fixed gpu tests (BruteForceMatcher_GPU, divide, phase, cartToPolar, async)
minor code refactoring
This commit is contained in:
@@ -104,6 +104,18 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance);
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
class ImgIdxSetter
|
||||
{
|
||||
public:
|
||||
ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {}
|
||||
void operator()(DMatch& m) const {m.imgIdx = imgIdx;}
|
||||
private:
|
||||
int imgIdx;
|
||||
};
|
||||
}
|
||||
|
||||
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType distType_) : distType(distType_)
|
||||
{
|
||||
}
|
||||
@@ -185,7 +197,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx,
|
||||
return;
|
||||
|
||||
CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous());
|
||||
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && distance.size().area() == trainIdx.size().area());
|
||||
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && distance.cols == trainIdx.cols);
|
||||
|
||||
const int nQuery = trainIdx.cols;
|
||||
|
||||
@@ -309,8 +321,8 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx,
|
||||
return;
|
||||
|
||||
CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous());
|
||||
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.isContinuous());
|
||||
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous());
|
||||
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.isContinuous() && imgIdx.cols == trainIdx.cols);
|
||||
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && imgIdx.cols == trainIdx.cols);
|
||||
|
||||
const int nQuery = trainIdx.cols;
|
||||
|
||||
@@ -390,7 +402,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, con
|
||||
trainIdx.setTo(Scalar::all(-1));
|
||||
distance.create(nQuery, k, CV_32F);
|
||||
|
||||
allDist.create(nQuery, nTrain, CV_32F);
|
||||
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
|
||||
|
||||
match_caller_t func = match_callers[distType][queryDescs.depth()];
|
||||
CV_Assert(func != 0);
|
||||
@@ -451,18 +463,6 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, con
|
||||
knnMatchDownload(trainIdx, distance, matches, compactResult);
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
class ImgIdxSetter
|
||||
{
|
||||
public:
|
||||
ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {}
|
||||
void operator()(DMatch& m) const {m.imgIdx = imgIdx;}
|
||||
private:
|
||||
int imgIdx;
|
||||
};
|
||||
}
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs,
|
||||
vector< vector<DMatch> >& matches, int knn, const vector<GpuMat>& masks, bool compactResult)
|
||||
{
|
||||
@@ -538,9 +538,9 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs,
|
||||
|
||||
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
|
||||
CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols);
|
||||
CV_Assert(trainIdx.empty() || trainIdx.rows == nQuery);
|
||||
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size()));
|
||||
|
||||
nMatches.create(1, nQuery, CV_32SC1);
|
||||
ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches);
|
||||
nMatches.setTo(Scalar::all(0));
|
||||
if (trainIdx.empty())
|
||||
{
|
||||
@@ -561,7 +561,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trai
|
||||
return;
|
||||
|
||||
CV_Assert(trainIdx.type() == CV_32SC1);
|
||||
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.isContinuous() && nMatches.size().area() == trainIdx.rows);
|
||||
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.isContinuous() && nMatches.cols >= trainIdx.rows);
|
||||
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
|
||||
|
||||
const int nQuery = trainIdx.rows;
|
||||
|
@@ -64,6 +64,7 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
{
|
||||
return mask.ptr(queryIdx)[trainIdx] != 0;
|
||||
}
|
||||
|
||||
private:
|
||||
PtrStep mask;
|
||||
};
|
||||
@@ -82,6 +83,7 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
{
|
||||
return curMask.data == 0 || curMask.ptr(queryIdx)[trainIdx] != 0;
|
||||
}
|
||||
|
||||
private:
|
||||
PtrStep* maskCollection;
|
||||
PtrStep curMask;
|
||||
@@ -102,123 +104,99 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Reduce Sum
|
||||
|
||||
template <int BLOCK_DIM_X>
|
||||
__device__ void reduceSum(float* sdiff, float mySum, int tid)
|
||||
{
|
||||
sdiff[tid] = mySum;
|
||||
__syncthreads();
|
||||
template <int BLOCK_DIM_X> __device__ void reduceSum(float* sdiff_row, float& mySum);
|
||||
|
||||
if (BLOCK_DIM_X == 512)
|
||||
{
|
||||
if (tid < 256)
|
||||
{
|
||||
sdiff[tid] = mySum += sdiff[tid + 256]; __syncthreads();
|
||||
sdiff[tid] = mySum += sdiff[tid + 128]; __syncthreads();
|
||||
sdiff[tid] = mySum += sdiff[tid + 64]; __syncthreads();
|
||||
}
|
||||
volatile float* smem = sdiff;
|
||||
smem[tid] = mySum += smem[tid + 32];
|
||||
smem[tid] = mySum += smem[tid + 16];
|
||||
smem[tid] = mySum += smem[tid + 8];
|
||||
smem[tid] = mySum += smem[tid + 4];
|
||||
smem[tid] = mySum += smem[tid + 2];
|
||||
smem[tid] = mySum += smem[tid + 1];
|
||||
}
|
||||
if (BLOCK_DIM_X == 256)
|
||||
{
|
||||
if (tid < 128)
|
||||
{
|
||||
sdiff[tid] = mySum += sdiff[tid + 128]; __syncthreads();
|
||||
sdiff[tid] = mySum += sdiff[tid + 64]; __syncthreads();
|
||||
}
|
||||
volatile float* smem = sdiff;
|
||||
smem[tid] = mySum += smem[tid + 32];
|
||||
smem[tid] = mySum += smem[tid + 16];
|
||||
smem[tid] = mySum += smem[tid + 8];
|
||||
smem[tid] = mySum += smem[tid + 4];
|
||||
smem[tid] = mySum += smem[tid + 2];
|
||||
smem[tid] = mySum += smem[tid + 1];
|
||||
}
|
||||
if (BLOCK_DIM_X == 128)
|
||||
{
|
||||
if (tid < 64)
|
||||
{
|
||||
sdiff[tid] = mySum += sdiff[tid + 64]; __syncthreads();
|
||||
}
|
||||
volatile float* smem = sdiff;
|
||||
smem[tid] = mySum += smem[tid + 32];
|
||||
smem[tid] = mySum += smem[tid + 16];
|
||||
smem[tid] = mySum += smem[tid + 8];
|
||||
smem[tid] = mySum += smem[tid + 4];
|
||||
smem[tid] = mySum += smem[tid + 2];
|
||||
smem[tid] = mySum += smem[tid + 1];
|
||||
}
|
||||
template <> __device__ void reduceSum<16>(float* sdiff_row, float& mySum)
|
||||
{
|
||||
volatile float* smem = sdiff_row;
|
||||
|
||||
smem[threadIdx.x] = mySum;
|
||||
|
||||
volatile float* smem = sdiff;
|
||||
if (BLOCK_DIM_X == 64)
|
||||
if (threadIdx.x < 8)
|
||||
{
|
||||
if (tid < 32)
|
||||
{
|
||||
smem[tid] = mySum += smem[tid + 32];
|
||||
smem[tid] = mySum += smem[tid + 16];
|
||||
smem[tid] = mySum += smem[tid + 8];
|
||||
smem[tid] = mySum += smem[tid + 4];
|
||||
smem[tid] = mySum += smem[tid + 2];
|
||||
smem[tid] = mySum += smem[tid + 1];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_X == 32)
|
||||
{
|
||||
if (tid < 16)
|
||||
{
|
||||
smem[tid] = mySum += smem[tid + 16];
|
||||
smem[tid] = mySum += smem[tid + 8];
|
||||
smem[tid] = mySum += smem[tid + 4];
|
||||
smem[tid] = mySum += smem[tid + 2];
|
||||
smem[tid] = mySum += smem[tid + 1];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_X == 16)
|
||||
{
|
||||
if (tid < 8)
|
||||
{
|
||||
smem[tid] = mySum += smem[tid + 8];
|
||||
smem[tid] = mySum += smem[tid + 4];
|
||||
smem[tid] = mySum += smem[tid + 2];
|
||||
smem[tid] = mySum += smem[tid + 1];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_X == 8)
|
||||
{
|
||||
if (tid < 4)
|
||||
{
|
||||
smem[tid] = mySum += smem[tid + 4];
|
||||
smem[tid] = mySum += smem[tid + 2];
|
||||
smem[tid] = mySum += smem[tid + 1];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_X == 4)
|
||||
{
|
||||
if (tid < 2)
|
||||
{
|
||||
smem[tid] = mySum += smem[tid + 2];
|
||||
smem[tid] = mySum += smem[tid + 1];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_X == 2)
|
||||
{
|
||||
if (tid < 1)
|
||||
{
|
||||
smem[tid] = mySum += smem[tid + 1];
|
||||
}
|
||||
smem[threadIdx.x] = mySum += smem[threadIdx.x + 8];
|
||||
smem[threadIdx.x] = mySum += smem[threadIdx.x + 4];
|
||||
smem[threadIdx.x] = mySum += smem[threadIdx.x + 2];
|
||||
smem[threadIdx.x] = mySum += smem[threadIdx.x + 1];
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Distance
|
||||
|
||||
class L1Dist
|
||||
{
|
||||
public:
|
||||
__device__ L1Dist() : mySum(0.0f) {}
|
||||
|
||||
__device__ void reduceIter(float val1, float val2)
|
||||
{
|
||||
mySum += fabs(val1 - val2);
|
||||
}
|
||||
|
||||
template <int BLOCK_DIM_X>
|
||||
__device__ void reduceAll(float* sdiff_row)
|
||||
{
|
||||
reduceSum<BLOCK_DIM_X>(sdiff_row, mySum);
|
||||
}
|
||||
|
||||
__device__ operator float() const
|
||||
{
|
||||
return mySum;
|
||||
}
|
||||
|
||||
private:
|
||||
float mySum;
|
||||
};
|
||||
|
||||
class L2Dist
|
||||
{
|
||||
public:
|
||||
__device__ L2Dist() : mySum(0.0f) {}
|
||||
|
||||
__device__ void reduceIter(float val1, float val2)
|
||||
{
|
||||
float reg = val1 - val2;
|
||||
mySum += reg * reg;
|
||||
}
|
||||
|
||||
template <int BLOCK_DIM_X>
|
||||
__device__ void reduceAll(float* sdiff_row)
|
||||
{
|
||||
reduceSum<BLOCK_DIM_X>(sdiff_row, mySum);
|
||||
}
|
||||
|
||||
__device__ operator float() const
|
||||
{
|
||||
return sqrtf(mySum);
|
||||
}
|
||||
|
||||
private:
|
||||
float mySum;
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// reduceDescDiff
|
||||
|
||||
template <int BLOCK_DIM_X, typename Dist, typename T>
|
||||
__device__ void reduceDescDiff(const T* queryDescs, const T* trainDescs, int desc_len, Dist& dist,
|
||||
float* sdiff_row)
|
||||
{
|
||||
for (int i = threadIdx.x; i < desc_len; i += BLOCK_DIM_X)
|
||||
dist.reduceIter(queryDescs[i], trainDescs[i]);
|
||||
|
||||
dist.reduceAll<BLOCK_DIM_X>(sdiff_row);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////// Match //////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// loadDescsVals
|
||||
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_DESCRIPTORS_LEN, typename T>
|
||||
__device__ void loadDescsVals(const T* descs, int desc_len, float* smem, float* queryVals)
|
||||
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, typename T>
|
||||
__device__ void loadDescsVals(const T* descs, int desc_len, float* queryVals, float* smem)
|
||||
{
|
||||
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
@@ -237,111 +215,45 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Distance
|
||||
|
||||
template <int BLOCK_DIM_X>
|
||||
class L1Dist
|
||||
{
|
||||
public:
|
||||
__device__ L1Dist() : mySum(0) {}
|
||||
|
||||
__device__ void reduceIter(float val1, float val2)
|
||||
{
|
||||
mySum += fabs(val1 - val2);
|
||||
}
|
||||
|
||||
__device__ void reduceAll(float* sdiff, int tid)
|
||||
{
|
||||
reduceSum<BLOCK_DIM_X>(sdiff, mySum, tid);
|
||||
}
|
||||
|
||||
static __device__ float finalResult(float res)
|
||||
{
|
||||
return res;
|
||||
}
|
||||
private:
|
||||
float mySum;
|
||||
};
|
||||
|
||||
template <int BLOCK_DIM_X>
|
||||
class L2Dist
|
||||
{
|
||||
public:
|
||||
__device__ L2Dist() : mySum(0) {}
|
||||
|
||||
__device__ void reduceIter(float val1, float val2)
|
||||
{
|
||||
float reg = val1 - val2;
|
||||
mySum += reg * reg;
|
||||
}
|
||||
|
||||
__device__ void reduceAll(float* sdiff, int tid)
|
||||
{
|
||||
reduceSum<BLOCK_DIM_X>(sdiff, mySum, tid);
|
||||
}
|
||||
|
||||
static __device__ float finalResult(float res)
|
||||
{
|
||||
return sqrtf(res);
|
||||
}
|
||||
private:
|
||||
float mySum;
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// reduceDescDiff
|
||||
|
||||
template <int BLOCK_DIM_X, typename Dist, typename T>
|
||||
__device__ void reduceDescDiff(const T* queryDescs, const T* trainDescs, int desc_len, float* sdiff)
|
||||
{
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
Dist dist;
|
||||
|
||||
for (int i = tid; i < desc_len; i += BLOCK_DIM_X)
|
||||
dist.reduceIter(queryDescs[i], trainDescs[i]);
|
||||
|
||||
dist.reduceAll(sdiff, tid);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// reduceDescDiff_smem
|
||||
// reduceDescDiffCached
|
||||
|
||||
template <int N> struct UnrollDescDiff
|
||||
{
|
||||
template <typename Dist, typename T>
|
||||
static __device__ void calcCheck(Dist& dist, const float* queryVals, const T* trainDescs,
|
||||
int ind, int desc_len)
|
||||
static __device__ void calcCheck(const float* queryVals, const T* trainDescs, int desc_len,
|
||||
Dist& dist, int ind)
|
||||
{
|
||||
if (ind < desc_len)
|
||||
{
|
||||
dist.reduceIter(*queryVals, trainDescs[ind]);
|
||||
|
||||
++queryVals;
|
||||
++queryVals;
|
||||
|
||||
UnrollDescDiff<N - 1>::calcCheck(dist, queryVals, trainDescs, ind + blockDim.x, desc_len);
|
||||
UnrollDescDiff<N - 1>::calcCheck(queryVals, trainDescs, desc_len, dist, ind + blockDim.x);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Dist, typename T>
|
||||
static __device__ void calcWithoutCheck(Dist& dist, const float* queryVals, const T* trainDescs)
|
||||
static __device__ void calcWithoutCheck(const float* queryVals, const T* trainDescs, Dist& dist)
|
||||
{
|
||||
dist.reduceIter(*queryVals, *trainDescs);
|
||||
|
||||
++queryVals;
|
||||
trainDescs += blockDim.x;
|
||||
|
||||
UnrollDescDiff<N - 1>::calcWithoutCheck(dist, queryVals, trainDescs);
|
||||
UnrollDescDiff<N - 1>::calcWithoutCheck(queryVals, trainDescs, dist);
|
||||
}
|
||||
};
|
||||
template <> struct UnrollDescDiff<0>
|
||||
{
|
||||
template <typename Dist, typename T>
|
||||
static __device__ void calcCheck(Dist& dist, const float* queryVals, const T* trainDescs,
|
||||
int ind, int desc_len)
|
||||
static __device__ void calcCheck(const float* queryVals, const T* trainDescs, int desc_len,
|
||||
Dist& dist, int ind)
|
||||
{
|
||||
}
|
||||
|
||||
template <typename Dist, typename T>
|
||||
static __device__ void calcWithoutCheck(Dist& dist, const float* queryVals, const T* trainDescs)
|
||||
static __device__ void calcWithoutCheck(const float* queryVals, const T* trainDescs, Dist& dist)
|
||||
{
|
||||
}
|
||||
};
|
||||
@@ -351,106 +263,82 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
struct DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, false>
|
||||
{
|
||||
template <typename Dist, typename T>
|
||||
static __device__ void calc(Dist& dist, const float* queryVals, const T* trainDescs, int desc_len)
|
||||
static __device__ void calc(const float* queryVals, const T* trainDescs, int desc_len, Dist& dist)
|
||||
{
|
||||
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcCheck(dist, queryVals, trainDescs,
|
||||
threadIdx.x, desc_len);
|
||||
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcCheck(queryVals, trainDescs, desc_len,
|
||||
dist, threadIdx.x);
|
||||
}
|
||||
};
|
||||
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN>
|
||||
struct DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, true>
|
||||
{
|
||||
template <typename Dist, typename T>
|
||||
static __device__ void calc(Dist& dist, const float* queryVals, const T* trainDescs, int desc_len)
|
||||
static __device__ void calc(const float* queryVals, const T* trainDescs, int desc_len, Dist& dist)
|
||||
{
|
||||
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcWithoutCheck(dist, queryVals,
|
||||
trainDescs + threadIdx.x);
|
||||
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcWithoutCheck(queryVals,
|
||||
trainDescs + threadIdx.x, dist);
|
||||
}
|
||||
};
|
||||
|
||||
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN, typename Dist, typename T>
|
||||
__device__ void reduceDescDiff_smem(const float* queryVals, const T* trainDescs, int desc_len, float* sdiff)
|
||||
{
|
||||
const int tid = threadIdx.x;
|
||||
__device__ void reduceDescDiffCached(const float* queryVals, const T* trainDescs, int desc_len, Dist& dist,
|
||||
float* sdiff_row)
|
||||
{
|
||||
DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN>::calc(queryVals,
|
||||
trainDescs, desc_len, dist);
|
||||
|
||||
Dist dist;
|
||||
|
||||
DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN>::calc(dist, queryVals,
|
||||
trainDescs, desc_len);
|
||||
|
||||
dist.reduceAll(sdiff, tid);
|
||||
dist.reduceAll<BLOCK_DIM_X>(sdiff_row);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////// Match //////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// warpReduceMin
|
||||
// warpReduceMinIdxIdx
|
||||
|
||||
template <int BLOCK_DIM_Y>
|
||||
__device__ void warpReduceMin(int tid, volatile float* sdata, volatile int* strainIdx, volatile int* simgIdx)
|
||||
{
|
||||
float minSum = sdata[tid];
|
||||
__device__ void warpReduceMinIdxIdx(float& myMin, int& myBestTrainIdx, int& myBestImgIdx,
|
||||
volatile float* sdata, volatile int* strainIdx, volatile int* simgIdx);
|
||||
|
||||
if (BLOCK_DIM_Y >= 64)
|
||||
template <>
|
||||
__device__ void warpReduceMinIdxIdx<16>(float& myMin, int& myBestTrainIdx, int& myBestImgIdx,
|
||||
volatile float* smin, volatile int* strainIdx, volatile int* simgIdx)
|
||||
{
|
||||
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
if (tid < 8)
|
||||
{
|
||||
float reg = sdata[tid + 32];
|
||||
if (reg < minSum)
|
||||
myMin = smin[tid];
|
||||
myBestTrainIdx = strainIdx[tid];
|
||||
myBestImgIdx = simgIdx[tid];
|
||||
|
||||
float reg = smin[tid + 8];
|
||||
if (reg < myMin)
|
||||
{
|
||||
sdata[tid] = minSum = reg;
|
||||
strainIdx[tid] = strainIdx[tid + 32];
|
||||
simgIdx[tid] = simgIdx[tid + 32];
|
||||
smin[tid] = myMin = reg;
|
||||
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 8];
|
||||
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 8];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_Y >= 32)
|
||||
{
|
||||
float reg = sdata[tid + 16];
|
||||
if (reg < minSum)
|
||||
|
||||
reg = smin[tid + 4];
|
||||
if (reg < myMin)
|
||||
{
|
||||
sdata[tid] = minSum = reg;
|
||||
strainIdx[tid] = strainIdx[tid + 16];
|
||||
simgIdx[tid] = simgIdx[tid + 16];
|
||||
smin[tid] = myMin = reg;
|
||||
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 4];
|
||||
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 4];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_Y >= 16)
|
||||
{
|
||||
float reg = sdata[tid + 8];
|
||||
if (reg < minSum)
|
||||
|
||||
reg = smin[tid + 2];
|
||||
if (reg < myMin)
|
||||
{
|
||||
sdata[tid] = minSum = reg;
|
||||
strainIdx[tid] = strainIdx[tid + 8];
|
||||
simgIdx[tid] = simgIdx[tid + 8];
|
||||
smin[tid] = myMin = reg;
|
||||
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 2];
|
||||
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 2];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_Y >= 8)
|
||||
{
|
||||
float reg = sdata[tid + 4];
|
||||
if (reg < minSum)
|
||||
|
||||
reg = smin[tid + 1];
|
||||
if (reg < myMin)
|
||||
{
|
||||
sdata[tid] = minSum = reg;
|
||||
strainIdx[tid] = strainIdx[tid + 4];
|
||||
simgIdx[tid] = simgIdx[tid + 4];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_Y >= 4)
|
||||
{
|
||||
float reg = sdata[tid + 2];
|
||||
if (reg < minSum)
|
||||
{
|
||||
sdata[tid] = minSum = reg;
|
||||
strainIdx[tid] = strainIdx[tid + 2];
|
||||
simgIdx[tid] = simgIdx[tid + 2];
|
||||
}
|
||||
}
|
||||
if (BLOCK_DIM_Y >= 2)
|
||||
{
|
||||
float reg = sdata[tid + 1];
|
||||
if (reg < minSum)
|
||||
{
|
||||
sdata[tid] = minSum = reg;
|
||||
strainIdx[tid] = strainIdx[tid + 1];
|
||||
simgIdx[tid] = simgIdx[tid + 1];
|
||||
smin[tid] = myMin = reg;
|
||||
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 1];
|
||||
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -458,9 +346,9 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// findBestMatch
|
||||
|
||||
template <int BLOCK_DIM_Y, typename Dist>
|
||||
__device__ void findBestMatch(int queryIdx, float myMin, int myBestTrainIdx, int myBestImgIdx,
|
||||
float* smin, int* strainIdx, int* simgIdx, int* trainIdx, int* imgIdx, float* distance)
|
||||
template <int BLOCK_DIM_Y>
|
||||
__device__ void findBestMatch(float& myMin, int& myBestTrainIdx, int& myBestImgIdx,
|
||||
float* smin, int* strainIdx, int* simgIdx)
|
||||
{
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
@@ -470,27 +358,13 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
if (tid < 32)
|
||||
warpReduceMin<BLOCK_DIM_Y>(tid, smin, strainIdx, simgIdx);
|
||||
|
||||
if (threadIdx.x == 0 && threadIdx.y == 0)
|
||||
{
|
||||
float minSum = smin[0];
|
||||
int bestTrainIdx = strainIdx[0];
|
||||
int bestImgIdx = simgIdx[0];
|
||||
|
||||
imgIdx[queryIdx] = bestImgIdx;
|
||||
trainIdx[queryIdx] = bestTrainIdx;
|
||||
distance[queryIdx] = Dist::finalResult(minSum);
|
||||
}
|
||||
warpReduceMinIdxIdx<BLOCK_DIM_Y>(myMin, myBestTrainIdx, myBestImgIdx, smin, strainIdx, simgIdx);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// ReduceDescCalculator
|
||||
|
||||
template <int BLOCK_DIM_X, typename Dist, typename T>
|
||||
template <int BLOCK_DIM_X, typename T>
|
||||
class ReduceDescCalculatorSimple
|
||||
{
|
||||
public:
|
||||
@@ -499,29 +373,30 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
queryDescs = queryDescs_;
|
||||
}
|
||||
|
||||
__device__ void calc(const T* trainDescs, int desc_len, float* sdiff_row) const
|
||||
template <typename Dist>
|
||||
__device__ void calc(const T* trainDescs, int desc_len, Dist& dist, float* sdiff_row) const
|
||||
{
|
||||
reduceDescDiff<BLOCK_DIM_X, Dist>(queryDescs, trainDescs, desc_len, sdiff_row);
|
||||
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, desc_len, dist, sdiff_row);
|
||||
}
|
||||
|
||||
private:
|
||||
const T* queryDescs;
|
||||
};
|
||||
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN,
|
||||
typename Dist, typename T>
|
||||
class ReduceDescCalculatorSmem
|
||||
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN, typename T>
|
||||
class ReduceDescCalculatorCached
|
||||
{
|
||||
public:
|
||||
__device__ void prepare(const T* queryDescs, int desc_len, float* smem)
|
||||
{
|
||||
loadDescsVals<BLOCK_DIM_X, BLOCK_DIM_Y, MAX_DESCRIPTORS_LEN>(queryDescs, desc_len, smem, queryVals);
|
||||
loadDescsVals<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN>(queryDescs, desc_len, queryVals, smem);
|
||||
}
|
||||
|
||||
__device__ void calc(const T* trainDescs, int desc_len, float* sdiff_row) const
|
||||
template <typename Dist>
|
||||
__device__ void calc(const T* trainDescs, int desc_len, Dist& dist, float* sdiff_row) const
|
||||
{
|
||||
reduceDescDiff_smem<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN, Dist>(queryVals, trainDescs,
|
||||
desc_len, sdiff_row);
|
||||
reduceDescDiffCached<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN>(queryVals, trainDescs,
|
||||
desc_len, dist, sdiff_row);
|
||||
}
|
||||
|
||||
private:
|
||||
@@ -531,26 +406,26 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// matchDescs loop
|
||||
|
||||
template <typename ReduceDescCalculator, typename T, typename Mask>
|
||||
__device__ void matchDescs(int queryIdx, const int imgIdx, const DevMem2D_<T>& trainDescs_,
|
||||
template <typename Dist, typename ReduceDescCalculator, typename T, typename Mask>
|
||||
__device__ void matchDescs(int queryIdx, int imgIdx, const DevMem2D_<T>& trainDescs_,
|
||||
const Mask& m, const ReduceDescCalculator& reduceDescCalc,
|
||||
float* sdiff_row, float& myMin, int& myBestTrainIdx, int& myBestImgIdx)
|
||||
float& myMin, int& myBestTrainIdx, int& myBestImgIdx, float* sdiff_row)
|
||||
{
|
||||
const T* trainDescs = trainDescs_.ptr(threadIdx.y);
|
||||
const int trainDescsStep = blockDim.y * trainDescs_.step / sizeof(T);
|
||||
for (int trainIdx = threadIdx.y; trainIdx < trainDescs_.rows;
|
||||
trainIdx += blockDim.y, trainDescs += trainDescsStep)
|
||||
for (int trainIdx = threadIdx.y; trainIdx < trainDescs_.rows; trainIdx += blockDim.y)
|
||||
{
|
||||
if (m(queryIdx, trainIdx))
|
||||
{
|
||||
reduceDescCalc.calc(trainDescs, trainDescs_.cols, sdiff_row);
|
||||
const T* trainDescs = trainDescs_.ptr(trainIdx);
|
||||
|
||||
Dist dist;
|
||||
|
||||
reduceDescCalc.calc(trainDescs, trainDescs_.cols, dist, sdiff_row);
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
float reg = sdiff_row[0];
|
||||
if (reg < myMin)
|
||||
if (dist < myMin)
|
||||
{
|
||||
myMin = reg;
|
||||
myMin = dist;
|
||||
myBestTrainIdx = trainIdx;
|
||||
myBestImgIdx = imgIdx;
|
||||
}
|
||||
@@ -570,18 +445,19 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
{
|
||||
}
|
||||
|
||||
template <typename ReduceDescCalculator, typename Mask>
|
||||
template <typename Dist, typename ReduceDescCalculator, typename Mask>
|
||||
__device__ void loop(int queryIdx, Mask& m, const ReduceDescCalculator& reduceDescCalc,
|
||||
float* sdiff_row, float& myMin, int& myBestTrainIdx, int& myBestImgIdx) const
|
||||
float& myMin, int& myBestTrainIdx, int& myBestImgIdx, float* sdiff_row) const
|
||||
{
|
||||
matchDescs(queryIdx, 0, trainDescs, m, reduceDescCalc,
|
||||
sdiff_row, myMin, myBestTrainIdx, myBestImgIdx);
|
||||
matchDescs<Dist>(queryIdx, 0, trainDescs, m, reduceDescCalc,
|
||||
myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
|
||||
}
|
||||
|
||||
__device__ int desc_len() const
|
||||
{
|
||||
return trainDescs.cols;
|
||||
}
|
||||
|
||||
private:
|
||||
DevMem2D_<T> trainDescs;
|
||||
};
|
||||
@@ -595,16 +471,16 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
{
|
||||
}
|
||||
|
||||
template <typename ReduceDescCalculator, typename Mask>
|
||||
template <typename Dist, typename ReduceDescCalculator, typename Mask>
|
||||
__device__ void loop(int queryIdx, Mask& m, const ReduceDescCalculator& reduceDescCalc,
|
||||
float* sdiff_row, float& myMin, int& myBestTrainIdx, int& myBestImgIdx) const
|
||||
float& myMin, int& myBestTrainIdx, int& myBestImgIdx, float* sdiff_row) const
|
||||
{
|
||||
for (int imgIdx = 0; imgIdx < nImg; ++imgIdx)
|
||||
{
|
||||
DevMem2D_<T> trainDescs = trainCollection[imgIdx];
|
||||
m.nextMask();
|
||||
matchDescs(queryIdx, imgIdx, trainDescs, m, reduceDescCalc,
|
||||
sdiff_row, myMin, myBestTrainIdx, myBestImgIdx);
|
||||
matchDescs<Dist>(queryIdx, imgIdx, trainDescs, m, reduceDescCalc,
|
||||
myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -612,6 +488,7 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
{
|
||||
return desclen;
|
||||
}
|
||||
|
||||
private:
|
||||
const DevMem2D_<T>* trainCollection;
|
||||
int nImg;
|
||||
@@ -623,12 +500,10 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename ReduceDescCalculator, typename Dist, typename T,
|
||||
typename Train, typename Mask>
|
||||
__global__ void match(PtrStep_<T> queryDescs_, Train train, Mask mask, int* trainIdx, int* imgIdx, float* distance)
|
||||
__global__ void match(const PtrStep_<T> queryDescs_, const Train train, const Mask mask,
|
||||
int* trainIdx, int* imgIdx, float* distance)
|
||||
{
|
||||
__shared__ float sdiff[BLOCK_DIM_X * BLOCK_DIM_Y];
|
||||
__shared__ float smin[64];
|
||||
__shared__ int strainIdx[64];
|
||||
__shared__ int simgIdx[64];
|
||||
__shared__ float smem[BLOCK_DIM_X * BLOCK_DIM_Y];
|
||||
|
||||
const int queryIdx = blockIdx.x;
|
||||
|
||||
@@ -637,24 +512,39 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
float myMin = numeric_limits_gpu<float>::max();
|
||||
|
||||
{
|
||||
float* sdiff_row = sdiff + BLOCK_DIM_X * threadIdx.y;
|
||||
Mask m = mask;
|
||||
ReduceDescCalculator reduceDescCalc;
|
||||
reduceDescCalc.prepare(queryDescs_.ptr(queryIdx), train.desc_len(), sdiff);
|
||||
|
||||
train.loop(queryIdx, m, reduceDescCalc, sdiff_row, myMin, myBestTrainIdx, myBestImgIdx);
|
||||
}
|
||||
float* sdiff_row = smem + BLOCK_DIM_X * threadIdx.y;
|
||||
|
||||
findBestMatch<BLOCK_DIM_Y, Dist>(queryIdx, myMin, myBestTrainIdx, myBestImgIdx,
|
||||
smin, strainIdx, simgIdx, trainIdx, imgIdx, distance);
|
||||
Mask m = mask;
|
||||
|
||||
ReduceDescCalculator reduceDescCalc;
|
||||
|
||||
reduceDescCalc.prepare(queryDescs_.ptr(queryIdx), train.desc_len(), smem);
|
||||
|
||||
train.template loop<Dist>(queryIdx, m, reduceDescCalc, myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
float* smin = smem;
|
||||
int* strainIdx = (int*)(smin + BLOCK_DIM_Y);
|
||||
int* simgIdx = strainIdx + BLOCK_DIM_Y;
|
||||
|
||||
findBestMatch<BLOCK_DIM_Y>(myMin, myBestTrainIdx, myBestImgIdx,
|
||||
smin, strainIdx, simgIdx);
|
||||
|
||||
if (threadIdx.x == 0 && threadIdx.y == 0)
|
||||
{
|
||||
imgIdx[queryIdx] = myBestImgIdx;
|
||||
trainIdx[queryIdx] = myBestTrainIdx;
|
||||
distance[queryIdx] = myMin;
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Match kernel callers
|
||||
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, template <int> class Dist, typename T,
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T,
|
||||
typename Train, typename Mask>
|
||||
void match_caller(const DevMem2D_<T>& queryDescs, const Train& train,
|
||||
void matchSimple_caller(const DevMem2D_<T>& queryDescs, const Train& train,
|
||||
const Mask& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance)
|
||||
{
|
||||
StaticAssert<BLOCK_DIM_Y <= 64>::check(); // blockDimY vals must reduce by warp
|
||||
@@ -662,15 +552,15 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
dim3 grid(queryDescs.rows, 1, 1);
|
||||
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
|
||||
|
||||
match<BLOCK_DIM_X, BLOCK_DIM_Y, ReduceDescCalculatorSimple<BLOCK_DIM_X, Dist<BLOCK_DIM_X>, T>,
|
||||
Dist<BLOCK_DIM_X>, T><<<grid, threads>>>(queryDescs, train, mask, trainIdx.data,
|
||||
match<BLOCK_DIM_X, BLOCK_DIM_Y, ReduceDescCalculatorSimple<BLOCK_DIM_X, T>, Dist, T>
|
||||
<<<grid, threads>>>(queryDescs, train, mask, trainIdx.data,
|
||||
imgIdx.data, distance.data);
|
||||
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN,
|
||||
template <int> class Dist, typename T, typename Train, typename Mask>
|
||||
void match_smem_caller(const DevMem2D_<T>& queryDescs, const Train& train,
|
||||
typename Dist, typename T, typename Train, typename Mask>
|
||||
void matchCached_caller(const DevMem2D_<T>& queryDescs, const Train& train,
|
||||
const Mask& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance)
|
||||
{
|
||||
StaticAssert<BLOCK_DIM_Y <= 64>::check(); // blockDimY vals must reduce by warp
|
||||
@@ -680,9 +570,10 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
dim3 grid(queryDescs.rows, 1, 1);
|
||||
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
|
||||
|
||||
match<BLOCK_DIM_X, BLOCK_DIM_Y, ReduceDescCalculatorSmem<BLOCK_DIM_X, BLOCK_DIM_Y,
|
||||
MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN, Dist<BLOCK_DIM_X>, T>,
|
||||
Dist<BLOCK_DIM_X>, T><<<grid, threads>>>(queryDescs, train, mask, trainIdx.data,
|
||||
match<BLOCK_DIM_X, BLOCK_DIM_Y,
|
||||
ReduceDescCalculatorCached<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN, T>,
|
||||
Dist, T>
|
||||
<<<grid, threads>>>(queryDescs, train, mask, trainIdx.data,
|
||||
imgIdx.data, distance.data);
|
||||
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
@@ -691,24 +582,24 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Match kernel chooser
|
||||
|
||||
template <template <int> class Dist, typename T, typename Train, typename Mask>
|
||||
template <typename Dist, typename T, typename Train, typename Mask>
|
||||
void match_chooser(const DevMem2D_<T>& queryDescs, const Train& train,
|
||||
const Mask& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance)
|
||||
{
|
||||
if (queryDescs.cols < 64)
|
||||
match_smem_caller<16, 16, 64, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
matchCached_caller<16, 16, 64, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
else if (queryDescs.cols == 64)
|
||||
match_smem_caller<16, 16, 64, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
matchCached_caller<16, 16, 64, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
else if (queryDescs.cols < 128)
|
||||
match_smem_caller<16, 16, 128, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
matchCached_caller<16, 16, 128, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
else if (queryDescs.cols == 128)
|
||||
match_smem_caller<16, 16, 128, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
matchCached_caller<16, 16, 128, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
else if (queryDescs.cols < 256)
|
||||
match_smem_caller<16, 16, 256, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
matchCached_caller<16, 16, 256, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
else if (queryDescs.cols == 256)
|
||||
match_smem_caller<16, 16, 256, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
matchCached_caller<16, 16, 256, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
else
|
||||
match_caller<16, 16, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
matchSimple_caller<16, 16, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
|
||||
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
@@ -828,41 +719,41 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
{
|
||||
const T* trainDescs = trainDescs_.ptr(trainIdx);
|
||||
|
||||
float dist = numeric_limits_gpu<float>::max();
|
||||
float myDist = numeric_limits_gpu<float>::max();
|
||||
|
||||
if (mask(queryIdx, trainIdx))
|
||||
{
|
||||
reduceDescDiff<BLOCK_DIM_X, Dist>(queryDescs, trainDescs, trainDescs_.cols, sdiff_row);
|
||||
Dist dist;
|
||||
|
||||
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, trainDescs_.cols, dist, sdiff_row);
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
dist = Dist::finalResult(sdiff_row[0]);
|
||||
}
|
||||
myDist = dist;
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
distance.ptr(queryIdx)[trainIdx] = dist;
|
||||
distance.ptr(queryIdx)[trainIdx] = myDist;
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Calc distance kernel caller
|
||||
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, template <int> class Dist, typename T, typename Mask>
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
|
||||
void calcDistance_caller(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs,
|
||||
const Mask& mask, const DevMem2Df& distance)
|
||||
{
|
||||
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
|
||||
dim3 grid(queryDescs.rows, divUp(trainDescs.rows, BLOCK_DIM_Y), 1);
|
||||
|
||||
calcDistance<BLOCK_DIM_X, BLOCK_DIM_Y, Dist<BLOCK_DIM_X>, T><<<grid, threads>>>(
|
||||
calcDistance<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, T><<<grid, threads>>>(
|
||||
queryDescs, trainDescs, mask, distance);
|
||||
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// reduceMin
|
||||
// warpReduceMinIdx
|
||||
|
||||
template <int BLOCK_SIZE>
|
||||
__device__ void warpReduceMinIdx(volatile float* sdist, volatile int* strainIdx, float& myMin, int tid)
|
||||
@@ -1103,25 +994,27 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
{
|
||||
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
|
||||
__shared__ float sdiff[BLOCK_DIM_X * BLOCK_DIM_Y];
|
||||
__shared__ float smem[BLOCK_DIM_X * BLOCK_DIM_Y];
|
||||
|
||||
float* sdiff_row = sdiff + BLOCK_DIM_X * threadIdx.y;
|
||||
float* sdiff_row = smem + BLOCK_DIM_X * threadIdx.y;
|
||||
|
||||
const int queryIdx = blockIdx.x;
|
||||
const T* queryDescs = queryDescs_.ptr(queryIdx);
|
||||
|
||||
const int trainIdx = blockIdx.y * BLOCK_DIM_Y + threadIdx.y;
|
||||
|
||||
if (trainIdx < trainDescs_.rows)
|
||||
{
|
||||
const T* trainDescs = trainDescs_.ptr(trainIdx);
|
||||
|
||||
if (mask(queryIdx, trainIdx))
|
||||
{
|
||||
reduceDescDiff<BLOCK_DIM_X, Dist>(queryDescs, trainDescs, trainDescs_.cols, sdiff_row);
|
||||
Dist dist;
|
||||
|
||||
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, trainDescs_.cols, dist, sdiff_row);
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
float dist = Dist::finalResult(sdiff_row[0]);
|
||||
if (dist < maxDistance)
|
||||
{
|
||||
unsigned int i = atomicInc(nMatches + queryIdx, (unsigned int) -1);
|
||||
@@ -1141,7 +1034,7 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Radius Match kernel caller
|
||||
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, template <int> class Dist, typename T, typename Mask>
|
||||
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
|
||||
void radiusMatch_caller(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs,
|
||||
float maxDistance, const Mask& mask, const DevMem2Di& trainIdx, unsigned int* nMatches,
|
||||
const DevMem2Df& distance)
|
||||
@@ -1149,7 +1042,7 @@ namespace cv { namespace gpu { namespace bfmatcher
|
||||
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
|
||||
dim3 grid(queryDescs.rows, divUp(trainDescs.rows, BLOCK_DIM_Y), 1);
|
||||
|
||||
radiusMatch<BLOCK_DIM_X, BLOCK_DIM_Y, Dist<BLOCK_DIM_X>, T><<<grid, threads>>>(
|
||||
radiusMatch<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, T><<<grid, threads>>>(
|
||||
queryDescs, trainDescs, maxDistance, mask, trainIdx, nMatches, distance);
|
||||
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
|
@@ -66,7 +66,10 @@ void cv::gpu::integral(const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::sqrIntegral(const GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::columnSum(const GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::rectStdDev(const GpuMat&, const GpuMat&, GpuMat&, const Rect&) { throw_nogpu(); }
|
||||
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
|
||||
//void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
|
||||
//void cv::gpu::Canny(const GpuMat&, GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
|
||||
//void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
|
||||
//void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
|
||||
void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_nogpu(); }
|
||||
void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
|
||||
void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*) { throw_nogpu(); }
|
||||
@@ -655,34 +658,60 @@ void cv::gpu::rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, cons
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
|
||||
void cv::gpu::Canny(const GpuMat& image, GpuMat& edges, double threshold1, double threshold2, int apertureSize)
|
||||
{
|
||||
CV_Assert(!"disabled until fix crash");
|
||||
CV_Assert(image.type() == CV_8UC1);
|
||||
|
||||
GpuMat srcDx, srcDy;
|
||||
|
||||
Sobel(image, srcDx, -1, 1, 0, apertureSize);
|
||||
Sobel(image, srcDy, -1, 0, 1, apertureSize);
|
||||
|
||||
srcDx.convertTo(srcDx, CV_32F);
|
||||
srcDy.convertTo(srcDy, CV_32F);
|
||||
|
||||
edges.create(image.size(), CV_8UC1);
|
||||
|
||||
NppiSize sz;
|
||||
sz.height = image.rows;
|
||||
sz.width = image.cols;
|
||||
|
||||
int bufsz;
|
||||
nppSafeCall( nppiCannyGetBufferSize(sz, &bufsz) );
|
||||
GpuMat buf(1, bufsz, CV_8UC1);
|
||||
|
||||
nppSafeCall( nppiCanny_32f8u_C1R(srcDx.ptr<Npp32f>(), srcDx.step, srcDy.ptr<Npp32f>(), srcDy.step,
|
||||
edges.ptr<Npp8u>(), edges.step, sz, (Npp32f)threshold1, (Npp32f)threshold2, buf.ptr<Npp8u>()) );
|
||||
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
//void cv::gpu::Canny(const GpuMat& image, GpuMat& edges, double threshold1, double threshold2, int apertureSize)
|
||||
//{
|
||||
// CV_Assert(!"disabled until fix crash");
|
||||
//
|
||||
// GpuMat srcDx, srcDy;
|
||||
//
|
||||
// Sobel(image, srcDx, CV_32F, 1, 0, apertureSize);
|
||||
// Sobel(image, srcDy, CV_32F, 0, 1, apertureSize);
|
||||
//
|
||||
// GpuMat buf;
|
||||
//
|
||||
// Canny(srcDx, srcDy, edges, buf, threshold1, threshold2, apertureSize);
|
||||
//}
|
||||
//
|
||||
//void cv::gpu::Canny(const GpuMat& image, GpuMat& edges, GpuMat& buf, double threshold1, double threshold2, int apertureSize)
|
||||
//{
|
||||
// CV_Assert(!"disabled until fix crash");
|
||||
//
|
||||
// GpuMat srcDx, srcDy;
|
||||
//
|
||||
// Sobel(image, srcDx, CV_32F, 1, 0, apertureSize);
|
||||
// Sobel(image, srcDy, CV_32F, 0, 1, apertureSize);
|
||||
//
|
||||
// Canny(srcDx, srcDy, edges, buf, threshold1, threshold2, apertureSize);
|
||||
//}
|
||||
//
|
||||
//void cv::gpu::Canny(const GpuMat& srcDx, const GpuMat& srcDy, GpuMat& edges, double threshold1, double threshold2, int apertureSize)
|
||||
//{
|
||||
// CV_Assert(!"disabled until fix crash");
|
||||
//
|
||||
// GpuMat buf;
|
||||
// Canny(srcDx, srcDy, edges, buf, threshold1, threshold2, apertureSize);
|
||||
//}
|
||||
//
|
||||
//void cv::gpu::Canny(const GpuMat& srcDx, const GpuMat& srcDy, GpuMat& edges, GpuMat& buf, double threshold1, double threshold2, int apertureSize)
|
||||
//{
|
||||
// CV_Assert(!"disabled until fix crash");
|
||||
// CV_Assert(srcDx.type() == CV_32FC1 && srcDy.type() == CV_32FC1 && srcDx.size() == srcDy.size());
|
||||
//
|
||||
// edges.create(srcDx.size(), CV_8UC1);
|
||||
//
|
||||
// NppiSize sz;
|
||||
// sz.height = srcDx.rows;
|
||||
// sz.width = srcDx.cols;
|
||||
//
|
||||
// int bufsz;
|
||||
// nppSafeCall( nppiCannyGetBufferSize(sz, &bufsz) );
|
||||
// ensureSizeIsEnough(1, bufsz, CV_8UC1, buf);
|
||||
//
|
||||
// nppSafeCall( nppiCanny_32f8u_C1R(srcDx.ptr<Npp32f>(), srcDx.step, srcDy.ptr<Npp32f>(), srcDy.step,
|
||||
// edges.ptr<Npp8u>(), edges.step, sz, (Npp32f)threshold1, (Npp32f)threshold2, buf.ptr<Npp8u>()) );
|
||||
//
|
||||
// cudaSafeCall( cudaThreadSynchronize() );
|
||||
//}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Histogram
|
||||
|
Reference in New Issue
Block a user