Fixed matchTemplate doc (ticket #1045)

This commit is contained in:
Ilya Lysenkov 2011-06-08 15:37:49 +00:00
parent 99bae77173
commit 839c1bea4b
3 changed files with 7 additions and 7 deletions

View File

@ -104,7 +104,7 @@ image patch:
.. math::
R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
@ -114,7 +114,7 @@ image patch:
.. math::
R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I(x+x',y+y'))
R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))
where

View File

@ -110,7 +110,7 @@ image patch:
.. math::
R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
@ -120,7 +120,7 @@ image patch:
.. math::
R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I(x+x',y+y'))
R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))
where

View File

@ -23,7 +23,7 @@ The function slides through ``image`` , compares the
overlapped patches of size
:math:`w \times h` against ``templ`` using the specified method and stores the comparison results in ``result`` . Here are the formulae for the available comparison
methods (
:math:`I` denotes ``image``,:math:`T` ``template``,:math:`R` ``result`` ). The summation is done over template and/or the
:math:`I` denotes ``image``, :math:`T` ``template``, :math:`R` ``result`` ). The summation is done over template and/or the
image patch:
:math:`x' = 0...w-1, y' = 0...h-1`
* method=CV\_TM\_SQDIFF
@ -48,13 +48,13 @@ image patch:
.. math::
R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
* method=CV\_TM\_CCOEFF
.. math::
R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I(x+x',y+y'))
R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))
where