refactored digits_adjust.py (dataset preprocess in cloud)
This commit is contained in:
parent
6977a89525
commit
83ccdbd0ce
@ -17,6 +17,7 @@ from common import clock, mosaic
|
||||
|
||||
SZ = 20 # size of each digit is SZ x SZ
|
||||
CLASS_N = 10
|
||||
DIGITS_FN = 'digits.png'
|
||||
|
||||
def load_digits(fn):
|
||||
print 'loading "%s" ...' % fn
|
||||
@ -95,7 +96,7 @@ def evaluate_model(model, digits, samples, labels):
|
||||
if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
digits, labels = load_digits('digits.png')
|
||||
digits, labels = load_digits(DIGITS_FN)
|
||||
|
||||
print 'preprocessing...'
|
||||
# shuffle digits
|
||||
|
@ -11,11 +11,10 @@ Usage:
|
||||
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>]
|
||||
|
||||
--model {svm|knearest} - select the classifier (SVM is the default)
|
||||
--cloud - use PiCloud computing platform (for SVM only)
|
||||
--cloud - use PiCloud computing platform
|
||||
--env - cloud environment name
|
||||
|
||||
'''
|
||||
# TODO dataset preprocessing in cloud
|
||||
# TODO cloud env setup tutorial
|
||||
|
||||
import numpy as np
|
||||
@ -24,6 +23,14 @@ from multiprocessing.pool import ThreadPool
|
||||
|
||||
from digits import *
|
||||
|
||||
try:
|
||||
import cloud
|
||||
have_cloud = True
|
||||
except ImportError:
|
||||
have_cloud = False
|
||||
|
||||
|
||||
|
||||
def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None):
|
||||
n = len(samples)
|
||||
folds = np.array_split(np.arange(n), kfold)
|
||||
@ -46,66 +53,88 @@ def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None)
|
||||
scores = pool.map(f, xrange(kfold))
|
||||
return np.mean(scores)
|
||||
|
||||
def adjust_KNearest(samples, labels):
|
||||
print 'adjusting KNearest ...'
|
||||
best_err, best_k = np.inf, -1
|
||||
for k in xrange(1, 9):
|
||||
err = cross_validate(KNearest, dict(k=k), samples, labels)
|
||||
if err < best_err:
|
||||
best_err, best_k = err, k
|
||||
print 'k = %d, error: %.2f %%' % (k, err*100)
|
||||
best_params = dict(k=best_k)
|
||||
print 'best params:', best_params
|
||||
return best_params
|
||||
|
||||
def adjust_SVM(samples, labels, usecloud=False, cloud_env=''):
|
||||
Cs = np.logspace(0, 5, 10, base=2)
|
||||
gammas = np.logspace(-7, -2, 10, base=2)
|
||||
scores = np.zeros((len(Cs), len(gammas)))
|
||||
scores[:] = np.nan
|
||||
|
||||
if usecloud:
|
||||
try:
|
||||
import cloud
|
||||
except ImportError:
|
||||
print 'cloud module is not installed'
|
||||
class App(object):
|
||||
def __init__(self, usecloud=False, cloud_env=''):
|
||||
if usecloud and not have_cloud:
|
||||
print 'warning: cloud module is not installed, running locally'
|
||||
usecloud = False
|
||||
if usecloud:
|
||||
print 'uploading dataset to cloud...'
|
||||
np.savez('train.npz', samples=samples, labels=labels)
|
||||
cloud.files.put('train.npz')
|
||||
self.usecloud = usecloud
|
||||
self.cloud_env = cloud_env
|
||||
|
||||
print 'adjusting SVM (may take a long time) ...'
|
||||
def f(job):
|
||||
i, j = job
|
||||
params = dict(C = Cs[i], gamma=gammas[j])
|
||||
score = cross_validate(SVM, params, samples, labels)
|
||||
return i, j, score
|
||||
def fcloud(job):
|
||||
i, j = job
|
||||
cloud.files.get('train.npz')
|
||||
npz = np.load('train.npz')
|
||||
params = dict(C = Cs[i], gamma=gammas[j])
|
||||
score = cross_validate(SVM, params, npz['samples'], npz['labels'])
|
||||
return i, j, score
|
||||
|
||||
if usecloud:
|
||||
jids = cloud.map(fcloud, np.ndindex(*scores.shape), _env=cloud_env, _profile=True)
|
||||
ires = cloud.iresult(jids)
|
||||
else:
|
||||
pool = ThreadPool(processes=cv2.getNumberOfCPUs())
|
||||
ires = pool.imap_unordered(f, np.ndindex(*scores.shape))
|
||||
if self.usecloud:
|
||||
print 'uploading dataset to cloud...'
|
||||
cloud.files.put(DIGITS_FN)
|
||||
self.preprocess_job = cloud.call(self.preprocess, _env=self.cloud_env)
|
||||
else:
|
||||
self._samples, self._labels = self.preprocess()
|
||||
|
||||
for count, (i, j, score) in enumerate(ires):
|
||||
scores[i, j] = score
|
||||
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)
|
||||
print scores
|
||||
def preprocess(self):
|
||||
if self.usecloud:
|
||||
cloud.files.get(DIGITS_FN)
|
||||
digits, labels = load_digits(DIGITS_FN)
|
||||
shuffle = np.random.permutation(len(digits))
|
||||
digits, labels = digits[shuffle], labels[shuffle]
|
||||
digits2 = map(deskew, digits)
|
||||
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
|
||||
return samples, labels
|
||||
|
||||
def get_dataset(self):
|
||||
if self.usecloud:
|
||||
return cloud.result(self.preprocess_job)
|
||||
else:
|
||||
return self._samples, self._labels
|
||||
|
||||
def run_jobs(self, f, jobs):
|
||||
if self.usecloud:
|
||||
jids = cloud.map(f, jobs, _env=self.cloud_env, _profile=True, _depends_on=self.preprocess_job)
|
||||
ires = cloud.iresult(jids)
|
||||
else:
|
||||
pool = ThreadPool(processes=cv2.getNumberOfCPUs())
|
||||
ires = pool.imap_unordered(f, jobs)
|
||||
return ires
|
||||
|
||||
def adjust_SVM(self):
|
||||
Cs = np.logspace(0, 5, 10, base=2)
|
||||
gammas = np.logspace(-7, -2, 10, base=2)
|
||||
scores = np.zeros((len(Cs), len(gammas)))
|
||||
scores[:] = np.nan
|
||||
|
||||
print 'adjusting SVM (may take a long time) ...'
|
||||
def f(job):
|
||||
i, j = job
|
||||
samples, labels = self.get_dataset()
|
||||
params = dict(C = Cs[i], gamma=gammas[j])
|
||||
score = cross_validate(SVM, params, samples, labels)
|
||||
return i, j, score
|
||||
|
||||
ires = self.run_jobs(f, np.ndindex(*scores.shape))
|
||||
for count, (i, j, score) in enumerate(ires):
|
||||
scores[i, j] = score
|
||||
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)
|
||||
print scores
|
||||
|
||||
i, j = np.unravel_index(scores.argmin(), scores.shape)
|
||||
best_params = dict(C = Cs[i], gamma=gammas[j])
|
||||
print 'best params:', best_params
|
||||
print 'best error: %.2f %%' % (scores.min()*100)
|
||||
return best_params
|
||||
|
||||
def adjust_KNearest(self):
|
||||
print 'adjusting KNearest ...'
|
||||
def f(k):
|
||||
samples, labels = self.get_dataset()
|
||||
err = cross_validate(KNearest, dict(k=k), samples, labels)
|
||||
return k, err
|
||||
best_err, best_k = np.inf, -1
|
||||
for k, err in self.run_jobs(f, xrange(1, 9)):
|
||||
if err < best_err:
|
||||
best_err, best_k = err, k
|
||||
print 'k = %d, error: %.2f %%' % (k, err*100)
|
||||
best_params = dict(k=best_k)
|
||||
print 'best params:', best_params, 'err: %.2f' % (best_err*100)
|
||||
return best_params
|
||||
|
||||
i, j = np.unravel_index(scores.argmin(), scores.shape)
|
||||
best_params = dict(C = Cs[i], gamma=gammas[j])
|
||||
print 'best params:', best_params
|
||||
print 'best error: %.2f %%' % (scores.min()*100)
|
||||
return best_params
|
||||
|
||||
if __name__ == '__main__':
|
||||
import getopt
|
||||
@ -113,6 +142,7 @@ if __name__ == '__main__':
|
||||
|
||||
print __doc__
|
||||
|
||||
|
||||
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env='])
|
||||
args = dict(args)
|
||||
args.setdefault('--model', 'svm')
|
||||
@ -121,16 +151,10 @@ if __name__ == '__main__':
|
||||
print 'unknown model "%s"' % args['--model']
|
||||
sys.exit(1)
|
||||
|
||||
digits, labels = load_digits('digits.png')
|
||||
shuffle = np.random.permutation(len(digits))
|
||||
digits, labels = digits[shuffle], labels[shuffle]
|
||||
digits2 = map(deskew, digits)
|
||||
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
|
||||
|
||||
t = clock()
|
||||
app = App(usecloud='--cloud' in args, cloud_env = args['--env'])
|
||||
if args['--model'] == 'knearest':
|
||||
adjust_KNearest(samples, labels)
|
||||
app.adjust_KNearest()
|
||||
else:
|
||||
adjust_SVM(samples, labels, usecloud='--cloud' in args, cloud_env = args['--env'])
|
||||
app.adjust_SVM()
|
||||
print 'work time: %f s' % (clock() - t)
|
||||
|
Loading…
x
Reference in New Issue
Block a user