Merge pull request #1365 from bitwangyaoyao:2.4_bilateral
This commit is contained in:
@@ -2272,6 +2272,236 @@ void cv::bilateralFilter( InputArray _src, OutputArray _dst, int d,
|
||||
"Bilateral filtering is only implemented for 8u and 32f images" );
|
||||
}
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
Adaptive Bilateral Filtering
|
||||
\****************************************************************************************/
|
||||
|
||||
namespace cv
|
||||
{
|
||||
#define CALCVAR 1
|
||||
#define FIXED_WEIGHT 0
|
||||
|
||||
class adaptiveBilateralFilter_8u_Invoker :
|
||||
public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
adaptiveBilateralFilter_8u_Invoker(Mat& _dest, const Mat& _temp, Size _ksize, double _sigma_space, Point _anchor) :
|
||||
temp(&_temp), dest(&_dest), ksize(_ksize), sigma_space(_sigma_space), anchor(_anchor)
|
||||
{
|
||||
if( sigma_space <= 0 )
|
||||
sigma_space = 1;
|
||||
CV_Assert((ksize.width & 1) && (ksize.height & 1));
|
||||
space_weight.resize(ksize.width * ksize.height);
|
||||
double sigma2 = sigma_space * sigma_space;
|
||||
int idx = 0;
|
||||
int w = ksize.width / 2;
|
||||
int h = ksize.height / 2;
|
||||
for(int y=-h; y<=h; y++)
|
||||
for(int x=-w; x<=w; x++)
|
||||
{
|
||||
space_weight[idx++] = (float)(sigma2 / (sigma2 + x * x + y * y));
|
||||
}
|
||||
}
|
||||
virtual void operator()(const Range& range) const
|
||||
{
|
||||
int cn = dest->channels();
|
||||
int anX = anchor.x;
|
||||
|
||||
const uchar *tptr;
|
||||
|
||||
for(int i = range.start;i < range.end; i++)
|
||||
{
|
||||
int startY = i;
|
||||
if(cn == 1)
|
||||
{
|
||||
float var;
|
||||
int currVal;
|
||||
int sumVal = 0;
|
||||
int sumValSqr = 0;
|
||||
int currValCenter;
|
||||
int currWRTCenter;
|
||||
float weight;
|
||||
float totalWeight = 0.;
|
||||
float tmpSum = 0.;
|
||||
|
||||
for(int j = 0;j < dest->cols *cn; j+=cn)
|
||||
{
|
||||
sumVal = 0;
|
||||
sumValSqr= 0;
|
||||
totalWeight = 0.;
|
||||
tmpSum = 0.;
|
||||
|
||||
// Top row: don't sum the very last element
|
||||
int startLMJ = 0;
|
||||
int endLMJ = ksize.width - 1;
|
||||
int howManyAll = (anX *2 +1)*(ksize.width );
|
||||
#if CALCVAR
|
||||
for(int x = startLMJ; x< endLMJ; x++)
|
||||
{
|
||||
tptr = temp->ptr(startY + x) +j;
|
||||
for(int y=-anX; y<=anX; y++)
|
||||
{
|
||||
currVal = tptr[cn*(y+anX)];
|
||||
sumVal += currVal;
|
||||
sumValSqr += (currVal *currVal);
|
||||
}
|
||||
}
|
||||
var = ( (sumValSqr * howManyAll)- sumVal * sumVal ) / ( (float)(howManyAll*howManyAll));
|
||||
#else
|
||||
var = 900.0;
|
||||
#endif
|
||||
startLMJ = 0;
|
||||
endLMJ = ksize.width;
|
||||
tptr = temp->ptr(startY + (startLMJ+ endLMJ)/2);
|
||||
currValCenter =tptr[j+cn*anX];
|
||||
for(int x = startLMJ; x< endLMJ; x++)
|
||||
{
|
||||
tptr = temp->ptr(startY + x) +j;
|
||||
for(int y=-anX; y<=anX; y++)
|
||||
{
|
||||
#if FIXED_WEIGHT
|
||||
weight = 1.0;
|
||||
#else
|
||||
currVal = tptr[cn*(y+anX)];
|
||||
currWRTCenter = currVal - currValCenter;
|
||||
|
||||
weight = var / ( var + (currWRTCenter * currWRTCenter) ) * space_weight[x*ksize.width+y+anX];;
|
||||
#endif
|
||||
tmpSum += ((float)tptr[cn*(y+anX)] * weight);
|
||||
totalWeight += weight;
|
||||
}
|
||||
}
|
||||
tmpSum /= totalWeight;
|
||||
|
||||
dest->at<uchar>(startY ,j)= static_cast<uchar>(tmpSum);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(cn == 3);
|
||||
float var_b, var_g, var_r;
|
||||
int currVal_b, currVal_g, currVal_r;
|
||||
int sumVal_b= 0, sumVal_g= 0, sumVal_r= 0;
|
||||
int sumValSqr_b= 0, sumValSqr_g= 0, sumValSqr_r= 0;
|
||||
int currValCenter_b= 0, currValCenter_g= 0, currValCenter_r= 0;
|
||||
int currWRTCenter_b, currWRTCenter_g, currWRTCenter_r;
|
||||
float weight_b, weight_g, weight_r;
|
||||
float totalWeight_b= 0., totalWeight_g= 0., totalWeight_r= 0.;
|
||||
float tmpSum_b = 0., tmpSum_g= 0., tmpSum_r = 0.;
|
||||
|
||||
for(int j = 0;j < dest->cols *cn; j+=cn)
|
||||
{
|
||||
sumVal_b= 0, sumVal_g= 0, sumVal_r= 0;
|
||||
sumValSqr_b= 0, sumValSqr_g= 0, sumValSqr_r= 0;
|
||||
totalWeight_b= 0., totalWeight_g= 0., totalWeight_r= 0.;
|
||||
tmpSum_b = 0., tmpSum_g= 0., tmpSum_r = 0.;
|
||||
|
||||
// Top row: don't sum the very last element
|
||||
int startLMJ = 0;
|
||||
int endLMJ = ksize.width - 1;
|
||||
int howManyAll = (anX *2 +1)*(ksize.width);
|
||||
#if CALCVAR
|
||||
for(int x = startLMJ; x< endLMJ; x++)
|
||||
{
|
||||
tptr = temp->ptr(startY + x) +j;
|
||||
for(int y=-anX; y<=anX; y++)
|
||||
{
|
||||
currVal_b = tptr[cn*(y+anX)], currVal_g = tptr[cn*(y+anX)+1], currVal_r =tptr[cn*(y+anX)+2];
|
||||
sumVal_b += currVal_b;
|
||||
sumVal_g += currVal_g;
|
||||
sumVal_r += currVal_r;
|
||||
sumValSqr_b += (currVal_b *currVal_b);
|
||||
sumValSqr_g += (currVal_g *currVal_g);
|
||||
sumValSqr_r += (currVal_r *currVal_r);
|
||||
}
|
||||
}
|
||||
var_b = ( (sumValSqr_b * howManyAll)- sumVal_b * sumVal_b ) / ( (float)(howManyAll*howManyAll));
|
||||
var_g = ( (sumValSqr_g * howManyAll)- sumVal_g * sumVal_g ) / ( (float)(howManyAll*howManyAll));
|
||||
var_r = ( (sumValSqr_r * howManyAll)- sumVal_r * sumVal_r ) / ( (float)(howManyAll*howManyAll));
|
||||
#else
|
||||
var_b = 900.0; var_g = 900.0;var_r = 900.0;
|
||||
#endif
|
||||
startLMJ = 0;
|
||||
endLMJ = ksize.width;
|
||||
tptr = temp->ptr(startY + (startLMJ+ endLMJ)/2) + j;
|
||||
currValCenter_b =tptr[cn*anX], currValCenter_g =tptr[cn*anX+1], currValCenter_r =tptr[cn*anX+2];
|
||||
for(int x = startLMJ; x< endLMJ; x++)
|
||||
{
|
||||
tptr = temp->ptr(startY + x) +j;
|
||||
for(int y=-anX; y<=anX; y++)
|
||||
{
|
||||
#if FIXED_WEIGHT
|
||||
weight_b = 1.0;
|
||||
weight_g = 1.0;
|
||||
weight_r = 1.0;
|
||||
#else
|
||||
currVal_b = tptr[cn*(y+anX)];currVal_g=tptr[cn*(y+anX)+1];currVal_r=tptr[cn*(y+anX)+2];
|
||||
currWRTCenter_b = currVal_b - currValCenter_b;
|
||||
currWRTCenter_g = currVal_g - currValCenter_g;
|
||||
currWRTCenter_r = currVal_r - currValCenter_r;
|
||||
|
||||
float cur_spw = space_weight[x*ksize.width+y+anX];
|
||||
weight_b = var_b / ( var_b + (currWRTCenter_b * currWRTCenter_b) ) * cur_spw;
|
||||
weight_g = var_g / ( var_g + (currWRTCenter_g * currWRTCenter_g) ) * cur_spw;
|
||||
weight_r = var_r / ( var_r + (currWRTCenter_r * currWRTCenter_r) ) * cur_spw;
|
||||
#endif
|
||||
tmpSum_b += ((float)tptr[cn*(y+anX)] * weight_b);
|
||||
tmpSum_g += ((float)tptr[cn*(y+anX)+1] * weight_g);
|
||||
tmpSum_r += ((float)tptr[cn*(y+anX)+2] * weight_r);
|
||||
totalWeight_b += weight_b, totalWeight_g += weight_g, totalWeight_r += weight_r;
|
||||
}
|
||||
}
|
||||
tmpSum_b /= totalWeight_b;
|
||||
tmpSum_g /= totalWeight_g;
|
||||
tmpSum_r /= totalWeight_r;
|
||||
|
||||
dest->at<uchar>(startY,j )= static_cast<uchar>(tmpSum_b);
|
||||
dest->at<uchar>(startY,j+1)= static_cast<uchar>(tmpSum_g);
|
||||
dest->at<uchar>(startY,j+2)= static_cast<uchar>(tmpSum_r);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
private:
|
||||
const Mat *temp;
|
||||
Mat *dest;
|
||||
Size ksize;
|
||||
double sigma_space;
|
||||
Point anchor;
|
||||
vector<float> space_weight;
|
||||
};
|
||||
static void adaptiveBilateralFilter_8u( const Mat& src, Mat& dst, Size ksize, double sigmaSpace, Point anchor, int borderType )
|
||||
{
|
||||
Size size = src.size();
|
||||
|
||||
CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) &&
|
||||
src.type() == dst.type() && src.size() == dst.size() &&
|
||||
src.data != dst.data );
|
||||
Mat temp;
|
||||
copyMakeBorder(src, temp, anchor.x, anchor.y, anchor.x, anchor.y, borderType);
|
||||
|
||||
adaptiveBilateralFilter_8u_Invoker body(dst, temp, ksize, sigmaSpace, anchor);
|
||||
parallel_for_(Range(0, size.height), body, dst.total()/(double)(1<<16));
|
||||
}
|
||||
}
|
||||
void cv::adaptiveBilateralFilter( InputArray _src, OutputArray _dst, Size ksize,
|
||||
double sigmaSpace, Point anchor, int borderType )
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
_dst.create(src.size(), src.type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
|
||||
|
||||
anchor = normalizeAnchor(anchor,ksize);
|
||||
if( src.depth() == CV_8U )
|
||||
adaptiveBilateralFilter_8u( src, dst, ksize, sigmaSpace, anchor, borderType );
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"Adaptive Bilateral filtering is only implemented for 8u images" );
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_IMPL void
|
||||
|
Reference in New Issue
Block a user