Merge pull request #1365 from bitwangyaoyao:2.4_bilateral

This commit is contained in:
Roman Donchenko
2013-09-09 16:46:32 +04:00
committed by OpenCV Buildbot
11 changed files with 994 additions and 67 deletions

View File

@@ -2272,6 +2272,236 @@ void cv::bilateralFilter( InputArray _src, OutputArray _dst, int d,
"Bilateral filtering is only implemented for 8u and 32f images" );
}
/****************************************************************************************\
Adaptive Bilateral Filtering
\****************************************************************************************/
namespace cv
{
#define CALCVAR 1
#define FIXED_WEIGHT 0
class adaptiveBilateralFilter_8u_Invoker :
public ParallelLoopBody
{
public:
adaptiveBilateralFilter_8u_Invoker(Mat& _dest, const Mat& _temp, Size _ksize, double _sigma_space, Point _anchor) :
temp(&_temp), dest(&_dest), ksize(_ksize), sigma_space(_sigma_space), anchor(_anchor)
{
if( sigma_space <= 0 )
sigma_space = 1;
CV_Assert((ksize.width & 1) && (ksize.height & 1));
space_weight.resize(ksize.width * ksize.height);
double sigma2 = sigma_space * sigma_space;
int idx = 0;
int w = ksize.width / 2;
int h = ksize.height / 2;
for(int y=-h; y<=h; y++)
for(int x=-w; x<=w; x++)
{
space_weight[idx++] = (float)(sigma2 / (sigma2 + x * x + y * y));
}
}
virtual void operator()(const Range& range) const
{
int cn = dest->channels();
int anX = anchor.x;
const uchar *tptr;
for(int i = range.start;i < range.end; i++)
{
int startY = i;
if(cn == 1)
{
float var;
int currVal;
int sumVal = 0;
int sumValSqr = 0;
int currValCenter;
int currWRTCenter;
float weight;
float totalWeight = 0.;
float tmpSum = 0.;
for(int j = 0;j < dest->cols *cn; j+=cn)
{
sumVal = 0;
sumValSqr= 0;
totalWeight = 0.;
tmpSum = 0.;
// Top row: don't sum the very last element
int startLMJ = 0;
int endLMJ = ksize.width - 1;
int howManyAll = (anX *2 +1)*(ksize.width );
#if CALCVAR
for(int x = startLMJ; x< endLMJ; x++)
{
tptr = temp->ptr(startY + x) +j;
for(int y=-anX; y<=anX; y++)
{
currVal = tptr[cn*(y+anX)];
sumVal += currVal;
sumValSqr += (currVal *currVal);
}
}
var = ( (sumValSqr * howManyAll)- sumVal * sumVal ) / ( (float)(howManyAll*howManyAll));
#else
var = 900.0;
#endif
startLMJ = 0;
endLMJ = ksize.width;
tptr = temp->ptr(startY + (startLMJ+ endLMJ)/2);
currValCenter =tptr[j+cn*anX];
for(int x = startLMJ; x< endLMJ; x++)
{
tptr = temp->ptr(startY + x) +j;
for(int y=-anX; y<=anX; y++)
{
#if FIXED_WEIGHT
weight = 1.0;
#else
currVal = tptr[cn*(y+anX)];
currWRTCenter = currVal - currValCenter;
weight = var / ( var + (currWRTCenter * currWRTCenter) ) * space_weight[x*ksize.width+y+anX];;
#endif
tmpSum += ((float)tptr[cn*(y+anX)] * weight);
totalWeight += weight;
}
}
tmpSum /= totalWeight;
dest->at<uchar>(startY ,j)= static_cast<uchar>(tmpSum);
}
}
else
{
assert(cn == 3);
float var_b, var_g, var_r;
int currVal_b, currVal_g, currVal_r;
int sumVal_b= 0, sumVal_g= 0, sumVal_r= 0;
int sumValSqr_b= 0, sumValSqr_g= 0, sumValSqr_r= 0;
int currValCenter_b= 0, currValCenter_g= 0, currValCenter_r= 0;
int currWRTCenter_b, currWRTCenter_g, currWRTCenter_r;
float weight_b, weight_g, weight_r;
float totalWeight_b= 0., totalWeight_g= 0., totalWeight_r= 0.;
float tmpSum_b = 0., tmpSum_g= 0., tmpSum_r = 0.;
for(int j = 0;j < dest->cols *cn; j+=cn)
{
sumVal_b= 0, sumVal_g= 0, sumVal_r= 0;
sumValSqr_b= 0, sumValSqr_g= 0, sumValSqr_r= 0;
totalWeight_b= 0., totalWeight_g= 0., totalWeight_r= 0.;
tmpSum_b = 0., tmpSum_g= 0., tmpSum_r = 0.;
// Top row: don't sum the very last element
int startLMJ = 0;
int endLMJ = ksize.width - 1;
int howManyAll = (anX *2 +1)*(ksize.width);
#if CALCVAR
for(int x = startLMJ; x< endLMJ; x++)
{
tptr = temp->ptr(startY + x) +j;
for(int y=-anX; y<=anX; y++)
{
currVal_b = tptr[cn*(y+anX)], currVal_g = tptr[cn*(y+anX)+1], currVal_r =tptr[cn*(y+anX)+2];
sumVal_b += currVal_b;
sumVal_g += currVal_g;
sumVal_r += currVal_r;
sumValSqr_b += (currVal_b *currVal_b);
sumValSqr_g += (currVal_g *currVal_g);
sumValSqr_r += (currVal_r *currVal_r);
}
}
var_b = ( (sumValSqr_b * howManyAll)- sumVal_b * sumVal_b ) / ( (float)(howManyAll*howManyAll));
var_g = ( (sumValSqr_g * howManyAll)- sumVal_g * sumVal_g ) / ( (float)(howManyAll*howManyAll));
var_r = ( (sumValSqr_r * howManyAll)- sumVal_r * sumVal_r ) / ( (float)(howManyAll*howManyAll));
#else
var_b = 900.0; var_g = 900.0;var_r = 900.0;
#endif
startLMJ = 0;
endLMJ = ksize.width;
tptr = temp->ptr(startY + (startLMJ+ endLMJ)/2) + j;
currValCenter_b =tptr[cn*anX], currValCenter_g =tptr[cn*anX+1], currValCenter_r =tptr[cn*anX+2];
for(int x = startLMJ; x< endLMJ; x++)
{
tptr = temp->ptr(startY + x) +j;
for(int y=-anX; y<=anX; y++)
{
#if FIXED_WEIGHT
weight_b = 1.0;
weight_g = 1.0;
weight_r = 1.0;
#else
currVal_b = tptr[cn*(y+anX)];currVal_g=tptr[cn*(y+anX)+1];currVal_r=tptr[cn*(y+anX)+2];
currWRTCenter_b = currVal_b - currValCenter_b;
currWRTCenter_g = currVal_g - currValCenter_g;
currWRTCenter_r = currVal_r - currValCenter_r;
float cur_spw = space_weight[x*ksize.width+y+anX];
weight_b = var_b / ( var_b + (currWRTCenter_b * currWRTCenter_b) ) * cur_spw;
weight_g = var_g / ( var_g + (currWRTCenter_g * currWRTCenter_g) ) * cur_spw;
weight_r = var_r / ( var_r + (currWRTCenter_r * currWRTCenter_r) ) * cur_spw;
#endif
tmpSum_b += ((float)tptr[cn*(y+anX)] * weight_b);
tmpSum_g += ((float)tptr[cn*(y+anX)+1] * weight_g);
tmpSum_r += ((float)tptr[cn*(y+anX)+2] * weight_r);
totalWeight_b += weight_b, totalWeight_g += weight_g, totalWeight_r += weight_r;
}
}
tmpSum_b /= totalWeight_b;
tmpSum_g /= totalWeight_g;
tmpSum_r /= totalWeight_r;
dest->at<uchar>(startY,j )= static_cast<uchar>(tmpSum_b);
dest->at<uchar>(startY,j+1)= static_cast<uchar>(tmpSum_g);
dest->at<uchar>(startY,j+2)= static_cast<uchar>(tmpSum_r);
}
}
}
}
private:
const Mat *temp;
Mat *dest;
Size ksize;
double sigma_space;
Point anchor;
vector<float> space_weight;
};
static void adaptiveBilateralFilter_8u( const Mat& src, Mat& dst, Size ksize, double sigmaSpace, Point anchor, int borderType )
{
Size size = src.size();
CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) &&
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
Mat temp;
copyMakeBorder(src, temp, anchor.x, anchor.y, anchor.x, anchor.y, borderType);
adaptiveBilateralFilter_8u_Invoker body(dst, temp, ksize, sigmaSpace, anchor);
parallel_for_(Range(0, size.height), body, dst.total()/(double)(1<<16));
}
}
void cv::adaptiveBilateralFilter( InputArray _src, OutputArray _dst, Size ksize,
double sigmaSpace, Point anchor, int borderType )
{
Mat src = _src.getMat();
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
anchor = normalizeAnchor(anchor,ksize);
if( src.depth() == CV_8U )
adaptiveBilateralFilter_8u( src, dst, ksize, sigmaSpace, anchor, borderType );
else
CV_Error( CV_StsUnsupportedFormat,
"Adaptive Bilateral filtering is only implemented for 8u images" );
}
//////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL void