refactor CUDA HOG algorithm:
use abstract interface with hidden implementation
This commit is contained in:
parent
0af7597d36
commit
8257dc3c1e
@ -65,19 +65,8 @@ namespace cv { namespace cuda {
|
|||||||
// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector
|
// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector
|
||||||
//
|
//
|
||||||
|
|
||||||
struct CV_EXPORTS HOGConfidence
|
|
||||||
{
|
|
||||||
double scale;
|
|
||||||
std::vector<Point> locations;
|
|
||||||
std::vector<double> confidences;
|
|
||||||
std::vector<double> part_scores[4];
|
|
||||||
};
|
|
||||||
|
|
||||||
/** @brief The class implements Histogram of Oriented Gradients (@cite Dalal2005) object detector.
|
/** @brief The class implements Histogram of Oriented Gradients (@cite Dalal2005) object detector.
|
||||||
|
|
||||||
Interfaces of all methods are kept similar to the CPU HOG descriptor and detector analogues as much
|
|
||||||
as possible.
|
|
||||||
|
|
||||||
@note
|
@note
|
||||||
- An example applying the HOG descriptor for people detection can be found at
|
- An example applying the HOG descriptor for people detection can be found at
|
||||||
opencv_source_code/samples/cpp/peopledetect.cpp
|
opencv_source_code/samples/cpp/peopledetect.cpp
|
||||||
@ -86,11 +75,14 @@ as possible.
|
|||||||
- (Python) An example applying the HOG descriptor for people detection can be found at
|
- (Python) An example applying the HOG descriptor for people detection can be found at
|
||||||
opencv_source_code/samples/python2/peopledetect.py
|
opencv_source_code/samples/python2/peopledetect.py
|
||||||
*/
|
*/
|
||||||
struct CV_EXPORTS HOGDescriptor
|
class CV_EXPORTS HOG : public cv::Algorithm
|
||||||
{
|
{
|
||||||
enum { DEFAULT_WIN_SIGMA = -1 };
|
public:
|
||||||
enum { DEFAULT_NLEVELS = 64 };
|
enum
|
||||||
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
|
{
|
||||||
|
DESCR_FORMAT_ROW_BY_ROW,
|
||||||
|
DESCR_FORMAT_COL_BY_COL
|
||||||
|
};
|
||||||
|
|
||||||
/** @brief Creates the HOG descriptor and detector.
|
/** @brief Creates the HOG descriptor and detector.
|
||||||
|
|
||||||
@ -99,132 +91,105 @@ struct CV_EXPORTS HOGDescriptor
|
|||||||
@param block_stride Block stride. It must be a multiple of cell size.
|
@param block_stride Block stride. It must be a multiple of cell size.
|
||||||
@param cell_size Cell size. Only (8, 8) is supported for now.
|
@param cell_size Cell size. Only (8, 8) is supported for now.
|
||||||
@param nbins Number of bins. Only 9 bins per cell are supported for now.
|
@param nbins Number of bins. Only 9 bins per cell are supported for now.
|
||||||
@param win_sigma Gaussian smoothing window parameter.
|
|
||||||
@param threshold_L2hys L2-Hys normalization method shrinkage.
|
|
||||||
@param gamma_correction Flag to specify whether the gamma correction preprocessing is required or
|
|
||||||
not.
|
|
||||||
@param nlevels Maximum number of detection window increases.
|
|
||||||
*/
|
*/
|
||||||
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
|
static Ptr<HOG> create(Size win_size = Size(64, 128),
|
||||||
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
|
Size block_size = Size(16, 16),
|
||||||
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
|
Size block_stride = Size(8, 8),
|
||||||
double threshold_L2hys=0.2, bool gamma_correction=true,
|
Size cell_size = Size(8, 8),
|
||||||
int nlevels=DEFAULT_NLEVELS);
|
int nbins = 9);
|
||||||
|
|
||||||
|
//! Gaussian smoothing window parameter.
|
||||||
|
virtual void setWinSigma(double win_sigma) = 0;
|
||||||
|
virtual double getWinSigma() const = 0;
|
||||||
|
|
||||||
|
//! L2-Hys normalization method shrinkage.
|
||||||
|
virtual void setL2HysThreshold(double threshold_L2hys) = 0;
|
||||||
|
virtual double getL2HysThreshold() const = 0;
|
||||||
|
|
||||||
|
//! Flag to specify whether the gamma correction preprocessing is required or not.
|
||||||
|
virtual void setGammaCorrection(bool gamma_correction) = 0;
|
||||||
|
virtual bool getGammaCorrection() const = 0;
|
||||||
|
|
||||||
|
//! Maximum number of detection window increases.
|
||||||
|
virtual void setNumLevels(int nlevels) = 0;
|
||||||
|
virtual int getNumLevels() const = 0;
|
||||||
|
|
||||||
|
//! Threshold for the distance between features and SVM classifying plane.
|
||||||
|
//! Usually it is 0 and should be specfied in the detector coefficients (as the last free
|
||||||
|
//! coefficient). But if the free coefficient is omitted (which is allowed), you can specify it
|
||||||
|
//! manually here.
|
||||||
|
virtual void setHitThreshold(double hit_threshold) = 0;
|
||||||
|
virtual double getHitThreshold() const = 0;
|
||||||
|
|
||||||
|
//! Window stride. It must be a multiple of block stride.
|
||||||
|
virtual void setWinStride(Size win_stride) = 0;
|
||||||
|
virtual Size getWinStride() const = 0;
|
||||||
|
|
||||||
|
//! Coefficient of the detection window increase.
|
||||||
|
virtual void setScaleFactor(double scale0) = 0;
|
||||||
|
virtual double getScaleFactor() const = 0;
|
||||||
|
|
||||||
|
//! Coefficient to regulate the similarity threshold. When detected, some
|
||||||
|
//! objects can be covered by many rectangles. 0 means not to perform grouping.
|
||||||
|
//! See groupRectangles.
|
||||||
|
virtual void setGroupThreshold(int group_threshold) = 0;
|
||||||
|
virtual int getGroupThreshold() const = 0;
|
||||||
|
|
||||||
|
//! Descriptor storage format:
|
||||||
|
//! - **DESCR_FORMAT_ROW_BY_ROW** - Row-major order.
|
||||||
|
//! - **DESCR_FORMAT_COL_BY_COL** - Column-major order.
|
||||||
|
virtual void setDescriptorFormat(int descr_format) = 0;
|
||||||
|
virtual int getDescriptorFormat() const = 0;
|
||||||
|
|
||||||
/** @brief Returns the number of coefficients required for the classification.
|
/** @brief Returns the number of coefficients required for the classification.
|
||||||
*/
|
*/
|
||||||
size_t getDescriptorSize() const;
|
virtual size_t getDescriptorSize() const = 0;
|
||||||
|
|
||||||
/** @brief Returns the block histogram size.
|
/** @brief Returns the block histogram size.
|
||||||
*/
|
*/
|
||||||
size_t getBlockHistogramSize() const;
|
virtual size_t getBlockHistogramSize() const = 0;
|
||||||
|
|
||||||
/** @brief Sets coefficients for the linear SVM classifier.
|
/** @brief Sets coefficients for the linear SVM classifier.
|
||||||
*/
|
*/
|
||||||
void setSVMDetector(const std::vector<float>& detector);
|
virtual void setSVMDetector(InputArray detector) = 0;
|
||||||
|
|
||||||
/** @brief Returns coefficients of the classifier trained for people detection (for default window size).
|
/** @brief Returns coefficients of the classifier trained for people detection.
|
||||||
*/
|
*/
|
||||||
static std::vector<float> getDefaultPeopleDetector();
|
virtual Mat getDefaultPeopleDetector() const = 0;
|
||||||
/** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows).
|
|
||||||
*/
|
|
||||||
static std::vector<float> getPeopleDetector48x96();
|
|
||||||
/** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
|
|
||||||
*/
|
|
||||||
static std::vector<float> getPeopleDetector64x128();
|
|
||||||
|
|
||||||
/** @brief Performs object detection without a multi-scale window.
|
/** @brief Performs object detection without a multi-scale window.
|
||||||
|
|
||||||
@param img Source image. CV_8UC1 and CV_8UC4 types are supported for now.
|
@param img Source image. CV_8UC1 and CV_8UC4 types are supported for now.
|
||||||
@param found_locations Left-top corner points of detected objects boundaries.
|
@param found_locations Left-top corner points of detected objects boundaries.
|
||||||
@param hit_threshold Threshold for the distance between features and SVM classifying plane.
|
@param confidences Optional output array for confidences.
|
||||||
Usually it is 0 and should be specfied in the detector coefficients (as the last free
|
|
||||||
coefficient). But if the free coefficient is omitted (which is allowed), you can specify it
|
|
||||||
manually here.
|
|
||||||
@param win_stride Window stride. It must be a multiple of block stride.
|
|
||||||
@param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0).
|
|
||||||
*/
|
*/
|
||||||
void detect(const GpuMat& img, std::vector<Point>& found_locations,
|
virtual void detect(InputArray img,
|
||||||
double hit_threshold=0, Size win_stride=Size(),
|
std::vector<Point>& found_locations,
|
||||||
Size padding=Size());
|
std::vector<double>* confidences = NULL) = 0;
|
||||||
|
|
||||||
/** @brief Performs object detection with a multi-scale window.
|
/** @brief Performs object detection with a multi-scale window.
|
||||||
|
|
||||||
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
||||||
@param found_locations Detected objects boundaries.
|
@param found_locations Detected objects boundaries.
|
||||||
|
@param confidences Optional output array for confidences.
|
||||||
@param hit_threshold Threshold for the distance between features and SVM classifying plane. See
|
@param hit_threshold Threshold for the distance between features and SVM classifying plane. See
|
||||||
cuda::HOGDescriptor::detect for details.
|
cuda::HOGDescriptor::detect for details.
|
||||||
@param win_stride Window stride. It must be a multiple of block stride.
|
@param win_stride Window stride. It must be a multiple of block stride.
|
||||||
@param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0).
|
@param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0).
|
||||||
@param scale0 Coefficient of the detection window increase.
|
|
||||||
@param group_threshold Coefficient to regulate the similarity threshold. When detected, some
|
|
||||||
objects can be covered by many rectangles. 0 means not to perform grouping. See groupRectangles .
|
|
||||||
*/
|
*/
|
||||||
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
virtual void detectMultiScale(InputArray img,
|
||||||
double hit_threshold=0, Size win_stride=Size(),
|
std::vector<Rect>& found_locations,
|
||||||
Size padding=Size(), double scale0=1.05,
|
std::vector<double>* confidences = NULL) = 0;
|
||||||
int group_threshold=2);
|
|
||||||
|
|
||||||
void computeConfidence(const GpuMat& img, std::vector<Point>& hits, double hit_threshold,
|
|
||||||
Size win_stride, Size padding, std::vector<Point>& locations, std::vector<double>& confidences);
|
|
||||||
|
|
||||||
void computeConfidenceMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
|
||||||
double hit_threshold, Size win_stride, Size padding,
|
|
||||||
std::vector<HOGConfidence> &conf_out, int group_threshold);
|
|
||||||
|
|
||||||
/** @brief Returns block descriptors computed for the whole image.
|
/** @brief Returns block descriptors computed for the whole image.
|
||||||
|
|
||||||
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
||||||
@param win_stride Window stride. It must be a multiple of block stride.
|
|
||||||
@param descriptors 2D array of descriptors.
|
@param descriptors 2D array of descriptors.
|
||||||
@param descr_format Descriptor storage format:
|
@param stream CUDA stream.
|
||||||
- **DESCR_FORMAT_ROW_BY_ROW** - Row-major order.
|
|
||||||
- **DESCR_FORMAT_COL_BY_COL** - Column-major order.
|
|
||||||
|
|
||||||
The function is mainly used to learn the classifier.
|
|
||||||
*/
|
*/
|
||||||
void getDescriptors(const GpuMat& img, Size win_stride,
|
virtual void compute(InputArray img,
|
||||||
GpuMat& descriptors,
|
OutputArray descriptors,
|
||||||
int descr_format=DESCR_FORMAT_COL_BY_COL);
|
Stream& stream = Stream::Null()) = 0;
|
||||||
|
|
||||||
Size win_size;
|
|
||||||
Size block_size;
|
|
||||||
Size block_stride;
|
|
||||||
Size cell_size;
|
|
||||||
int nbins;
|
|
||||||
double win_sigma;
|
|
||||||
double threshold_L2hys;
|
|
||||||
bool gamma_correction;
|
|
||||||
int nlevels;
|
|
||||||
|
|
||||||
protected:
|
|
||||||
void computeBlockHistograms(const GpuMat& img);
|
|
||||||
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
|
||||||
|
|
||||||
double getWinSigma() const;
|
|
||||||
bool checkDetectorSize() const;
|
|
||||||
|
|
||||||
static int numPartsWithin(int size, int part_size, int stride);
|
|
||||||
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
|
||||||
|
|
||||||
// Coefficients of the separating plane
|
|
||||||
float free_coef;
|
|
||||||
GpuMat detector;
|
|
||||||
|
|
||||||
// Results of the last classification step
|
|
||||||
GpuMat labels, labels_buf;
|
|
||||||
Mat labels_host;
|
|
||||||
|
|
||||||
// Results of the last histogram evaluation step
|
|
||||||
GpuMat block_hists, block_hists_buf;
|
|
||||||
|
|
||||||
// Gradients conputation results
|
|
||||||
GpuMat grad, qangle, grad_buf, qangle_buf;
|
|
||||||
|
|
||||||
// returns subbuffer with required size, reallocates buffer if nessesary.
|
|
||||||
static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
|
|
||||||
static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);
|
|
||||||
|
|
||||||
std::vector<GpuMat> image_scales;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
//
|
//
|
||||||
|
@ -71,10 +71,10 @@ PERF_TEST_P(Image, ObjDetect_HOG,
|
|||||||
const cv::cuda::GpuMat d_img(img);
|
const cv::cuda::GpuMat d_img(img);
|
||||||
std::vector<cv::Rect> gpu_found_locations;
|
std::vector<cv::Rect> gpu_found_locations;
|
||||||
|
|
||||||
cv::cuda::HOGDescriptor d_hog;
|
cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
|
||||||
d_hog.setSVMDetector(cv::cuda::HOGDescriptor::getDefaultPeopleDetector());
|
d_hog->setSVMDetector(d_hog->getDefaultPeopleDetector());
|
||||||
|
|
||||||
TEST_CYCLE() d_hog.detectMultiScale(d_img, gpu_found_locations);
|
TEST_CYCLE() d_hog->detectMultiScale(d_img, gpu_found_locations);
|
||||||
|
|
||||||
SANITY_CHECK(gpu_found_locations);
|
SANITY_CHECK(gpu_found_locations);
|
||||||
}
|
}
|
||||||
@ -82,8 +82,10 @@ PERF_TEST_P(Image, ObjDetect_HOG,
|
|||||||
{
|
{
|
||||||
std::vector<cv::Rect> cpu_found_locations;
|
std::vector<cv::Rect> cpu_found_locations;
|
||||||
|
|
||||||
|
cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
|
||||||
|
|
||||||
cv::HOGDescriptor hog;
|
cv::HOGDescriptor hog;
|
||||||
hog.setSVMDetector(cv::cuda::HOGDescriptor::getDefaultPeopleDetector());
|
hog.setSVMDetector(d_hog->getDefaultPeopleDetector());
|
||||||
|
|
||||||
TEST_CYCLE() hog.detectMultiScale(img, cpu_found_locations);
|
TEST_CYCLE() hog.detectMultiScale(img, cpu_found_locations);
|
||||||
|
|
||||||
|
@ -42,23 +42,12 @@
|
|||||||
|
|
||||||
#include "precomp.hpp"
|
#include "precomp.hpp"
|
||||||
|
|
||||||
|
using namespace cv;
|
||||||
|
using namespace cv::cuda;
|
||||||
|
|
||||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||||
|
|
||||||
cv::cuda::HOGDescriptor::HOGDescriptor(Size, Size, Size, Size, int, double, double, bool, int) { throw_no_cuda(); }
|
Ptr<cuda::HOG> cv::cuda::HOG::create(Size, Size, Size, Size, int) { throw_no_cuda(); return Ptr<cuda::HOG>(); }
|
||||||
size_t cv::cuda::HOGDescriptor::getDescriptorSize() const { throw_no_cuda(); return 0; }
|
|
||||||
size_t cv::cuda::HOGDescriptor::getBlockHistogramSize() const { throw_no_cuda(); return 0; }
|
|
||||||
double cv::cuda::HOGDescriptor::getWinSigma() const { throw_no_cuda(); return 0; }
|
|
||||||
bool cv::cuda::HOGDescriptor::checkDetectorSize() const { throw_no_cuda(); return false; }
|
|
||||||
void cv::cuda::HOGDescriptor::setSVMDetector(const std::vector<float>&) { throw_no_cuda(); }
|
|
||||||
void cv::cuda::HOGDescriptor::detect(const GpuMat&, std::vector<Point>&, double, Size, Size) { throw_no_cuda(); }
|
|
||||||
void cv::cuda::HOGDescriptor::detectMultiScale(const GpuMat&, std::vector<Rect>&, double, Size, Size, double, int) { throw_no_cuda(); }
|
|
||||||
void cv::cuda::HOGDescriptor::computeBlockHistograms(const GpuMat&) { throw_no_cuda(); }
|
|
||||||
void cv::cuda::HOGDescriptor::getDescriptors(const GpuMat&, Size, GpuMat&, int) { throw_no_cuda(); }
|
|
||||||
std::vector<float> cv::cuda::HOGDescriptor::getDefaultPeopleDetector() { throw_no_cuda(); return std::vector<float>(); }
|
|
||||||
std::vector<float> cv::cuda::HOGDescriptor::getPeopleDetector48x96() { throw_no_cuda(); return std::vector<float>(); }
|
|
||||||
std::vector<float> cv::cuda::HOGDescriptor::getPeopleDetector64x128() { throw_no_cuda(); return std::vector<float>(); }
|
|
||||||
void cv::cuda::HOGDescriptor::computeConfidence(const GpuMat&, std::vector<Point>&, double, Size, Size, std::vector<Point>&, std::vector<double>&) { throw_no_cuda(); }
|
|
||||||
void cv::cuda::HOGDescriptor::computeConfidenceMultiScale(const GpuMat&, std::vector<Rect>&, double, Size, Size, std::vector<HOGConfidence>&, int) { throw_no_cuda(); }
|
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
@ -102,244 +91,323 @@ namespace cv { namespace cuda { namespace device
|
|||||||
}
|
}
|
||||||
}}}
|
}}}
|
||||||
|
|
||||||
using namespace ::cv::cuda::device;
|
using namespace cv::cuda::device;
|
||||||
|
|
||||||
cv::cuda::HOGDescriptor::HOGDescriptor(Size win_size_, Size block_size_, Size block_stride_, Size cell_size_,
|
namespace
|
||||||
int nbins_, double win_sigma_, double threshold_L2hys_, bool gamma_correction_, int nlevels_)
|
{
|
||||||
: win_size(win_size_),
|
class HOG_Impl : public cv::cuda::HOG
|
||||||
block_size(block_size_),
|
{
|
||||||
block_stride(block_stride_),
|
public:
|
||||||
cell_size(cell_size_),
|
HOG_Impl(Size win_size,
|
||||||
nbins(nbins_),
|
Size block_size,
|
||||||
win_sigma(win_sigma_),
|
Size block_stride,
|
||||||
threshold_L2hys(threshold_L2hys_),
|
Size cell_size,
|
||||||
gamma_correction(gamma_correction_),
|
int nbins);
|
||||||
nlevels(nlevels_)
|
|
||||||
|
virtual void setWinSigma(double win_sigma) { win_sigma_ = win_sigma; }
|
||||||
|
virtual double getWinSigma() const;
|
||||||
|
|
||||||
|
virtual void setL2HysThreshold(double threshold_L2hys) { threshold_L2hys_ = threshold_L2hys; }
|
||||||
|
virtual double getL2HysThreshold() const { return threshold_L2hys_; }
|
||||||
|
|
||||||
|
virtual void setGammaCorrection(bool gamma_correction) { gamma_correction_ = gamma_correction; }
|
||||||
|
virtual bool getGammaCorrection() const { return gamma_correction_; }
|
||||||
|
|
||||||
|
virtual void setNumLevels(int nlevels) { nlevels_ = nlevels; }
|
||||||
|
virtual int getNumLevels() const { return nlevels_; }
|
||||||
|
|
||||||
|
virtual void setHitThreshold(double hit_threshold) { hit_threshold_ = hit_threshold; }
|
||||||
|
virtual double getHitThreshold() const { return hit_threshold_; }
|
||||||
|
|
||||||
|
virtual void setWinStride(Size win_stride) { win_stride_ = win_stride; }
|
||||||
|
virtual Size getWinStride() const { return win_stride_; }
|
||||||
|
|
||||||
|
virtual void setScaleFactor(double scale0) { scale0_ = scale0; }
|
||||||
|
virtual double getScaleFactor() const { return scale0_; }
|
||||||
|
|
||||||
|
virtual void setGroupThreshold(int group_threshold) { group_threshold_ = group_threshold; }
|
||||||
|
virtual int getGroupThreshold() const { return group_threshold_; }
|
||||||
|
|
||||||
|
virtual void setDescriptorFormat(int descr_format) { descr_format_ = descr_format; }
|
||||||
|
virtual int getDescriptorFormat() const { return descr_format_; }
|
||||||
|
|
||||||
|
virtual size_t getDescriptorSize() const;
|
||||||
|
|
||||||
|
virtual size_t getBlockHistogramSize() const;
|
||||||
|
|
||||||
|
virtual void setSVMDetector(InputArray detector);
|
||||||
|
|
||||||
|
virtual Mat getDefaultPeopleDetector() const;
|
||||||
|
|
||||||
|
virtual void detect(InputArray img,
|
||||||
|
std::vector<Point>& found_locations,
|
||||||
|
std::vector<double>* confidences);
|
||||||
|
|
||||||
|
virtual void detectMultiScale(InputArray img,
|
||||||
|
std::vector<Rect>& found_locations,
|
||||||
|
std::vector<double>* confidences);
|
||||||
|
|
||||||
|
virtual void compute(InputArray img,
|
||||||
|
OutputArray descriptors,
|
||||||
|
Stream& stream);
|
||||||
|
|
||||||
|
private:
|
||||||
|
Size win_size_;
|
||||||
|
Size block_size_;
|
||||||
|
Size block_stride_;
|
||||||
|
Size cell_size_;
|
||||||
|
int nbins_;
|
||||||
|
|
||||||
|
double win_sigma_;
|
||||||
|
double threshold_L2hys_;
|
||||||
|
bool gamma_correction_;
|
||||||
|
int nlevels_;
|
||||||
|
double hit_threshold_;
|
||||||
|
Size win_stride_;
|
||||||
|
double scale0_;
|
||||||
|
int group_threshold_;
|
||||||
|
int descr_format_;
|
||||||
|
|
||||||
|
private:
|
||||||
|
int getTotalHistSize(Size img_size) const;
|
||||||
|
void computeBlockHistograms(const GpuMat& img, GpuMat& block_hists);
|
||||||
|
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
||||||
|
|
||||||
|
// Coefficients of the separating plane
|
||||||
|
float free_coef_;
|
||||||
|
GpuMat detector_;
|
||||||
|
};
|
||||||
|
|
||||||
|
HOG_Impl::HOG_Impl(Size win_size,
|
||||||
|
Size block_size,
|
||||||
|
Size block_stride,
|
||||||
|
Size cell_size,
|
||||||
|
int nbins) :
|
||||||
|
win_size_(win_size),
|
||||||
|
block_size_(block_size),
|
||||||
|
block_stride_(block_stride),
|
||||||
|
cell_size_(cell_size),
|
||||||
|
nbins_(nbins),
|
||||||
|
|
||||||
|
win_sigma_(-1.0),
|
||||||
|
threshold_L2hys_(0.2),
|
||||||
|
gamma_correction_(true),
|
||||||
|
nlevels_(64),
|
||||||
|
hit_threshold_(0.0),
|
||||||
|
win_stride_(block_stride),
|
||||||
|
scale0_(1.05),
|
||||||
|
group_threshold_(2),
|
||||||
|
descr_format_(DESCR_FORMAT_COL_BY_COL)
|
||||||
{
|
{
|
||||||
CV_Assert((win_size.width - block_size.width ) % block_stride.width == 0 &&
|
CV_Assert((win_size.width - block_size.width ) % block_stride.width == 0 &&
|
||||||
(win_size.height - block_size.height) % block_stride.height == 0);
|
(win_size.height - block_size.height) % block_stride.height == 0);
|
||||||
|
|
||||||
CV_Assert(block_size.width % cell_size.width == 0 && block_size.height % cell_size.height == 0);
|
CV_Assert(block_size.width % cell_size.width == 0 &&
|
||||||
|
block_size.height % cell_size.height == 0);
|
||||||
|
|
||||||
CV_Assert(block_stride == cell_size);
|
CV_Assert(block_stride == cell_size);
|
||||||
|
|
||||||
CV_Assert(cell_size == Size(8, 8));
|
CV_Assert(cell_size == Size(8, 8));
|
||||||
|
|
||||||
Size cells_per_block = Size(block_size.width / cell_size.width, block_size.height / cell_size.height);
|
Size cells_per_block(block_size.width / cell_size.width, block_size.height / cell_size.height);
|
||||||
CV_Assert(cells_per_block == Size(2, 2));
|
CV_Assert(cells_per_block == Size(2, 2));
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t cv::cuda::HOGDescriptor::getDescriptorSize() const
|
static int numPartsWithin(int size, int part_size, int stride)
|
||||||
{
|
{
|
||||||
return numPartsWithin(win_size, block_size, block_stride).area() * getBlockHistogramSize();
|
return (size - part_size + stride) / stride;
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t cv::cuda::HOGDescriptor::getBlockHistogramSize() const
|
static Size numPartsWithin(Size size, Size part_size, Size stride)
|
||||||
{
|
{
|
||||||
Size cells_per_block = Size(block_size.width / cell_size.width, block_size.height / cell_size.height);
|
return Size(numPartsWithin(size.width, part_size.width, stride.width),
|
||||||
return (size_t)(nbins * cells_per_block.area());
|
numPartsWithin(size.height, part_size.height, stride.height));
|
||||||
}
|
}
|
||||||
|
|
||||||
double cv::cuda::HOGDescriptor::getWinSigma() const
|
size_t HOG_Impl::getDescriptorSize() const
|
||||||
{
|
{
|
||||||
return win_sigma >= 0 ? win_sigma : (block_size.width + block_size.height) / 8.0;
|
return numPartsWithin(win_size_, block_size_, block_stride_).area() * getBlockHistogramSize();
|
||||||
}
|
}
|
||||||
|
|
||||||
bool cv::cuda::HOGDescriptor::checkDetectorSize() const
|
size_t HOG_Impl::getBlockHistogramSize() const
|
||||||
{
|
{
|
||||||
size_t detector_size = detector.rows * detector.cols;
|
Size cells_per_block(block_size_.width / cell_size_.width, block_size_.height / cell_size_.height);
|
||||||
size_t descriptor_size = getDescriptorSize();
|
return nbins_ * cells_per_block.area();
|
||||||
return detector_size == 0 || detector_size == descriptor_size || detector_size == descriptor_size + 1;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void cv::cuda::HOGDescriptor::setSVMDetector(const std::vector<float>& _detector)
|
double HOG_Impl::getWinSigma() const
|
||||||
{
|
{
|
||||||
std::vector<float> detector_reordered(_detector.size());
|
return win_sigma_ >= 0 ? win_sigma_ : (block_size_.width + block_size_.height) / 8.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void HOG_Impl::setSVMDetector(InputArray _detector)
|
||||||
|
{
|
||||||
|
const int descriptor_size = static_cast<int>(getDescriptorSize());
|
||||||
|
|
||||||
|
const Mat detector = _detector.getMat();
|
||||||
|
|
||||||
|
CV_Assert( detector.type() == CV_32FC1 );
|
||||||
|
CV_Assert( detector.rows == 1 );
|
||||||
|
CV_Assert( detector.cols == descriptor_size || detector.cols == descriptor_size + 1 );
|
||||||
|
|
||||||
|
std::vector<float> detector_reordered(detector.ptr<float>(), detector.ptr<float>() + detector.cols);
|
||||||
|
|
||||||
size_t block_hist_size = getBlockHistogramSize();
|
size_t block_hist_size = getBlockHistogramSize();
|
||||||
cv::Size blocks_per_img = numPartsWithin(win_size, block_size, block_stride);
|
Size blocks_per_win = numPartsWithin(win_size_, block_size_, block_stride_);
|
||||||
|
|
||||||
for (int i = 0; i < blocks_per_img.height; ++i)
|
for (int i = 0; i < blocks_per_win.height; ++i)
|
||||||
for (int j = 0; j < blocks_per_img.width; ++j)
|
|
||||||
{
|
{
|
||||||
const float* src = &_detector[0] + (j * blocks_per_img.height + i) * block_hist_size;
|
for (int j = 0; j < blocks_per_win.width; ++j)
|
||||||
float* dst = &detector_reordered[0] + (i * blocks_per_img.width + j) * block_hist_size;
|
{
|
||||||
|
const float* src = detector.ptr<float>() + (j * blocks_per_win.height + i) * block_hist_size;
|
||||||
|
float* dst = &detector_reordered[0] + (i * blocks_per_win.width + j) * block_hist_size;
|
||||||
for (size_t k = 0; k < block_hist_size; ++k)
|
for (size_t k = 0; k < block_hist_size; ++k)
|
||||||
dst[k] = src[k];
|
dst[k] = src[k];
|
||||||
}
|
}
|
||||||
|
|
||||||
this->detector.upload(Mat(detector_reordered).reshape(1, 1));
|
|
||||||
|
|
||||||
size_t descriptor_size = getDescriptorSize();
|
|
||||||
free_coef = _detector.size() > descriptor_size ? _detector[descriptor_size] : 0;
|
|
||||||
|
|
||||||
CV_Assert(checkDetectorSize());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
cv::cuda::GpuMat cv::cuda::HOGDescriptor::getBuffer(const Size& sz, int type, GpuMat& buf)
|
detector_.upload(Mat(detector_reordered).reshape(1, 1));
|
||||||
|
free_coef_ = detector.cols > descriptor_size ? detector.at<float>(0, descriptor_size) : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
static Mat getPeopleDetector64x128();
|
||||||
|
static Mat getPeopleDetector48x96();
|
||||||
|
|
||||||
|
Mat HOG_Impl::getDefaultPeopleDetector() const
|
||||||
{
|
{
|
||||||
if (buf.empty() || buf.type() != type)
|
CV_Assert( win_size_ == Size(64, 128) || win_size_ == Size(48, 96) );
|
||||||
buf.create(sz, type);
|
|
||||||
|
if (win_size_ == Size(64, 128))
|
||||||
|
return getPeopleDetector64x128();
|
||||||
else
|
else
|
||||||
if (buf.cols < sz.width || buf.rows < sz.height)
|
return getPeopleDetector48x96();
|
||||||
buf.create(std::max(buf.rows, sz.height), std::max(buf.cols, sz.width), type);
|
|
||||||
|
|
||||||
return buf(Rect(Point(0,0), sz));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
cv::cuda::GpuMat cv::cuda::HOGDescriptor::getBuffer(int rows, int cols, int type, GpuMat& buf)
|
void HOG_Impl::detect(InputArray _img, std::vector<Point>& hits, std::vector<double>* confidences)
|
||||||
{
|
{
|
||||||
return getBuffer(Size(cols, rows), type, buf);
|
const GpuMat img = _img.getGpuMat();
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void cv::cuda::HOGDescriptor::computeGradient(const GpuMat& img, GpuMat& _grad, GpuMat& _qangle)
|
|
||||||
{
|
|
||||||
CV_Assert( img.type() == CV_8UC1 || img.type() == CV_8UC4 );
|
CV_Assert( img.type() == CV_8UC1 || img.type() == CV_8UC4 );
|
||||||
|
CV_Assert( win_stride_.width % block_stride_.width == 0 && win_stride_.height % block_stride_.height == 0 );
|
||||||
// grad.create(img.size(), CV_32FC2);
|
|
||||||
_grad = getBuffer(img.size(), CV_32FC2, grad_buf);
|
|
||||||
|
|
||||||
// qangle.create(img.size(), CV_8UC2);
|
|
||||||
_qangle = getBuffer(img.size(), CV_8UC2, qangle_buf);
|
|
||||||
|
|
||||||
float angleScale = (float)(nbins / CV_PI);
|
|
||||||
switch (img.type())
|
|
||||||
{
|
|
||||||
case CV_8UC1:
|
|
||||||
hog::compute_gradients_8UC1(nbins, img.rows, img.cols, img, angleScale, _grad, _qangle, gamma_correction);
|
|
||||||
break;
|
|
||||||
case CV_8UC4:
|
|
||||||
hog::compute_gradients_8UC4(nbins, img.rows, img.cols, img, angleScale, _grad, _qangle, gamma_correction);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void cv::cuda::HOGDescriptor::computeBlockHistograms(const GpuMat& img)
|
|
||||||
{
|
|
||||||
cv::Size blocks_per_win = numPartsWithin(win_size, block_size, block_stride);
|
|
||||||
hog::set_up_constants(nbins, block_stride.width, block_stride.height, blocks_per_win.width, blocks_per_win.height);
|
|
||||||
|
|
||||||
computeGradient(img, grad, qangle);
|
|
||||||
|
|
||||||
size_t block_hist_size = getBlockHistogramSize();
|
|
||||||
Size blocks_per_img = numPartsWithin(img.size(), block_size, block_stride);
|
|
||||||
|
|
||||||
// block_hists.create(1, block_hist_size * blocks_per_img.area(), CV_32F);
|
|
||||||
block_hists = getBuffer(1, static_cast<int>(block_hist_size * blocks_per_img.area()), CV_32F, block_hists_buf);
|
|
||||||
|
|
||||||
hog::compute_hists(nbins, block_stride.width, block_stride.height, img.rows, img.cols,
|
|
||||||
grad, qangle, (float)getWinSigma(), block_hists.ptr<float>());
|
|
||||||
|
|
||||||
hog::normalize_hists(nbins, block_stride.width, block_stride.height, img.rows, img.cols,
|
|
||||||
block_hists.ptr<float>(), (float)threshold_L2hys);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void cv::cuda::HOGDescriptor::getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors, int descr_format)
|
|
||||||
{
|
|
||||||
CV_Assert(win_stride.width % block_stride.width == 0 && win_stride.height % block_stride.height == 0);
|
|
||||||
|
|
||||||
computeBlockHistograms(img);
|
|
||||||
|
|
||||||
const size_t block_hist_size = getBlockHistogramSize();
|
|
||||||
Size blocks_per_win = numPartsWithin(win_size, block_size, block_stride);
|
|
||||||
Size wins_per_img = numPartsWithin(img.size(), win_size, win_stride);
|
|
||||||
|
|
||||||
descriptors.create(wins_per_img.area(), static_cast<int>(blocks_per_win.area() * block_hist_size), CV_32F);
|
|
||||||
|
|
||||||
switch (descr_format)
|
|
||||||
{
|
|
||||||
case DESCR_FORMAT_ROW_BY_ROW:
|
|
||||||
hog::extract_descrs_by_rows(win_size.height, win_size.width, block_stride.height, block_stride.width,
|
|
||||||
win_stride.height, win_stride.width, img.rows, img.cols, block_hists.ptr<float>(), descriptors);
|
|
||||||
break;
|
|
||||||
case DESCR_FORMAT_COL_BY_COL:
|
|
||||||
hog::extract_descrs_by_cols(win_size.height, win_size.width, block_stride.height, block_stride.width,
|
|
||||||
win_stride.height, win_stride.width, img.rows, img.cols, block_hists.ptr<float>(), descriptors);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
CV_Error(cv::Error::StsBadArg, "Unknown descriptor format");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void cv::cuda::HOGDescriptor::computeConfidence(const GpuMat& img, std::vector<Point>& hits, double hit_threshold,
|
|
||||||
Size win_stride, Size padding, std::vector<Point>& locations, std::vector<double>& confidences)
|
|
||||||
{
|
|
||||||
CV_Assert(padding == Size(0, 0));
|
|
||||||
|
|
||||||
hits.clear();
|
hits.clear();
|
||||||
if (detector.empty())
|
if (detector_.empty())
|
||||||
return;
|
return;
|
||||||
|
|
||||||
computeBlockHistograms(img);
|
BufferPool pool(Stream::Null());
|
||||||
|
|
||||||
if (win_stride == Size())
|
GpuMat block_hists = pool.getBuffer(1, getTotalHistSize(img.size()), CV_32FC1);
|
||||||
win_stride = block_stride;
|
computeBlockHistograms(img, block_hists);
|
||||||
else
|
|
||||||
CV_Assert(win_stride.width % block_stride.width == 0 &&
|
|
||||||
win_stride.height % block_stride.height == 0);
|
|
||||||
|
|
||||||
Size wins_per_img = numPartsWithin(img.size(), win_size, win_stride);
|
Size wins_per_img = numPartsWithin(img.size(), win_size_, win_stride_);
|
||||||
labels.create(1, wins_per_img.area(), CV_32F);
|
|
||||||
|
|
||||||
hog::compute_confidence_hists(win_size.height, win_size.width, block_stride.height, block_stride.width,
|
if (confidences == NULL)
|
||||||
win_stride.height, win_stride.width, img.rows, img.cols, block_hists.ptr<float>(),
|
{
|
||||||
detector.ptr<float>(), (float)free_coef, (float)hit_threshold, labels.ptr<float>());
|
GpuMat labels = pool.getBuffer(1, wins_per_img.area(), CV_8UC1);
|
||||||
|
|
||||||
|
hog::classify_hists(win_size_.height, win_size_.width,
|
||||||
|
block_stride_.height, block_stride_.width,
|
||||||
|
win_stride_.height, win_stride_.width,
|
||||||
|
img.rows, img.cols,
|
||||||
|
block_hists.ptr<float>(),
|
||||||
|
detector_.ptr<float>(),
|
||||||
|
(float)free_coef_,
|
||||||
|
(float)hit_threshold_,
|
||||||
|
labels.ptr());
|
||||||
|
|
||||||
|
Mat labels_host;
|
||||||
labels.download(labels_host);
|
labels.download(labels_host);
|
||||||
float* vec = labels_host.ptr<float>();
|
unsigned char* vec = labels_host.ptr();
|
||||||
|
|
||||||
// does not support roi for now..
|
|
||||||
locations.clear();
|
|
||||||
confidences.clear();
|
|
||||||
for (int i = 0; i < wins_per_img.area(); i++)
|
for (int i = 0; i < wins_per_img.area(); i++)
|
||||||
{
|
{
|
||||||
int y = i / wins_per_img.width;
|
int y = i / wins_per_img.width;
|
||||||
int x = i - wins_per_img.width * y;
|
int x = i - wins_per_img.width * y;
|
||||||
if (vec[i] >= hit_threshold)
|
if (vec[i])
|
||||||
hits.push_back(Point(x * win_stride.width, y * win_stride.height));
|
hits.push_back(Point(x * win_stride_.width, y * win_stride_.height));
|
||||||
|
|
||||||
Point pt(win_stride.width * x, win_stride.height * y);
|
|
||||||
locations.push_back(pt);
|
|
||||||
confidences.push_back((double)vec[i]);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
else
|
||||||
void cv::cuda::HOGDescriptor::computeConfidenceMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
|
||||||
double hit_threshold, Size win_stride, Size padding,
|
|
||||||
std::vector<HOGConfidence> &conf_out, int group_threshold)
|
|
||||||
{
|
{
|
||||||
|
GpuMat labels = pool.getBuffer(1, wins_per_img.area(), CV_32FC1);
|
||||||
|
|
||||||
|
hog::compute_confidence_hists(win_size_.height, win_size_.width,
|
||||||
|
block_stride_.height, block_stride_.width,
|
||||||
|
win_stride_.height, win_stride_.width,
|
||||||
|
img.rows, img.cols,
|
||||||
|
block_hists.ptr<float>(),
|
||||||
|
detector_.ptr<float>(),
|
||||||
|
(float)free_coef_,
|
||||||
|
(float)hit_threshold_,
|
||||||
|
labels.ptr<float>());
|
||||||
|
|
||||||
|
Mat labels_host;
|
||||||
|
labels.download(labels_host);
|
||||||
|
float* vec = labels_host.ptr<float>();
|
||||||
|
|
||||||
|
confidences->clear();
|
||||||
|
for (int i = 0; i < wins_per_img.area(); i++)
|
||||||
|
{
|
||||||
|
int y = i / wins_per_img.width;
|
||||||
|
int x = i - wins_per_img.width * y;
|
||||||
|
|
||||||
|
if (vec[i] >= hit_threshold_)
|
||||||
|
{
|
||||||
|
hits.push_back(Point(x * win_stride_.width, y * win_stride_.height));
|
||||||
|
confidences->push_back((double)vec[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void HOG_Impl::detectMultiScale(InputArray _img,
|
||||||
|
std::vector<Rect>& found_locations,
|
||||||
|
std::vector<double>* confidences)
|
||||||
|
{
|
||||||
|
const GpuMat img = _img.getGpuMat();
|
||||||
|
|
||||||
|
CV_Assert( img.type() == CV_8UC1 || img.type() == CV_8UC4 );
|
||||||
|
CV_Assert( confidences == NULL || group_threshold_ == 0 );
|
||||||
|
|
||||||
std::vector<double> level_scale;
|
std::vector<double> level_scale;
|
||||||
double scale = 1.;
|
double scale = 1.0;
|
||||||
int levels = 0;
|
int levels = 0;
|
||||||
|
for (levels = 0; levels < nlevels_; levels++)
|
||||||
for (levels = 0; levels < (int)conf_out.size(); levels++)
|
|
||||||
{
|
{
|
||||||
scale = conf_out[levels].scale;
|
|
||||||
level_scale.push_back(scale);
|
level_scale.push_back(scale);
|
||||||
if (cvRound(img.cols/scale) < win_size.width || cvRound(img.rows/scale) < win_size.height)
|
|
||||||
|
if (cvRound(img.cols / scale) < win_size_.width ||
|
||||||
|
cvRound(img.rows / scale) < win_size_.height ||
|
||||||
|
scale0_ <= 1)
|
||||||
|
{
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
scale *= scale0_;
|
||||||
|
}
|
||||||
levels = std::max(levels, 1);
|
levels = std::max(levels, 1);
|
||||||
level_scale.resize(levels);
|
level_scale.resize(levels);
|
||||||
|
|
||||||
std::vector<Rect> all_candidates;
|
std::vector<Point> level_hits;
|
||||||
std::vector<Point> locations;
|
std::vector<double> level_confidences;
|
||||||
|
|
||||||
|
BufferPool pool(Stream::Null());
|
||||||
|
|
||||||
|
found_locations.clear();
|
||||||
for (size_t i = 0; i < level_scale.size(); i++)
|
for (size_t i = 0; i < level_scale.size(); i++)
|
||||||
{
|
{
|
||||||
scale = level_scale[i];
|
scale = level_scale[i];
|
||||||
Size sz(cvRound(img.cols / scale), cvRound(img.rows / scale));
|
|
||||||
GpuMat smaller_img;
|
|
||||||
|
|
||||||
|
Size sz(cvRound(img.cols / scale), cvRound(img.rows / scale));
|
||||||
|
|
||||||
|
GpuMat smaller_img;
|
||||||
if (sz == img.size())
|
if (sz == img.size())
|
||||||
|
{
|
||||||
smaller_img = img;
|
smaller_img = img;
|
||||||
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
smaller_img.create(sz, img.type());
|
smaller_img = pool.getBuffer(sz, img.type());
|
||||||
switch (img.type())
|
switch (img.type())
|
||||||
{
|
{
|
||||||
case CV_8UC1: hog::resize_8UC1(img, smaller_img); break;
|
case CV_8UC1: hog::resize_8UC1(img, smaller_img); break;
|
||||||
@ -347,127 +415,137 @@ void cv::cuda::HOGDescriptor::computeConfidenceMultiScale(const GpuMat& img, std
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
computeConfidence(smaller_img, locations, hit_threshold, win_stride, padding, conf_out[i].locations, conf_out[i].confidences);
|
detect(smaller_img, level_hits,
|
||||||
|
confidences ? &level_confidences : NULL);
|
||||||
|
|
||||||
Size scaled_win_size(cvRound(win_size.width * scale), cvRound(win_size.height * scale));
|
Size scaled_win_size(cvRound(win_size_.width * scale),
|
||||||
for (size_t j = 0; j < locations.size(); j++)
|
cvRound(win_size_.height * scale));
|
||||||
all_candidates.push_back(Rect(Point2d(locations[j]) * scale, scaled_win_size));
|
|
||||||
}
|
|
||||||
|
|
||||||
found_locations.assign(all_candidates.begin(), all_candidates.end());
|
for (size_t j = 0; j < level_hits.size(); j++)
|
||||||
groupRectangles(found_locations, group_threshold, 0.2/*magic number copied from CPU version*/);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void cv::cuda::HOGDescriptor::detect(const GpuMat& img, std::vector<Point>& hits, double hit_threshold, Size win_stride, Size padding)
|
|
||||||
{
|
{
|
||||||
CV_Assert(img.type() == CV_8UC1 || img.type() == CV_8UC4);
|
found_locations.push_back(Rect(Point2d(level_hits[j]) * scale, scaled_win_size));
|
||||||
CV_Assert(padding == Size(0, 0));
|
if (confidences)
|
||||||
|
confidences->push_back(level_confidences[j]);
|
||||||
hits.clear();
|
|
||||||
if (detector.empty())
|
|
||||||
return;
|
|
||||||
|
|
||||||
computeBlockHistograms(img);
|
|
||||||
|
|
||||||
if (win_stride == Size())
|
|
||||||
win_stride = block_stride;
|
|
||||||
else
|
|
||||||
CV_Assert(win_stride.width % block_stride.width == 0 && win_stride.height % block_stride.height == 0);
|
|
||||||
|
|
||||||
Size wins_per_img = numPartsWithin(img.size(), win_size, win_stride);
|
|
||||||
// labels.create(1, wins_per_img.area(), CV_8U);
|
|
||||||
labels = getBuffer(1, wins_per_img.area(), CV_8U, labels_buf);
|
|
||||||
|
|
||||||
hog::classify_hists(win_size.height, win_size.width, block_stride.height, block_stride.width,
|
|
||||||
win_stride.height, win_stride.width, img.rows, img.cols, block_hists.ptr<float>(),
|
|
||||||
detector.ptr<float>(), (float)free_coef, (float)hit_threshold, labels.ptr());
|
|
||||||
|
|
||||||
labels.download(labels_host);
|
|
||||||
unsigned char* vec = labels_host.ptr();
|
|
||||||
for (int i = 0; i < wins_per_img.area(); i++)
|
|
||||||
{
|
|
||||||
int y = i / wins_per_img.width;
|
|
||||||
int x = i - wins_per_img.width * y;
|
|
||||||
if (vec[i])
|
|
||||||
hits.push_back(Point(x * win_stride.width, y * win_stride.height));
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (group_threshold_ > 0)
|
||||||
|
|
||||||
void cv::cuda::HOGDescriptor::detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations, double hit_threshold,
|
|
||||||
Size win_stride, Size padding, double scale0, int group_threshold)
|
|
||||||
{
|
{
|
||||||
|
groupRectangles(found_locations, group_threshold_, 0.2/*magic number copied from CPU version*/);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void HOG_Impl::compute(InputArray _img,
|
||||||
|
OutputArray _descriptors,
|
||||||
|
Stream& stream)
|
||||||
|
{
|
||||||
|
const GpuMat img = _img.getGpuMat();
|
||||||
|
|
||||||
CV_Assert( img.type() == CV_8UC1 || img.type() == CV_8UC4 );
|
CV_Assert( img.type() == CV_8UC1 || img.type() == CV_8UC4 );
|
||||||
|
CV_Assert( win_stride_.width % block_stride_.width == 0 && win_stride_.height % block_stride_.height == 0 );
|
||||||
|
CV_Assert( !stream );
|
||||||
|
|
||||||
std::vector<double> level_scale;
|
BufferPool pool(stream);
|
||||||
double scale = 1.;
|
|
||||||
int levels = 0;
|
|
||||||
|
|
||||||
for (levels = 0; levels < nlevels; levels++)
|
GpuMat block_hists = pool.getBuffer(1, getTotalHistSize(img.size()), CV_32FC1);
|
||||||
|
computeBlockHistograms(img, block_hists);
|
||||||
|
|
||||||
|
const size_t block_hist_size = getBlockHistogramSize();
|
||||||
|
Size blocks_per_win = numPartsWithin(win_size_, block_size_, block_stride_);
|
||||||
|
Size wins_per_img = numPartsWithin(img.size(), win_size_, win_stride_);
|
||||||
|
|
||||||
|
_descriptors.create(wins_per_img.area(), static_cast<int>(blocks_per_win.area() * block_hist_size), CV_32FC1);
|
||||||
|
GpuMat descriptors = _descriptors.getGpuMat();
|
||||||
|
|
||||||
|
switch (descr_format_)
|
||||||
{
|
{
|
||||||
level_scale.push_back(scale);
|
case DESCR_FORMAT_ROW_BY_ROW:
|
||||||
if (cvRound(img.cols/scale) < win_size.width ||
|
hog::extract_descrs_by_rows(win_size_.height, win_size_.width,
|
||||||
cvRound(img.rows/scale) < win_size.height || scale0 <= 1)
|
block_stride_.height, block_stride_.width,
|
||||||
|
win_stride_.height, win_stride_.width,
|
||||||
|
img.rows, img.cols,
|
||||||
|
block_hists.ptr<float>(),
|
||||||
|
descriptors);
|
||||||
break;
|
break;
|
||||||
scale *= scale0;
|
case DESCR_FORMAT_COL_BY_COL:
|
||||||
|
hog::extract_descrs_by_cols(win_size_.height, win_size_.width,
|
||||||
|
block_stride_.height, block_stride_.width,
|
||||||
|
win_stride_.height, win_stride_.width,
|
||||||
|
img.rows, img.cols,
|
||||||
|
block_hists.ptr<float>(),
|
||||||
|
descriptors);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
CV_Error(cv::Error::StsBadArg, "Unknown descriptor format");
|
||||||
|
}
|
||||||
}
|
}
|
||||||
levels = std::max(levels, 1);
|
|
||||||
level_scale.resize(levels);
|
|
||||||
image_scales.resize(levels);
|
|
||||||
|
|
||||||
std::vector<Rect> all_candidates;
|
int HOG_Impl::getTotalHistSize(Size img_size) const
|
||||||
std::vector<Point> locations;
|
|
||||||
|
|
||||||
for (size_t i = 0; i < level_scale.size(); i++)
|
|
||||||
{
|
{
|
||||||
scale = level_scale[i];
|
size_t block_hist_size = getBlockHistogramSize();
|
||||||
Size sz(cvRound(img.cols / scale), cvRound(img.rows / scale));
|
Size blocks_per_img = numPartsWithin(img_size, block_size_, block_stride_);
|
||||||
GpuMat smaller_img;
|
return static_cast<int>(block_hist_size * blocks_per_img.area());
|
||||||
|
}
|
||||||
|
|
||||||
if (sz == img.size())
|
void HOG_Impl::computeBlockHistograms(const GpuMat& img, GpuMat& block_hists)
|
||||||
smaller_img = img;
|
|
||||||
else
|
|
||||||
{
|
{
|
||||||
image_scales[i].create(sz, img.type());
|
cv::Size blocks_per_win = numPartsWithin(win_size_, block_size_, block_stride_);
|
||||||
|
hog::set_up_constants(nbins_, block_stride_.width, block_stride_.height, blocks_per_win.width, blocks_per_win.height);
|
||||||
|
|
||||||
|
BufferPool pool(Stream::Null());
|
||||||
|
|
||||||
|
GpuMat grad = pool.getBuffer(img.size(), CV_32FC2);
|
||||||
|
GpuMat qangle = pool.getBuffer(img.size(), CV_8UC2);
|
||||||
|
computeGradient(img, grad, qangle);
|
||||||
|
|
||||||
|
block_hists.create(1, getTotalHistSize(img.size()), CV_32FC1);
|
||||||
|
|
||||||
|
hog::compute_hists(nbins_,
|
||||||
|
block_stride_.width, block_stride_.height,
|
||||||
|
img.rows, img.cols,
|
||||||
|
grad, qangle,
|
||||||
|
(float)getWinSigma(),
|
||||||
|
block_hists.ptr<float>());
|
||||||
|
|
||||||
|
hog::normalize_hists(nbins_,
|
||||||
|
block_stride_.width, block_stride_.height,
|
||||||
|
img.rows, img.cols,
|
||||||
|
block_hists.ptr<float>(),
|
||||||
|
(float)threshold_L2hys_);
|
||||||
|
}
|
||||||
|
|
||||||
|
void HOG_Impl::computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle)
|
||||||
|
{
|
||||||
|
grad.create(img.size(), CV_32FC2);
|
||||||
|
qangle.create(img.size(), CV_8UC2);
|
||||||
|
|
||||||
|
float angleScale = (float)(nbins_ / CV_PI);
|
||||||
switch (img.type())
|
switch (img.type())
|
||||||
{
|
{
|
||||||
case CV_8UC1: hog::resize_8UC1(img, image_scales[i]); break;
|
case CV_8UC1:
|
||||||
case CV_8UC4: hog::resize_8UC4(img, image_scales[i]); break;
|
hog::compute_gradients_8UC1(nbins_, img.rows, img.cols, img, angleScale, grad, qangle, gamma_correction_);
|
||||||
|
break;
|
||||||
|
case CV_8UC4:
|
||||||
|
hog::compute_gradients_8UC4(nbins_, img.rows, img.cols, img, angleScale, grad, qangle, gamma_correction_);
|
||||||
|
break;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
smaller_img = image_scales[i];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
detect(smaller_img, locations, hit_threshold, win_stride, padding);
|
Ptr<cuda::HOG> cv::cuda::HOG::create(Size win_size,
|
||||||
Size scaled_win_size(cvRound(win_size.width * scale), cvRound(win_size.height * scale));
|
Size block_size,
|
||||||
for (size_t j = 0; j < locations.size(); j++)
|
Size block_stride,
|
||||||
all_candidates.push_back(Rect(Point2d(locations[j]) * scale, scaled_win_size));
|
Size cell_size,
|
||||||
}
|
int nbins)
|
||||||
|
|
||||||
found_locations.assign(all_candidates.begin(), all_candidates.end());
|
|
||||||
groupRectangles(found_locations, group_threshold, 0.2/*magic number copied from CPU version*/);
|
|
||||||
}
|
|
||||||
|
|
||||||
int cv::cuda::HOGDescriptor::numPartsWithin(int size, int part_size, int stride)
|
|
||||||
{
|
{
|
||||||
return (size - part_size + stride) / stride;
|
return makePtr<HOG_Impl>(win_size, block_size, block_stride, cell_size, nbins);
|
||||||
}
|
}
|
||||||
|
|
||||||
cv::Size cv::cuda::HOGDescriptor::numPartsWithin(cv::Size size, cv::Size part_size, cv::Size stride)
|
namespace
|
||||||
{
|
{
|
||||||
return Size(numPartsWithin(size.width, part_size.width, stride.width), numPartsWithin(size.height, part_size.height, stride.height));
|
static Mat getPeopleDetector48x96()
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<float> cv::cuda::HOGDescriptor::getDefaultPeopleDetector()
|
|
||||||
{
|
{
|
||||||
return getPeopleDetector64x128();
|
static float detector[] = {
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<float> cv::cuda::HOGDescriptor::getPeopleDetector48x96()
|
|
||||||
{
|
|
||||||
static const float detector[] = {
|
|
||||||
0.294350f, -0.098796f, -0.129522f, 0.078753f, 0.387527f, 0.261529f,
|
0.294350f, -0.098796f, -0.129522f, 0.078753f, 0.387527f, 0.261529f,
|
||||||
0.145939f, 0.061520f, 0.328699f, 0.227148f, -0.066467f, -0.086723f,
|
0.145939f, 0.061520f, 0.328699f, 0.227148f, -0.066467f, -0.086723f,
|
||||||
0.047559f, 0.106714f, 0.037897f, 0.111461f, -0.024406f, 0.304769f,
|
0.047559f, 0.106714f, 0.037897f, 0.111461f, -0.024406f, 0.304769f,
|
||||||
@ -799,15 +877,13 @@ std::vector<float> cv::cuda::HOGDescriptor::getPeopleDetector48x96()
|
|||||||
-0.119002f, 0.026722f, 0.034853f, -0.060934f, -0.025054f, -0.093026f,
|
-0.119002f, 0.026722f, 0.034853f, -0.060934f, -0.025054f, -0.093026f,
|
||||||
-0.035372f, -0.233209f, -0.049869f, -0.039151f, -0.022279f, -0.065380f,
|
-0.035372f, -0.233209f, -0.049869f, -0.039151f, -0.022279f, -0.065380f,
|
||||||
-9.063785f };
|
-9.063785f };
|
||||||
return std::vector<float>(detector, detector + sizeof(detector)/sizeof(detector[0]));
|
|
||||||
|
return Mat(1, static_cast<int>(sizeof(detector)/sizeof(detector[0])), CV_32FC1, detector);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Mat getPeopleDetector64x128()
|
||||||
|
|
||||||
|
|
||||||
std::vector<float> cv::cuda::HOGDescriptor::getPeopleDetector64x128()
|
|
||||||
{
|
{
|
||||||
static const float detector[] = {
|
static float detector[] = {
|
||||||
0.05359386f, -0.14721455f, -0.05532170f, 0.05077307f,
|
0.05359386f, -0.14721455f, -0.05532170f, 0.05077307f,
|
||||||
0.11547081f, -0.04268804f, 0.04635834f, -0.05468199f, 0.08232084f,
|
0.11547081f, -0.04268804f, 0.04635834f, -0.05468199f, 0.08232084f,
|
||||||
0.10424068f, -0.02294518f, 0.01108519f, 0.01378693f, 0.11193510f,
|
0.10424068f, -0.02294518f, 0.01108519f, 0.01378693f, 0.11193510f,
|
||||||
@ -1613,7 +1689,9 @@ std::vector<float> cv::cuda::HOGDescriptor::getPeopleDetector64x128()
|
|||||||
-0.01612278f, -1.46097376e-003f, 0.14013411f, -8.96181818e-003f,
|
-0.01612278f, -1.46097376e-003f, 0.14013411f, -8.96181818e-003f,
|
||||||
-0.03250246f, 3.38630192e-003f, 2.64779478e-003f, 0.03359732f,
|
-0.03250246f, 3.38630192e-003f, 2.64779478e-003f, 0.03359732f,
|
||||||
-0.02411991f, -0.04229729f, 0.10666174f, -6.66579151f };
|
-0.02411991f, -0.04229729f, 0.10666174f, -6.66579151f };
|
||||||
return std::vector<float>(detector, detector + sizeof(detector)/sizeof(detector[0]));
|
|
||||||
|
return Mat(1, static_cast<int>(sizeof(detector)/sizeof(detector[0])), CV_32FC1, detector);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -48,9 +48,10 @@ using namespace cvtest;
|
|||||||
|
|
||||||
//#define DUMP
|
//#define DUMP
|
||||||
|
|
||||||
struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>, cv::cuda::HOGDescriptor
|
struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>
|
||||||
{
|
{
|
||||||
cv::cuda::DeviceInfo devInfo;
|
cv::cuda::DeviceInfo devInfo;
|
||||||
|
cv::Ptr<cv::cuda::HOG> hog;
|
||||||
|
|
||||||
#ifdef DUMP
|
#ifdef DUMP
|
||||||
std::ofstream f;
|
std::ofstream f;
|
||||||
@ -69,23 +70,13 @@ struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>, cv::cuda::HOGDescript
|
|||||||
devInfo = GetParam();
|
devInfo = GetParam();
|
||||||
|
|
||||||
cv::cuda::setDevice(devInfo.deviceID());
|
cv::cuda::setDevice(devInfo.deviceID());
|
||||||
|
|
||||||
|
hog = cv::cuda::HOG::create();
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef DUMP
|
#ifdef DUMP
|
||||||
void dump(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
|
void dump(const std::vector<cv::Point>& locations)
|
||||||
{
|
{
|
||||||
f.write((char*)&blockHists.rows, sizeof(blockHists.rows));
|
|
||||||
f.write((char*)&blockHists.cols, sizeof(blockHists.cols));
|
|
||||||
|
|
||||||
for (int i = 0; i < blockHists.rows; ++i)
|
|
||||||
{
|
|
||||||
for (int j = 0; j < blockHists.cols; ++j)
|
|
||||||
{
|
|
||||||
float val = blockHists.at<float>(i, j);
|
|
||||||
f.write((char*)&val, sizeof(val));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
int nlocations = locations.size();
|
int nlocations = locations.size();
|
||||||
f.write((char*)&nlocations, sizeof(nlocations));
|
f.write((char*)&nlocations, sizeof(nlocations));
|
||||||
|
|
||||||
@ -93,21 +84,18 @@ struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>, cv::cuda::HOGDescript
|
|||||||
f.write((char*)&locations[i], sizeof(locations[i]));
|
f.write((char*)&locations[i], sizeof(locations[i]));
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
void compare(const cv::Mat& blockHists, const std::vector<cv::Point>& locations)
|
void compare(const std::vector<cv::Point>& locations)
|
||||||
{
|
{
|
||||||
|
// skip block_hists check
|
||||||
int rows, cols;
|
int rows, cols;
|
||||||
f.read((char*)&rows, sizeof(rows));
|
f.read((char*)&rows, sizeof(rows));
|
||||||
f.read((char*)&cols, sizeof(cols));
|
f.read((char*)&cols, sizeof(cols));
|
||||||
ASSERT_EQ(rows, blockHists.rows);
|
for (int i = 0; i < rows; ++i)
|
||||||
ASSERT_EQ(cols, blockHists.cols);
|
|
||||||
|
|
||||||
for (int i = 0; i < blockHists.rows; ++i)
|
|
||||||
{
|
{
|
||||||
for (int j = 0; j < blockHists.cols; ++j)
|
for (int j = 0; j < cols; ++j)
|
||||||
{
|
{
|
||||||
float val;
|
float val;
|
||||||
f.read((char*)&val, sizeof(val));
|
f.read((char*)&val, sizeof(val));
|
||||||
ASSERT_NEAR(val, blockHists.at<float>(i, j), 1e-3);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -126,54 +114,41 @@ struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>, cv::cuda::HOGDescript
|
|||||||
|
|
||||||
void testDetect(const cv::Mat& img)
|
void testDetect(const cv::Mat& img)
|
||||||
{
|
{
|
||||||
gamma_correction = false;
|
hog->setGammaCorrection(false);
|
||||||
setSVMDetector(cv::cuda::HOGDescriptor::getDefaultPeopleDetector());
|
hog->setSVMDetector(hog->getDefaultPeopleDetector());
|
||||||
|
|
||||||
std::vector<cv::Point> locations;
|
std::vector<cv::Point> locations;
|
||||||
|
|
||||||
// Test detect
|
// Test detect
|
||||||
detect(loadMat(img), locations, 0);
|
hog->detect(loadMat(img), locations);
|
||||||
|
|
||||||
#ifdef DUMP
|
#ifdef DUMP
|
||||||
dump(cv::Mat(block_hists), locations);
|
dump(locations);
|
||||||
#else
|
#else
|
||||||
compare(cv::Mat(block_hists), locations);
|
compare(locations);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Test detect on smaller image
|
// Test detect on smaller image
|
||||||
cv::Mat img2;
|
cv::Mat img2;
|
||||||
cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
|
cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
|
||||||
detect(loadMat(img2), locations, 0);
|
hog->detect(loadMat(img2), locations);
|
||||||
|
|
||||||
#ifdef DUMP
|
#ifdef DUMP
|
||||||
dump(cv::Mat(block_hists), locations);
|
dump(locations);
|
||||||
#else
|
#else
|
||||||
compare(cv::Mat(block_hists), locations);
|
compare(locations);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Test detect on greater image
|
// Test detect on greater image
|
||||||
cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
|
cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
|
||||||
detect(loadMat(img2), locations, 0);
|
hog->detect(loadMat(img2), locations);
|
||||||
|
|
||||||
#ifdef DUMP
|
#ifdef DUMP
|
||||||
dump(cv::Mat(block_hists), locations);
|
dump(locations);
|
||||||
#else
|
#else
|
||||||
compare(cv::Mat(block_hists), locations);
|
compare(locations);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
// Does not compare border value, as interpolation leads to delta
|
|
||||||
void compare_inner_parts(cv::Mat d1, cv::Mat d2)
|
|
||||||
{
|
|
||||||
for (int i = 1; i < blocks_per_win_y - 1; ++i)
|
|
||||||
for (int j = 1; j < blocks_per_win_x - 1; ++j)
|
|
||||||
for (int k = 0; k < block_hist_size; ++k)
|
|
||||||
{
|
|
||||||
float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
|
||||||
float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
|
||||||
ASSERT_FLOAT_EQ(a, b);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// desabled while resize does not fixed
|
// desabled while resize does not fixed
|
||||||
@ -182,13 +157,8 @@ CUDA_TEST_P(HOG, DISABLED_Detect)
|
|||||||
cv::Mat img_rgb = readImage("hog/road.png");
|
cv::Mat img_rgb = readImage("hog/road.png");
|
||||||
ASSERT_FALSE(img_rgb.empty());
|
ASSERT_FALSE(img_rgb.empty());
|
||||||
|
|
||||||
#ifdef DUMP
|
|
||||||
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||||
ASSERT_TRUE(f.is_open());
|
ASSERT_TRUE(f.is_open());
|
||||||
#else
|
|
||||||
f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
|
||||||
ASSERT_TRUE(f.is_open());
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// Test on color image
|
// Test on color image
|
||||||
cv::Mat img;
|
cv::Mat img;
|
||||||
@ -198,8 +168,6 @@ CUDA_TEST_P(HOG, DISABLED_Detect)
|
|||||||
// Test on gray image
|
// Test on gray image
|
||||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2GRAY);
|
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2GRAY);
|
||||||
testDetect(img);
|
testDetect(img);
|
||||||
|
|
||||||
f.close();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
CUDA_TEST_P(HOG, GetDescriptors)
|
CUDA_TEST_P(HOG, GetDescriptors)
|
||||||
@ -216,8 +184,14 @@ CUDA_TEST_P(HOG, GetDescriptors)
|
|||||||
|
|
||||||
// Convert train images into feature vectors (train table)
|
// Convert train images into feature vectors (train table)
|
||||||
cv::cuda::GpuMat descriptors, descriptors_by_cols;
|
cv::cuda::GpuMat descriptors, descriptors_by_cols;
|
||||||
getDescriptors(d_img, win_size, descriptors, DESCR_FORMAT_ROW_BY_ROW);
|
|
||||||
getDescriptors(d_img, win_size, descriptors_by_cols, DESCR_FORMAT_COL_BY_COL);
|
hog->setWinStride(Size(64, 128));
|
||||||
|
|
||||||
|
hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_ROW_BY_ROW);
|
||||||
|
hog->compute(d_img, descriptors);
|
||||||
|
|
||||||
|
hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_COL_BY_COL);
|
||||||
|
hog->compute(d_img, descriptors_by_cols);
|
||||||
|
|
||||||
// Check size of the result train table
|
// Check size of the result train table
|
||||||
wins_per_img_x = 3;
|
wins_per_img_x = 3;
|
||||||
@ -242,48 +216,6 @@ CUDA_TEST_P(HOG, GetDescriptors)
|
|||||||
ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
|
ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
|
||||||
r[(x * blocks_per_win_y + y) * block_hist_size + k]);
|
r[(x * blocks_per_win_y + y) * block_hist_size + k]);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will
|
|
||||||
be defferent, due to border values interpolation. Using of many small images is slower, however we
|
|
||||||
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
|
|
||||||
works good, it can be checked in the gpu_hog sample */
|
|
||||||
|
|
||||||
img_rgb = readImage("hog/positive1.png");
|
|
||||||
ASSERT_TRUE(!img_rgb.empty());
|
|
||||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
|
||||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
|
||||||
// Everything is fine with interpolation for left top subimage
|
|
||||||
ASSERT_EQ(0.0, cv::norm((cv::Mat)block_hists, (cv::Mat)descriptors.rowRange(0, 1)));
|
|
||||||
|
|
||||||
img_rgb = readImage("hog/positive2.png");
|
|
||||||
ASSERT_TRUE(!img_rgb.empty());
|
|
||||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
|
||||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
|
||||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(1, 2)));
|
|
||||||
|
|
||||||
img_rgb = readImage("hog/negative1.png");
|
|
||||||
ASSERT_TRUE(!img_rgb.empty());
|
|
||||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
|
||||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
|
||||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(2, 3)));
|
|
||||||
|
|
||||||
img_rgb = readImage("hog/negative2.png");
|
|
||||||
ASSERT_TRUE(!img_rgb.empty());
|
|
||||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
|
||||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
|
||||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(3, 4)));
|
|
||||||
|
|
||||||
img_rgb = readImage("hog/positive3.png");
|
|
||||||
ASSERT_TRUE(!img_rgb.empty());
|
|
||||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
|
||||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
|
||||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(4, 5)));
|
|
||||||
|
|
||||||
img_rgb = readImage("hog/negative3.png");
|
|
||||||
ASSERT_TRUE(!img_rgb.empty());
|
|
||||||
cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
|
|
||||||
computeBlockHistograms(cv::cuda::GpuMat(img));
|
|
||||||
compare_inner_parts(cv::Mat(block_hists), cv::Mat(descriptors.rowRange(5, 6)));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, HOG, ALL_DEVICES);
|
INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, HOG, ALL_DEVICES);
|
||||||
@ -310,12 +242,12 @@ CUDA_TEST_P(CalTech, HOG)
|
|||||||
cv::cuda::GpuMat d_img(img);
|
cv::cuda::GpuMat d_img(img);
|
||||||
cv::Mat markedImage(img.clone());
|
cv::Mat markedImage(img.clone());
|
||||||
|
|
||||||
cv::cuda::HOGDescriptor d_hog;
|
cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
|
||||||
d_hog.setSVMDetector(cv::cuda::HOGDescriptor::getDefaultPeopleDetector());
|
d_hog->setSVMDetector(d_hog->getDefaultPeopleDetector());
|
||||||
d_hog.nlevels = d_hog.nlevels + 32;
|
d_hog->setNumLevels(d_hog->getNumLevels() + 32);
|
||||||
|
|
||||||
std::vector<cv::Rect> found_locations;
|
std::vector<cv::Rect> found_locations;
|
||||||
d_hog.detectMultiScale(d_img, found_locations);
|
d_hog->detectMultiScale(d_img, found_locations);
|
||||||
|
|
||||||
#if defined (LOG_CASCADE_STATISTIC)
|
#if defined (LOG_CASCADE_STATISTIC)
|
||||||
for (int i = 0; i < (int)found_locations.size(); i++)
|
for (int i = 0; i < (int)found_locations.size(); i++)
|
||||||
@ -326,7 +258,8 @@ CUDA_TEST_P(CalTech, HOG)
|
|||||||
cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
|
cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
|
||||||
}
|
}
|
||||||
|
|
||||||
cv::imshow("Res", markedImage); cv::waitKey();
|
cv::imshow("Res", markedImage);
|
||||||
|
cv::waitKey();
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -244,19 +244,13 @@ void App::run()
|
|||||||
Size win_size(args.win_width, args.win_width * 2); //(64, 128) or (48, 96)
|
Size win_size(args.win_width, args.win_width * 2); //(64, 128) or (48, 96)
|
||||||
Size win_stride(args.win_stride_width, args.win_stride_height);
|
Size win_stride(args.win_stride_width, args.win_stride_height);
|
||||||
|
|
||||||
// Create HOG descriptors and detectors here
|
cv::Ptr<cv::cuda::HOG> gpu_hog = cv::cuda::HOG::create(win_size);
|
||||||
vector<float> detector;
|
cv::HOGDescriptor cpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9);
|
||||||
if (win_size == Size(64, 128))
|
|
||||||
detector = cv::cuda::HOGDescriptor::getPeopleDetector64x128();
|
|
||||||
else
|
|
||||||
detector = cv::cuda::HOGDescriptor::getPeopleDetector48x96();
|
|
||||||
|
|
||||||
cv::cuda::HOGDescriptor gpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9,
|
// Create HOG descriptors and detectors here
|
||||||
cv::cuda::HOGDescriptor::DEFAULT_WIN_SIGMA, 0.2, gamma_corr,
|
Mat detector = gpu_hog->getDefaultPeopleDetector();
|
||||||
cv::cuda::HOGDescriptor::DEFAULT_NLEVELS);
|
|
||||||
cv::HOGDescriptor cpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, 1, -1,
|
gpu_hog->setSVMDetector(detector);
|
||||||
HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS);
|
|
||||||
gpu_hog.setSVMDetector(detector);
|
|
||||||
cpu_hog.setSVMDetector(detector);
|
cpu_hog.setSVMDetector(detector);
|
||||||
|
|
||||||
while (running)
|
while (running)
|
||||||
@ -307,9 +301,6 @@ void App::run()
|
|||||||
else img = img_aux;
|
else img = img_aux;
|
||||||
img_to_show = img;
|
img_to_show = img;
|
||||||
|
|
||||||
gpu_hog.nlevels = nlevels;
|
|
||||||
cpu_hog.nlevels = nlevels;
|
|
||||||
|
|
||||||
vector<Rect> found;
|
vector<Rect> found;
|
||||||
|
|
||||||
// Perform HOG classification
|
// Perform HOG classification
|
||||||
@ -317,11 +308,19 @@ void App::run()
|
|||||||
if (use_gpu)
|
if (use_gpu)
|
||||||
{
|
{
|
||||||
gpu_img.upload(img);
|
gpu_img.upload(img);
|
||||||
gpu_hog.detectMultiScale(gpu_img, found, hit_threshold, win_stride,
|
gpu_hog->setNumLevels(nlevels);
|
||||||
|
gpu_hog->setHitThreshold(hit_threshold);
|
||||||
|
gpu_hog->setWinStride(win_stride);
|
||||||
|
gpu_hog->setScaleFactor(scale);
|
||||||
|
gpu_hog->setGroupThreshold(gr_threshold);
|
||||||
|
gpu_hog->detectMultiScale(gpu_img, found);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
cpu_hog.nlevels = nlevels;
|
||||||
|
cpu_hog.detectMultiScale(img, found, hit_threshold, win_stride,
|
||||||
Size(0, 0), scale, gr_threshold);
|
Size(0, 0), scale, gr_threshold);
|
||||||
}
|
}
|
||||||
else cpu_hog.detectMultiScale(img, found, hit_threshold, win_stride,
|
|
||||||
Size(0, 0), scale, gr_threshold);
|
|
||||||
hogWorkEnd();
|
hogWorkEnd();
|
||||||
|
|
||||||
// Draw positive classified windows
|
// Draw positive classified windows
|
||||||
|
Loading…
x
Reference in New Issue
Block a user