Doxygen tutorials: basic structure

This commit is contained in:
Maksim Shabunin
2014-11-27 15:39:05 +03:00
parent 220f671655
commit 8375182e34
99 changed files with 17805 additions and 0 deletions

View File

@@ -0,0 +1,130 @@
Detecting corners location in subpixeles {#tutorial_corner_subpixeles}
========================================
Goal
----
In this tutorial you will learn how to:
- Use the OpenCV function @ref cv::cornerSubPix to find more exact corner positions (more exact
than integer pixels).
Theory
------
Code
----
This tutorial code's is shown lines below. You can also download it from
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/TrackingMotion/cornerSubPix_Demo.cpp)
@code{.cpp}
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
/// Global variables
Mat src, src_gray;
int maxCorners = 10;
int maxTrackbar = 25;
RNG rng(12345);
char* source_window = "Image";
/// Function header
void goodFeaturesToTrack_Demo( int, void* );
/* @function main */
int main( int argc, char** argv )
{
/// Load source image and convert it to gray
src = imread( argv[1], 1 );
cvtColor( src, src_gray, COLOR_BGR2GRAY );
/// Create Window
namedWindow( source_window, WINDOW_AUTOSIZE );
/// Create Trackbar to set the number of corners
createTrackbar( "Max corners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo);
imshow( source_window, src );
goodFeaturesToTrack_Demo( 0, 0 );
waitKey(0);
return(0);
}
/*
* @function goodFeaturesToTrack_Demo.cpp
* @brief Apply Shi-Tomasi corner detector
*/
void goodFeaturesToTrack_Demo( int, void* )
{
if( maxCorners < 1 ) { maxCorners = 1; }
/// Parameters for Shi-Tomasi algorithm
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;
/// Copy the source image
Mat copy;
copy = src.clone();
/// Apply corner detection
goodFeaturesToTrack( src_gray,
corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k );
/// Draw corners detected
cout<<"** Number of corners detected: "<<corners.size()<<endl;
int r = 4;
for( int i = 0; i < corners.size(); i++ )
{ circle( copy, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0,255),
rng.uniform(0,255)), -1, 8, 0 ); }
/// Show what you got
namedWindow( source_window, WINDOW_AUTOSIZE );
imshow( source_window, copy );
/// Set the neeed parameters to find the refined corners
Size winSize = Size( 5, 5 );
Size zeroZone = Size( -1, -1 );
TermCriteria criteria = TermCriteria( TermCriteria::EPS + TermCriteria::MAX_ITER, 40, 0.001 );
/// Calculate the refined corner locations
cornerSubPix( src_gray, corners, winSize, zeroZone, criteria );
/// Write them down
for( int i = 0; i < corners.size(); i++ )
{ cout<<" -- Refined Corner ["<<i<<"] ("<<corners[i].x<<","<<corners[i].y<<")"<<endl; }
}
@endcode
Explanation
-----------
Result
------
![image](images/Corner_Subpixeles_Original_Image.jpg)
Here is the result:
![image](images/Corner_Subpixeles_Result.jpg)

View File

@@ -0,0 +1,36 @@
Creating yor own corner detector {#tutorial_generic_corner_detector}
================================
Goal
----
In this tutorial you will learn how to:
- Use the OpenCV function @ref cv::cornerEigenValsAndVecs to find the eigenvalues and eigenvectors
to determine if a pixel is a corner.
- Use the OpenCV function @ref cv::cornerMinEigenVal to find the minimum eigenvalues for corner
detection.
- To implement our own version of the Harris detector as well as the Shi-Tomasi detector, by using
the two functions above.
Theory
------
Code
----
This tutorial code's is shown lines below. You can also download it from
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/TrackingMotion/cornerDetector_Demo.cpp)
@includelineno cpp/tutorial_code/TrackingMotion/cornerDetector_Demo.cpp
Explanation
-----------
Result
------
![image](images/My_Harris_corner_detector_Result.jpg)
![image](images/My_Shi_Tomasi_corner_detector_Result.jpg)

View File

@@ -0,0 +1,115 @@
Shi-Tomasi corner detector {#tutorial_good_features_to_track}
==========================
Goal
----
In this tutorial you will learn how to:
- Use the function @ref cv::goodFeaturesToTrack to detect corners using the Shi-Tomasi method.
Theory
------
Code
----
This tutorial code's is shown lines below. You can also download it from
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/TrackingMotion/goodFeaturesToTrack_Demo.cpp)
@code{.cpp}
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
/// Global variables
Mat src, src_gray;
int maxCorners = 23;
int maxTrackbar = 100;
RNG rng(12345);
char* source_window = "Image";
/// Function header
void goodFeaturesToTrack_Demo( int, void* );
/*
* @function main
*/
int main( int argc, char** argv )
{
/// Load source image and convert it to gray
src = imread( argv[1], 1 );
cvtColor( src, src_gray, COLOR_BGR2GRAY );
/// Create Window
namedWindow( source_window, WINDOW_AUTOSIZE );
/// Create Trackbar to set the number of corners
createTrackbar( "Max corners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo );
imshow( source_window, src );
goodFeaturesToTrack_Demo( 0, 0 );
waitKey(0);
return(0);
}
/*
* @function goodFeaturesToTrack_Demo.cpp
* @brief Apply Shi-Tomasi corner detector
*/
void goodFeaturesToTrack_Demo( int, void* )
{
if( maxCorners < 1 ) { maxCorners = 1; }
/// Parameters for Shi-Tomasi algorithm
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;
/// Copy the source image
Mat copy;
copy = src.clone();
/// Apply corner detection
goodFeaturesToTrack( src_gray,
corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k );
/// Draw corners detected
cout<<"** Number of corners detected: "<<corners.size()<<endl;
int r = 4;
for( int i = 0; i < corners.size(); i++ )
{ circle( copy, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0,255),
rng.uniform(0,255)), -1, 8, 0 ); }
/// Show what you got
namedWindow( source_window, WINDOW_AUTOSIZE );
imshow( source_window, copy );
}
@endcode
Explanation
-----------
Result
------
![image](images/Feature_Detection_Result_a.jpg)

View File

@@ -0,0 +1,209 @@
Harris corner detector {#tutorial_harris_detector}
======================
Goal
----
In this tutorial you will learn:
- What features are and why they are important
- Use the function @ref cv::cornerHarris to detect corners using the Harris-Stephens method.
Theory
------
### What is a feature?
- In computer vision, usually we need to find matching points between different frames of an
environment. Why? If we know how two images relate to each other, we can use *both* images to
extract information of them.
- When we say **matching points** we are referring, in a general sense, to *characteristics* in
the scene that we can recognize easily. We call these characteristics **features**.
- **So, what characteristics should a feature have?**
- It must be *uniquely recognizable*
### Types of Image Features
To mention a few:
- Edges
- **Corners** (also known as interest points)
- Blobs (also known as regions of interest )
In this tutorial we will study the *corner* features, specifically.
### Why is a corner so special?
- Because, since it is the intersection of two edges, it represents a point in which the
directions of these two edges *change*. Hence, the gradient of the image (in both directions)
have a high variation, which can be used to detect it.
### How does it work?
- Let's look for corners. Since corners represents a variation in the gradient in the image, we
will look for this "variation".
- Consider a grayscale image \f$I\f$. We are going to sweep a window \f$w(x,y)\f$ (with displacements \f$u\f$
in the x direction and \f$v\f$ in the right direction) \f$I\f$ and will calculate the variation of
intensity.
\f[E(u,v) = \sum _{x,y} w(x,y)[ I(x+u,y+v) - I(x,y)]^{2}\f]
where:
- \f$w(x,y)\f$ is the window at position \f$(x,y)\f$
- \f$I(x,y)\f$ is the intensity at \f$(x,y)\f$
- \f$I(x+u,y+v)\f$ is the intensity at the moved window \f$(x+u,y+v)\f$
- Since we are looking for windows with corners, we are looking for windows with a large variation
in intensity. Hence, we have to maximize the equation above, specifically the term:
\f[\sum _{x,y}[ I(x+u,y+v) - I(x,y)]^{2}\f]
- Using *Taylor expansion*:
\f[E(u,v) \approx \sum _{x,y}[ I(x,y) + u I_{x} + vI_{y} - I(x,y)]^{2}\f]
- Expanding the equation and cancelling properly:
\f[E(u,v) \approx \sum _{x,y} u^{2}I_{x}^{2} + 2uvI_{x}I_{y} + v^{2}I_{y}^{2}\f]
- Which can be expressed in a matrix form as:
\f[E(u,v) \approx \begin{bmatrix}
u & v
\end{bmatrix}
\left (
\displaystyle \sum_{x,y}
w(x,y)
\begin{bmatrix}
I_x^{2} & I_{x}I_{y} \\
I_xI_{y} & I_{y}^{2}
\end{bmatrix}
\right )
\begin{bmatrix}
u \\
v
\end{bmatrix}\f]
- Let's denote:
\f[M = \displaystyle \sum_{x,y}
w(x,y)
\begin{bmatrix}
I_x^{2} & I_{x}I_{y} \\
I_xI_{y} & I_{y}^{2}
\end{bmatrix}\f]
- So, our equation now is:
\f[E(u,v) \approx \begin{bmatrix}
u & v
\end{bmatrix}
M
\begin{bmatrix}
u \\
v
\end{bmatrix}\f]
- A score is calculated for each window, to determine if it can possibly contain a corner:
\f[R = det(M) - k(trace(M))^{2}\f]
where:
- det(M) = \f$\lambda_{1}\lambda_{2}\f$
- trace(M) = \f$\lambda_{1}+\lambda_{2}\f$
a window with a score \f$R\f$ greater than a certain value is considered a "corner"
Code
----
This tutorial code's is shown lines below. You can also download it from
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/TrackingMotion/cornerHarris_Demo.cpp)
@code{.cpp}
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
/// Global variables
Mat src, src_gray;
int thresh = 200;
int max_thresh = 255;
char* source_window = "Source image";
char* corners_window = "Corners detected";
/// Function header
void cornerHarris_demo( int, void* );
/* @function main */
int main( int argc, char** argv )
{
/// Load source image and convert it to gray
src = imread( argv[1], 1 );
cvtColor( src, src_gray, COLOR_BGR2GRAY );
/// Create a window and a trackbar
namedWindow( source_window, WINDOW_AUTOSIZE );
createTrackbar( "Threshold: ", source_window, &thresh, max_thresh, cornerHarris_demo );
imshow( source_window, src );
cornerHarris_demo( 0, 0 );
waitKey(0);
return(0);
}
/* @function cornerHarris_demo */
void cornerHarris_demo( int, void* )
{
Mat dst, dst_norm, dst_norm_scaled;
dst = Mat::zeros( src.size(), CV_32FC1 );
/// Detector parameters
int blockSize = 2;
int apertureSize = 3;
double k = 0.04;
/// Detecting corners
cornerHarris( src_gray, dst, blockSize, apertureSize, k, BORDER_DEFAULT );
/// Normalizing
normalize( dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat() );
convertScaleAbs( dst_norm, dst_norm_scaled );
/// Drawing a circle around corners
for( int j = 0; j < dst_norm.rows ; j++ )
{ for( int i = 0; i < dst_norm.cols; i++ )
{
if( (int) dst_norm.at<float>(j,i) > thresh )
{
circle( dst_norm_scaled, Point( i, j ), 5, Scalar(0), 2, 8, 0 );
}
}
}
/// Showing the result
namedWindow( corners_window, WINDOW_AUTOSIZE );
imshow( corners_window, dst_norm_scaled );
}
@endcode
Explanation
-----------
Result
------
The original image:
![image](images/Harris_Detector_Original_Image.jpg)
The detected corners are surrounded by a small black circle
![image](images/Harris_Detector_Result.jpg)