Doxygen tutorials: basic structure
This commit is contained in:
@@ -0,0 +1,146 @@
|
||||
Mask operations on matrices {#tutorial_mat_mask_operations}
|
||||
===========================
|
||||
|
||||
Mask operations on matrices are quite simple. The idea is that we recalculate each pixels value in
|
||||
an image according to a mask matrix (also known as kernel). This mask holds values that will adjust
|
||||
how much influence neighboring pixels (and the current pixel) have on the new pixel value. From a
|
||||
mathematical point of view we make a weighted average, with our specified values.
|
||||
|
||||
Our test case
|
||||
-------------
|
||||
|
||||
Let us consider the issue of an image contrast enhancement method. Basically we want to apply for
|
||||
every pixel of the image the following formula:
|
||||
|
||||
\f[I(i,j) = 5*I(i,j) - [ I(i-1,j) + I(i+1,j) + I(i,j-1) + I(i,j+1)]\f]\f[\iff I(i,j)*M, \text{where }
|
||||
M = \bordermatrix{ _i\backslash ^j & -1 & 0 & +1 \cr
|
||||
-1 & 0 & -1 & 0 \cr
|
||||
0 & -1 & 5 & -1 \cr
|
||||
+1 & 0 & -1 & 0 \cr
|
||||
}\f]
|
||||
|
||||
The first notation is by using a formula, while the second is a compacted version of the first by
|
||||
using a mask. You use the mask by putting the center of the mask matrix (in the upper case noted by
|
||||
the zero-zero index) on the pixel you want to calculate and sum up the pixel values multiplied with
|
||||
the overlapped matrix values. It's the same thing, however in case of large matrices the latter
|
||||
notation is a lot easier to look over.
|
||||
|
||||
Now let us see how we can make this happen by using the basic pixel access method or by using the
|
||||
@ref cv::filter2D function.
|
||||
|
||||
The Basic Method
|
||||
----------------
|
||||
|
||||
Here's a function that will do this:
|
||||
@code{.cpp}
|
||||
void Sharpen(const Mat& myImage, Mat& Result)
|
||||
{
|
||||
CV_Assert(myImage.depth() == CV_8U); // accept only uchar images
|
||||
|
||||
Result.create(myImage.size(), myImage.type());
|
||||
const int nChannels = myImage.channels();
|
||||
|
||||
for(int j = 1; j < myImage.rows - 1; ++j)
|
||||
{
|
||||
const uchar* previous = myImage.ptr<uchar>(j - 1);
|
||||
const uchar* current = myImage.ptr<uchar>(j );
|
||||
const uchar* next = myImage.ptr<uchar>(j + 1);
|
||||
|
||||
uchar* output = Result.ptr<uchar>(j);
|
||||
|
||||
for(int i = nChannels; i < nChannels * (myImage.cols - 1); ++i)
|
||||
{
|
||||
*output++ = saturate_cast<uchar>(5 * current[i]
|
||||
-current[i - nChannels] - current[i + nChannels] - previous[i] - next[i]);
|
||||
}
|
||||
}
|
||||
|
||||
Result.row(0).setTo(Scalar(0));
|
||||
Result.row(Result.rows - 1).setTo(Scalar(0));
|
||||
Result.col(0).setTo(Scalar(0));
|
||||
Result.col(Result.cols - 1).setTo(Scalar(0));
|
||||
}
|
||||
@endcode
|
||||
At first we make sure that the input images data is in unsigned char format. For this we use the
|
||||
@ref cv::CV_Assert function that throws an error when the expression inside it is false.
|
||||
@code{.cpp}
|
||||
CV_Assert(myImage.depth() == CV_8U); // accept only uchar images
|
||||
@endcode
|
||||
We create an output image with the same size and the same type as our input. As you can see in the
|
||||
@ref How_Image_Stored_Memory section, depending on the number of channels we may have one or more
|
||||
subcolumns. We will iterate through them via pointers so the total number of elements depends from
|
||||
this number.
|
||||
@code{.cpp}
|
||||
Result.create(myImage.size(), myImage.type());
|
||||
const int nChannels = myImage.channels();
|
||||
@endcode
|
||||
We'll use the plain C [] operator to access pixels. Because we need to access multiple rows at the
|
||||
same time we'll acquire the pointers for each of them (a previous, a current and a next line). We
|
||||
need another pointer to where we're going to save the calculation. Then simply access the right
|
||||
items with the [] operator. For moving the output pointer ahead we simply increase this (with one
|
||||
byte) after each operation:
|
||||
@code{.cpp}
|
||||
for(int j = 1; j < myImage.rows - 1; ++j)
|
||||
{
|
||||
const uchar* previous = myImage.ptr<uchar>(j - 1);
|
||||
const uchar* current = myImage.ptr<uchar>(j );
|
||||
const uchar* next = myImage.ptr<uchar>(j + 1);
|
||||
|
||||
uchar* output = Result.ptr<uchar>(j);
|
||||
|
||||
for(int i = nChannels; i < nChannels * (myImage.cols - 1); ++i)
|
||||
{
|
||||
*output++ = saturate_cast<uchar>(5 * current[i]
|
||||
-current[i - nChannels] - current[i + nChannels] - previous[i] - next[i]);
|
||||
}
|
||||
}
|
||||
@endcode
|
||||
On the borders of the image the upper notation results inexistent pixel locations (like minus one -
|
||||
minus one). In these points our formula is undefined. A simple solution is to not apply the kernel
|
||||
in these points and, for example, set the pixels on the borders to zeros:
|
||||
@code{.cpp}
|
||||
Result.row(0).setTo(Scalar(0)); // The top row
|
||||
Result.row(Result.rows - 1).setTo(Scalar(0)); // The bottom row
|
||||
Result.col(0).setTo(Scalar(0)); // The left column
|
||||
Result.col(Result.cols - 1).setTo(Scalar(0)); // The right column
|
||||
@endcode
|
||||
The filter2D function
|
||||
---------------------
|
||||
|
||||
Applying such filters are so common in image processing that in OpenCV there exist a function that
|
||||
will take care of applying the mask (also called a kernel in some places). For this you first need
|
||||
to define a *Mat* object that holds the mask:
|
||||
@code{.cpp}
|
||||
Mat kern = (Mat_<char>(3,3) << 0, -1, 0,
|
||||
-1, 5, -1,
|
||||
0, -1, 0);
|
||||
@endcode
|
||||
Then call the @ref cv::filter2D function specifying the input, the output image and the kernell to
|
||||
use:
|
||||
@code{.cpp}
|
||||
filter2D(I, K, I.depth(), kern);
|
||||
@endcode
|
||||
The function even has a fifth optional argument to specify the center of the kernel, and a sixth one
|
||||
for determining what to do in the regions where the operation is undefined (borders). Using this
|
||||
function has the advantage that it's shorter, less verbose and because there are some optimization
|
||||
techniques implemented it is usually faster than the *hand-coded method*. For example in my test
|
||||
while the second one took only 13 milliseconds the first took around 31 milliseconds. Quite some
|
||||
difference.
|
||||
|
||||
For example:
|
||||
|
||||

|
||||
|
||||
You can download this source code from [here
|
||||
](samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp) or look in the
|
||||
OpenCV source code libraries sample directory at
|
||||
`samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp`.
|
||||
|
||||
Check out an instance of running the program on our [YouTube
|
||||
channel](http://www.youtube.com/watch?v=7PF1tAU9se4) .
|
||||
|
||||
\htmlonly
|
||||
<div align="center">
|
||||
<iframe width="560" height="349" src="https://www.youtube.com/embed/7PF1tAU9se4?hd=1" frameborder="0" allowfullscreen></iframe>
|
||||
</div>
|
||||
\endhtmlonly
|
||||
Reference in New Issue
Block a user