_Assert(templ.type() == CV_32F);
|
||||
|
||||
buf.create(image.size(), templ.size());
|
||||
result.create(buf.result_size, CV_32F);
|
||||
|
||||
Size& block_size = buf.block_size;
|
||||
Size& dft_size = buf.dft_size;
|
||||
|
||||
GpuMat& image_block = buf.image_block;
|
||||
GpuMat& templ_block = buf.templ_block;
|
||||
GpuMat& result_data = buf.result_data;
|
||||
|
||||
GpuMat& image_spect = buf.image_spect;
|
||||
GpuMat& templ_spect = buf.templ_spect;
|
||||
GpuMat& result_spect = buf.result_spect;
|
||||
|
||||
cufftHandle planR2C, planC2R;
|
||||
cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
|
||||
cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));
|
||||
|
||||
cufftSafeCall( cufftSetStream(planR2C, StreamAccessor::getStream(stream)) );
|
||||
cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) );
|
||||
|
||||
GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
|
||||
gpu::copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
||||
templ_block.cols - templ_roi.cols, 0, Scalar(), stream);
|
||||
|
||||
cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(),
|
||||
templ_spect.ptr<cufftComplex>()));
|
||||
|
||||
// Process all blocks of the result matrix
|
||||
for (int y = 0; y < result.rows; y += block_size.height)
|
||||
class ConvolutionImpl : public Convolution
|
||||
{
|
||||
for (int x = 0; x < result.cols; x += block_size.width)
|
||||
{
|
||||
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
|
||||
std::min(y + dft_size.height, image.rows) - y);
|
||||
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
|
||||
image.step);
|
||||
gpu::copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
|
||||
0, image_block.cols - image_roi.cols, 0, Scalar(), stream);
|
||||
public:
|
||||
explicit ConvolutionImpl(Size user_block_size_) : user_block_size(user_block_size_) {}
|
||||
|
||||
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
|
||||
image_spect.ptr<cufftComplex>()));
|
||||
gpu::mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
|
||||
1.f / dft_size.area(), ccorr, stream);
|
||||
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
|
||||
result_data.ptr<cufftReal>()));
|
||||
void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null());
|
||||
|
||||
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
|
||||
std::min(y + block_size.height, result.rows) - y);
|
||||
GpuMat result_roi(result_roi_size, result.type(),
|
||||
(void*)(result.ptr<float>(y) + x), result.step);
|
||||
GpuMat result_block(result_roi_size, result_data.type(),
|
||||
result_data.ptr(), result_data.step);
|
||||
private:
|
||||
void create(Size image_size, Size templ_size);
|
||||
static Size estimateBlockSize(Size result_size);
|
||||
|
||||
result_block.copyTo(result_roi, stream);
|
||||
}
|
||||
Size result_size;
|
||||
Size block_size;
|
||||
Size user_block_size;
|
||||
Size dft_size;
|
||||
int spect_len;
|
||||
|
||||
GpuMat image_spect, templ_spect, result_spect;
|
||||
GpuMat image_block, templ_block, result_data;
|
||||
};
|
||||
|
||||
void ConvolutionImpl::create(Size image_size, Size templ_size)
|
||||
{
|
||||
result_size = Size(image_size.width - templ_size.width + 1,
|
||||
image_size.height - templ_size.height + 1);
|
||||
|
||||
block_size = user_block_size;
|
||||
if (user_block_size.width == 0 || user_block_size.height == 0)
|
||||
block_size = estimateBlockSize(result_size);
|
||||
|
||||
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
|
||||
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
|
||||
|
||||
// CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192),
|
||||
// see CUDA Toolkit 4.1 CUFFT Library Programming Guide
|
||||
if (dft_size.width > 8192)
|
||||
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
|
||||
if (dft_size.height > 8192)
|
||||
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
|
||||
|
||||
// To avoid wasting time doing small DFTs
|
||||
dft_size.width = std::max(dft_size.width, 512);
|
||||
dft_size.height = std::max(dft_size.height, 512);
|
||||
|
||||
createContinuous(dft_size, CV_32F, image_block);
|
||||
createContinuous(dft_size, CV_32F, templ_block);
|
||||
createContinuous(dft_size, CV_32F, result_data);
|
||||
|
||||
spect_len = dft_size.height * (dft_size.width / 2 + 1);
|
||||
createContinuous(1, spect_len, CV_32FC2, image_spect);
|
||||
createContinuous(1, spect_len, CV_32FC2, templ_spect);
|
||||
createContinuous(1, spect_len, CV_32FC2, result_spect);
|
||||
|
||||
// Use maximum result matrix block size for the estimated DFT block size
|
||||
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
|
||||
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
|
||||
}
|
||||
|
||||
cufftSafeCall(cufftDestroy(planR2C));
|
||||
cufftSafeCall(cufftDestroy(planC2R));
|
||||
Size ConvolutionImpl::estimateBlockSize(Size result_size)
|
||||
{
|
||||
int width = (result_size.width + 2) / 3;
|
||||
int height = (result_size.height + 2) / 3;
|
||||
width = std::min(width, result_size.width);
|
||||
height = std::min(height, result_size.height);
|
||||
return Size(width, height);
|
||||
}
|
||||
|
||||
void ConvolutionImpl::convolve(InputArray _image, InputArray _templ, OutputArray _result, bool ccorr, Stream& _stream)
|
||||
{
|
||||
GpuMat image = _image.getGpuMat();
|
||||
GpuMat templ = _templ.getGpuMat();
|
||||
|
||||
CV_Assert( image.type() == CV_32FC1 );
|
||||
CV_Assert( templ.type() == CV_32FC1 );
|
||||
|
||||
create(image.size(), templ.size());
|
||||
|
||||
_result.create(result_size, CV_32FC1);
|
||||
GpuMat result = _result.getGpuMat();
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(_stream);
|
||||
|
||||
cufftHandle planR2C, planC2R;
|
||||
cufftSafeCall( cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R) );
|
||||
cufftSafeCall( cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C) );
|
||||
|
||||
cufftSafeCall( cufftSetStream(planR2C, stream) );
|
||||
cufftSafeCall( cufftSetStream(planC2R, stream) );
|
||||
|
||||
GpuMat templ_roi(templ.size(), CV_32FC1, templ.data, templ.step);
|
||||
gpu::copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
||||
templ_block.cols - templ_roi.cols, 0, Scalar(), _stream);
|
||||
|
||||
cufftSafeCall( cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(), templ_spect.ptr<cufftComplex>()) );
|
||||
|
||||
// Process all blocks of the result matrix
|
||||
for (int y = 0; y < result.rows; y += block_size.height)
|
||||
{
|
||||
for (int x = 0; x < result.cols; x += block_size.width)
|
||||
{
|
||||
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
|
||||
std::min(y + dft_size.height, image.rows) - y);
|
||||
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
|
||||
image.step);
|
||||
gpu::copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
|
||||
0, image_block.cols - image_roi.cols, 0, Scalar(), _stream);
|
||||
|
||||
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
|
||||
image_spect.ptr<cufftComplex>()));
|
||||
gpu::mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
|
||||
1.f / dft_size.area(), ccorr, _stream);
|
||||
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
|
||||
result_data.ptr<cufftReal>()));
|
||||
|
||||
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
|
||||
std::min(y + block_size.height, result.rows) - y);
|
||||
GpuMat result_roi(result_roi_size, result.type(),
|
||||
(void*)(result.ptr<float>(y) + x), result.step);
|
||||
GpuMat result_block(result_roi_size, result_data.type(),
|
||||
result_data.ptr(), result_data.step);
|
||||
|
||||
result_block.copyTo(result_roi, _stream);
|
||||
}
|
||||
}
|
||||
|
||||
cufftSafeCall( cufftDestroy(planR2C) );
|
||||
cufftSafeCall( cufftDestroy(planC2R) );
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
Ptr<Convolution> cv::gpu::createConvolution(Size user_block_size)
|
||||
{
|
||||
#ifndef HAVE_CUBLAS
|
||||
(void) user_block_size;
|
||||
CV_Error(cv::Error::StsNotImplemented, "The library was build without CUFFT");
|
||||
return Ptr<BLAS>();
|
||||
#else
|
||||
return new ConvolutionImpl(user_block_size);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -419,8 +419,10 @@ GPU_TEST_P(Convolve, Accuracy)
|
||||
cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
|
||||
cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
|
||||
|
||||
cv::Ptr<cv::gpu::Convolution> conv = cv::gpu::createConvolution();
|
||||
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::convolve(loadMat(src), loadMat(kernel), dst, ccorr);
|
||||
conv->convolve(loadMat(src), loadMat(kernel), dst, ccorr);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
convolveDFT(src, kernel, dst_gold, ccorr);
|
||||
|
@ -172,15 +172,16 @@ namespace
|
||||
return;
|
||||
}
|
||||
|
||||
gpu::ConvolveBuf convolve_buf;
|
||||
convolve_buf.user_block_size = buf.user_block_size;
|
||||
Ptr<gpu::Convolution> conv = gpu::createConvolution(buf.user_block_size);
|
||||
|
||||
if (image.channels() == 1)
|
||||
gpu::convolve(image.reshape(1), templ.reshape(1), result, true, convolve_buf, stream);
|
||||
{
|
||||
conv->convolve(image.reshape(1), templ.reshape(1), result, true, stream);
|
||||
}
|
||||
else
|
||||
{
|
||||
GpuMat result_;
|
||||
gpu::convolve(image.reshape(1), templ.reshape(1), result_, true, convolve_buf, stream);
|
||||
conv->convolve(image.reshape(1), templ.reshape(1), result_, true, stream);
|
||||
extractFirstChannel_32F(result_, result, image.channels(), StreamAccessor::getStream(stream));
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user