Doxygen tutorials: basic structure
This commit is contained in:
263
doc/tutorials/imgproc/threshold/threshold.markdown
Normal file
263
doc/tutorials/imgproc/threshold/threshold.markdown
Normal file
@@ -0,0 +1,263 @@
|
||||
Basic Thresholding Operations {#tutorial_threshold}
|
||||
=============================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
- Perform basic thresholding operations using OpenCV function @ref cv::threshold
|
||||
|
||||
Cool Theory
|
||||
-----------
|
||||
|
||||
@note The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler. What is
|
||||
Thresholding? -----------------------
|
||||
|
||||
- The simplest segmentation method
|
||||
- Application example: Separate out regions of an image corresponding to objects which we want to
|
||||
analyze. This separation is based on the variation of intensity between the object pixels and
|
||||
the background pixels.
|
||||
- To differentiate the pixels we are interested in from the rest (which will eventually be
|
||||
rejected), we perform a comparison of each pixel intensity value with respect to a *threshold*
|
||||
(determined according to the problem to solve).
|
||||
- Once we have separated properly the important pixels, we can set them with a determined value to
|
||||
identify them (i.e. we can assign them a value of \f$0\f$ (black), \f$255\f$ (white) or any value that
|
||||
suits your needs).
|
||||
|
||||

|
||||
|
||||
### Types of Thresholding
|
||||
|
||||
- OpenCV offers the function @ref cv::threshold to perform thresholding operations.
|
||||
- We can effectuate \f$5\f$ types of Thresholding operations with this function. We will explain them
|
||||
in the following subsections.
|
||||
- To illustrate how these thresholding processes work, let's consider that we have a source image
|
||||
with pixels with intensity values \f$src(x,y)\f$. The plot below depicts this. The horizontal blue
|
||||
line represents the threshold \f$thresh\f$ (fixed).
|
||||
|
||||

|
||||
|
||||
#### Threshold Binary
|
||||
|
||||
- This thresholding operation can be expressed as:
|
||||
|
||||
\f[\texttt{dst} (x,y) = \fork{\texttt{maxVal}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
|
||||
|
||||
- So, if the intensity of the pixel \f$src(x,y)\f$ is higher than \f$thresh\f$, then the new pixel
|
||||
intensity is set to a \f$MaxVal\f$. Otherwise, the pixels are set to \f$0\f$.
|
||||
|
||||

|
||||
|
||||
#### Threshold Binary, Inverted
|
||||
|
||||
- This thresholding operation can be expressed as:
|
||||
|
||||
\f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxVal}}{otherwise}\f]
|
||||
|
||||
- If the intensity of the pixel \f$src(x,y)\f$ is higher than \f$thresh\f$, then the new pixel intensity
|
||||
is set to a \f$0\f$. Otherwise, it is set to \f$MaxVal\f$.
|
||||
|
||||

|
||||
|
||||
#### Truncate
|
||||
|
||||
- This thresholding operation can be expressed as:
|
||||
|
||||
\f[\texttt{dst} (x,y) = \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
|
||||
|
||||
- The maximum intensity value for the pixels is \f$thresh\f$, if \f$src(x,y)\f$ is greater, then its value
|
||||
is *truncated*. See figure below:
|
||||
|
||||

|
||||
|
||||
#### Threshold to Zero
|
||||
|
||||
- This operation can be expressed as:
|
||||
|
||||
\f[\texttt{dst} (x,y) = \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
|
||||
|
||||
- If \f$src(x,y)\f$ is lower than \f$thresh\f$, the new pixel value will be set to \f$0\f$.
|
||||
|
||||

|
||||
|
||||
#### Threshold to Zero, Inverted
|
||||
|
||||
- This operation can be expressed as:
|
||||
|
||||
\f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
|
||||
|
||||
- If \f$src(x,y)\f$ is greater than \f$thresh\f$, the new pixel value will be set to \f$0\f$.
|
||||
|
||||

|
||||
|
||||
Code
|
||||
----
|
||||
|
||||
The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgProc/Threshold.cpp)
|
||||
@code{.cpp}
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/// Global variables
|
||||
|
||||
int threshold_value = 0;
|
||||
int threshold_type = 3;;
|
||||
int const max_value = 255;
|
||||
int const max_type = 4;
|
||||
int const max_BINARY_value = 255;
|
||||
|
||||
Mat src, src_gray, dst;
|
||||
char* window_name = "Threshold Demo";
|
||||
|
||||
char* trackbar_type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
|
||||
char* trackbar_value = "Value";
|
||||
|
||||
/// Function headers
|
||||
void Threshold_Demo( int, void* );
|
||||
|
||||
/*
|
||||
* @function main
|
||||
*/
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
/// Load an image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
/// Convert the image to Gray
|
||||
cvtColor( src, src_gray, COLOR_RGB2GRAY );
|
||||
|
||||
/// Create a window to display results
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||||
|
||||
/// Create Trackbar to choose type of Threshold
|
||||
createTrackbar( trackbar_type,
|
||||
window_name, &threshold_type,
|
||||
max_type, Threshold_Demo );
|
||||
|
||||
createTrackbar( trackbar_value,
|
||||
window_name, &threshold_value,
|
||||
max_value, Threshold_Demo );
|
||||
|
||||
/// Call the function to initialize
|
||||
Threshold_Demo( 0, 0 );
|
||||
|
||||
/// Wait until user finishes program
|
||||
while(true)
|
||||
{
|
||||
int c;
|
||||
c = waitKey( 20 );
|
||||
if( (char)c == 27 )
|
||||
{ break; }
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @function Threshold_Demo
|
||||
*/
|
||||
void Threshold_Demo( int, void* )
|
||||
{
|
||||
/* 0: Binary
|
||||
1: Binary Inverted
|
||||
2: Threshold Truncated
|
||||
3: Threshold to Zero
|
||||
4: Threshold to Zero Inverted
|
||||
*/
|
||||
|
||||
threshold( src_gray, dst, threshold_value, max_BINARY_value,threshold_type );
|
||||
|
||||
imshow( window_name, dst );
|
||||
}
|
||||
@endcode
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. Let's check the general structure of the program:
|
||||
- Load an image. If it is RGB we convert it to Grayscale. For this, remember that we can use
|
||||
the function @ref cv::cvtColor :
|
||||
@code{.cpp}
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
/// Convert the image to Gray
|
||||
cvtColor( src, src_gray, COLOR_RGB2GRAY );
|
||||
@endcode
|
||||
- Create a window to display the result
|
||||
@code{.cpp}
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||||
@endcode
|
||||
- Create \f$2\f$ trackbars for the user to enter user input:
|
||||
|
||||
- **Type of thresholding**: Binary, To Zero, etc...
|
||||
- **Threshold value**
|
||||
@code{.cpp}
|
||||
createTrackbar( trackbar_type,
|
||||
window_name, &threshold_type,
|
||||
max_type, Threshold_Demo );
|
||||
|
||||
createTrackbar( trackbar_value,
|
||||
window_name, &threshold_value,
|
||||
max_value, Threshold_Demo );
|
||||
@endcode
|
||||
- Wait until the user enters the threshold value, the type of thresholding (or until the
|
||||
program exits)
|
||||
- Whenever the user changes the value of any of the Trackbars, the function *Threshold_Demo*
|
||||
is called:
|
||||
@code{.cpp}
|
||||
/*
|
||||
* @function Threshold_Demo
|
||||
*/
|
||||
void Threshold_Demo( int, void* )
|
||||
{
|
||||
/* 0: Binary
|
||||
1: Binary Inverted
|
||||
2: Threshold Truncated
|
||||
3: Threshold to Zero
|
||||
4: Threshold to Zero Inverted
|
||||
*/
|
||||
|
||||
threshold( src_gray, dst, threshold_value, max_BINARY_value,threshold_type );
|
||||
|
||||
imshow( window_name, dst );
|
||||
}
|
||||
@endcode
|
||||
As you can see, the function @ref cv::threshold is invoked. We give \f$5\f$ parameters:
|
||||
|
||||
- *src_gray*: Our input image
|
||||
- *dst*: Destination (output) image
|
||||
- *threshold_value*: The \f$thresh\f$ value with respect to which the thresholding operation
|
||||
is made
|
||||
- *max_BINARY_value*: The value used with the Binary thresholding operations (to set the
|
||||
chosen pixels)
|
||||
- *threshold_type*: One of the \f$5\f$ thresholding operations. They are listed in the
|
||||
comment section of the function above.
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
1. After compiling this program, run it giving a path to an image as argument. For instance, for an
|
||||
input image as:
|
||||
|
||||

|
||||
|
||||
2. First, we try to threshold our image with a *binary threhold inverted*. We expect that the
|
||||
pixels brighter than the \f$thresh\f$ will turn dark, which is what actually happens, as we can see
|
||||
in the snapshot below (notice from the original image, that the doggie's tongue and eyes are
|
||||
particularly bright in comparison with the image, this is reflected in the output image).
|
||||
|
||||

|
||||
|
||||
3. Now we try with the *threshold to zero*. With this, we expect that the darkest pixels (below the
|
||||
threshold) will become completely black, whereas the pixels with value greater than the
|
||||
threshold will keep its original value. This is verified by the following snapshot of the output
|
||||
image:
|
||||
|
||||

|
||||
|
||||
|
Reference in New Issue
Block a user