Doxygen tutorials: basic structure
This commit is contained in:
@@ -0,0 +1,130 @@
|
||||
Cascade Classifier {#tutorial_cascade_classifier}
|
||||
==================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
- Use the @ref cv::CascadeClassifier class to detect objects in a video stream. Particularly, we
|
||||
will use the functions:
|
||||
- @ref cv::load to load a .xml classifier file. It can be either a Haar or a LBP classifer
|
||||
- @ref cv::detectMultiScale to perform the detection.
|
||||
|
||||
Theory
|
||||
------
|
||||
|
||||
Code
|
||||
----
|
||||
|
||||
This tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/objectDetection/objectDetection.cpp)
|
||||
. The second version (using LBP for face detection) can be [found
|
||||
here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp)
|
||||
@code{.cpp}
|
||||
#include "opencv2/objdetect.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
/* Function Headers */
|
||||
void detectAndDisplay( Mat frame );
|
||||
|
||||
/* Global variables */
|
||||
String face_cascade_name = "haarcascade_frontalface_alt.xml";
|
||||
String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
|
||||
CascadeClassifier face_cascade;
|
||||
CascadeClassifier eyes_cascade;
|
||||
String window_name = "Capture - Face detection";
|
||||
|
||||
/* @function main */
|
||||
int main( void )
|
||||
{
|
||||
VideoCapture capture;
|
||||
Mat frame;
|
||||
|
||||
//-- 1. Load the cascades
|
||||
if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading face cascade\n"); return -1; };
|
||||
if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading eyes cascade\n"); return -1; };
|
||||
|
||||
//-- 2. Read the video stream
|
||||
capture.open( -1 );
|
||||
if ( ! capture.isOpened() ) { printf("--(!)Error opening video capture\n"); return -1; }
|
||||
|
||||
while ( capture.read(frame) )
|
||||
{
|
||||
if( frame.empty() )
|
||||
{
|
||||
printf(" --(!) No captured frame -- Break!");
|
||||
break;
|
||||
}
|
||||
|
||||
//-- 3. Apply the classifier to the frame
|
||||
detectAndDisplay( frame );
|
||||
|
||||
int c = waitKey(10);
|
||||
if( (char)c == 27 ) { break; } // escape
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* @function detectAndDisplay */
|
||||
void detectAndDisplay( Mat frame )
|
||||
{
|
||||
std::vector<Rect> faces;
|
||||
Mat frame_gray;
|
||||
|
||||
cvtColor( frame, frame_gray, COLOR_BGR2GRAY );
|
||||
equalizeHist( frame_gray, frame_gray );
|
||||
|
||||
//-- Detect faces
|
||||
face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CASCADE_SCALE_IMAGE, Size(30, 30) );
|
||||
|
||||
for( size_t i = 0; i < faces.size(); i++ )
|
||||
{
|
||||
Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 );
|
||||
ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );
|
||||
|
||||
Mat faceROI = frame_gray( faces[i] );
|
||||
std::vector<Rect> eyes;
|
||||
|
||||
//-- In each face, detect eyes
|
||||
eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CASCADE_SCALE_IMAGE, Size(30, 30) );
|
||||
|
||||
for( size_t j = 0; j < eyes.size(); j++ )
|
||||
{
|
||||
Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 );
|
||||
int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
|
||||
circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );
|
||||
}
|
||||
}
|
||||
//-- Show what you got
|
||||
imshow( window_name, frame );
|
||||
}
|
||||
@endcode
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
Result
|
||||
------
|
||||
|
||||
1. Here is the result of running the code above and using as input the video stream of a build-in
|
||||
webcam:
|
||||
|
||||

|
||||
|
||||
Remember to copy the files *haarcascade_frontalface_alt.xml* and
|
||||
*haarcascade_eye_tree_eyeglasses.xml* in your current directory. They are located in
|
||||
*opencv/data/haarcascades*
|
||||
|
||||
2. This is the result of using the file *lbpcascade_frontalface.xml* (LBP trained) for the face
|
||||
detection. For the eyes we keep using the file used in the tutorial.
|
||||
|
||||

|
||||
|
||||
|
@@ -0,0 +1,12 @@
|
||||
Object Detection (objdetect module) {#tutorial_table_of_content_objdetect}
|
||||
===================================
|
||||
|
||||
Ever wondered how your digital camera detects peoples and faces? Look here to find out!
|
||||
|
||||
- @subpage tutorial_cascade_classifier
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Ana Huamán
|
||||
|
||||
Here we learn how to use *objdetect* to find objects in our images or videos
|
Reference in New Issue
Block a user